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BLOW–UP SOLUTIONS FOR NON–SCALE–INVARIANT

NONLINEAR SCHRÖDINGER EQUATION IN ONE DIMENSION

MASARU HAMANO ∗ , MASAHIRO IKEDA AND SHUJI MACHIHARA

(Communicated by C.-L. Tang)

Abstract. In this paper, we consider the mass-critical nonlinear Schrödinger equation in one
dimension. Ogawa–Tsutsumi [Proc. Amer. Math. Soc. 111 (1991), no. 2, 487–496] proved
a blow-up result for negative energy solution by using a scaling argument for initial data. In
general, a equation with a linear potential does not have a scale invariant, so the method by
Ogawa–Tsutsumi cannot be used directly to that. In this paper, we prove a blow-up result for the
equation with the linear potential by modifying the argument of Ogawa–Tsutsumi.

1. Introduction

1.1. Nonlinear Schrödinger equation

We consider the following mass-critical nonlinear Schrödinger equations:

i∂t u+ ∂ 2
x u−Vu = −|u|4u, (t,x) ∈ R×R. (NLSV )

In particular, we deal with the Cauchy problem of (NLSV ) with initial data

u(0,x) = u0(x), x ∈ R. (IC)

DEFINITION 1.1. (Solution) Let I ⊂ R be a nonempty time interval including
0. We say that a function u : I ×R −→ C is a solution to (NLSV ) with (IC) if u ∈
(Ct ∩L∞

t,loc)(I;H
1
x (R)) and the Duhamel formula

u(t,x) = eit∂ 2
x u0(x)+ i

∫ t

0
ei(t−s)∂ 2

x (|u|4u−Vu)(s,x)ds

holds for any t (∈ I) , where H1(R) is a usual inhomogeneous Sobolev space of order
1.
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The equation (NLSV ) with V = 0

i∂t u+ ∂ 2
x u = −|u|4u, (t,x) ∈ R×R (NLS0)

is invariant by the following scaling:

u(t,x) �→ u[λ ](t,x) := λ
1
2 u(λ 2t,λx), (λ > 0). (1.1)

From the transformation (1.1), the initial data u0 changes to

u0 �→ u0,{λ} := λ
1
2 u0(λx), (λ > 0). (1.2)

THEOREM 1.2. (Local well-posedness of (NLS0), [3, 10, 17]) Let V = 0 . For
any u0 ∈ H1(R) , there exist Tmin ∈ [−∞,0) and Tmax ∈ (0,∞] such that (NLS0) with
(IC) has a unique solution

u ∈ (Ct ∩L∞
t,loc)((Tmin,Tmax);H1

x (R)).

For each compact interval I ⊂ (Tmin,Tmax) , the mapping H1(R)� u0 �→ u∈Ct(I;H1
x (R))

is continuous. Moreover, the solution u has the following blow-up alternative: If
Tmin > −∞ (resp. Tmax < ∞), then

lim
t↘Tmin (resp.t↗Tmax)

‖u(t)‖H1
x

= ∞.

Furthermore, the solution u preserves its mass M[u(t)] and energy EV [u(t)] with re-
spect to time t , where they are defined as follows:

(Mass) M[ f ] := ‖ f‖2
L2 ,

(Energy) EV [ f ] :=
1
2
‖∂x f‖2

L2 +
1
2

∫
R

V (x)| f (x)|2dx− 1
6
‖ f‖6

L6 .

Since ‖u0,{λ}‖L2 = ‖u0‖L2 holds for the scaling (1.2), (NLSV ) is called L2 -critical
or mass-critical.

In the case V = 0, Ogawa–Tsutsumi [20] proved the following result using the
scaling (1.2):

THEOREM 1.3. Let V = 0 and u0 ∈H1(R) . If E0[u0] < 0 , then the solution u to
(NLS0) with (IC) blows up.

Notice that the classic condition xu0 ∈ L2(R) (see [11]) is not required in Theorem
1.3. Since (NLSV ) with V �= 0 is not scale invariant in general, we can not apply
the argument in [20] directly to (NLSV ). In particular, in this paper we consider the
equations (NLSV ) with V = γ

|x|μ :

i∂t u+ ∂ 2
x u− γ

|x|μ u = −|u|4u, (γ > 0, 0 < μ < 1). (NLSγ )
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For simplicity, we use (NLSγ ) and Eγ as (NLS γ
|x|μ

) and E γ
|x|μ

respectively. To prove

a similar result for (NLSγ ) with Theorem 1.3, we give an alternative proof without the
scaling argument for initial data. We note that we can see the local well-posedness of
(NLSγ ) in [6]. One of our principal results is the following theorem.

THEOREM 1.4. Let γ > 0 , 0 < μ < 1 , and let u0 ∈ H1(R) . If Eγ [u0] < 0 , then
the solution u to (NLSγ ) with (IC) blows up.

REMARK 1.5. Dinh [8] showed the blow-up result for (NLSγ ) under γ > 0, u0 ∈
H1(R)∩L2(R; |x|2dx) , and Eγ [u0] < 0. That is, Theorem 1.4 removes the condition
u0 ∈ |x|−1L2(R) in [8].

The following corollary is also one of our principal results and holds by the same
argument with Theorem 1.4. The potential V (x) = γ

|x|μ (γ > 0, 0 < μ < 1) satisfies all
of conditions in Corollary 1.6, so Theorem 1.4 is a special case of Corollary 1.6.

COROLLARY 1.6. Let u0 ∈ H1(R) . We assume that V satisfies the following (i)
∼ (iii):

(i) (NLSV ) is locally well-posed.

(ii) For the solution u to (NLSV ) with (IC), w(x) :=
∫ x
0 ϕ(s)ds, and ϕ ∈W 3,∞(R) ,

we have

d2

dt2

∫
R

w(x)|u(t,x)|2dx = 4
∫

R

w′′(x)|∂xu(t,x)|2dx− 4
3

∫
R

w′′(x)|u(t,x)|6dx

−
∫

R

w(4)(x)|u(t,x)|2dx−2
∫

R

w′(x)V ′(x)|u(t,x)|2dx.

(1.3)

(iii)

−RX ′
( x

R

)
V ′(x)−4V(x) � 0 (1.4)

holds for any R > 0 and any x ∈ R , where X is defined as (3.1).

If EV [u0] < 0 , then the solution u to (NLSV ) with (IC) blows up.

REMARK 1.7. For example, if V is a real-valued function and V ∈ L1(R) +
L∞(R) , then (NLSV ) is locally well-posed (see [6, Theorem 4.3.1]). If V is a real-
valued function and V , V ′ ∈ L1(R)+L∞(R) , then (1.3) holds (see [15, Lemma 3.1]).
Since X ′ � 0 for x � 0 and X ′ � 0 for x � 0, if a non-negative potential V satisfies
V ′(x) � 0 (x � 0) and V ′(x) � 0 (x � 0) then (1.4) holds.
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In this paper, we also deal with the following equation with a delta potential:

i∂t u+ ∂ 2
x u− γδu = −|u|4u, (γ > 0). (NLSγδ )

The Schrödinger operator Hγδ := −∂ 2
x + γδ has a domain

D(Hγδ ) := { f ∈ H1(R)∩H2(R\ {0}) : ∂x f (0+)− ∂x f (0−) = γ f (0)}

and satisfies

Hγδ f = −∂ 2
x f , f ∈ D(Hγδ ).

A local well-posedness result can be seen in [6, Theorem 3.7.1] and [9, Section 2].

THEOREM 1.8. Let γ > 0 and let u0 ∈ H1(R) . If Eγδ [u0] < 0 , then the solution
u to (NLSγδ ) with (IC) blows up, where the energy Eγδ is defined as

Eγδ [ f ] :=
1
2
‖∂x f‖2

L2 +
γ
2
| f (0)|2 − 1

6
‖ f‖6

L6 .

The blow-up result for following Schrödinger equation on the star graph G with
J -edges can be also gotten.{

i∂t uuu+ ΔG uuu = −|uuu|4uuu, (t,x) ∈ R× (0,∞),
uuu(0,x) := uuu000(x) := (u j(0,x))J

j=1, x ∈ (0,∞),
(NLSG )

where J � 1, uuu(t,x) = (u j(t,x))J
j=1 : R× (0,∞) −→ CJ , and |uuu|4uuu := (|u j|4u j)J

j=1 .
The Schrödinger operator −ΔG has a domain

D(−ΔG ) := { fff ∈ D(G ) : A fff (0+)+B∂x fff (0+) = 000}

and satisfies

ΔG fff = (∂ 2
x f j)J

j=1, fff ∈ D(−ΔG ),

where D(G ) =
⊕J

j=1 D(0,∞) , D(0,∞) is a set of functions f ∈ H2(0,∞) satisfying
that f and ∂x f are absolutely continuous, and A,B are complex-valued n×n matrices
satisfying the conditions

(A1) J× (2J) matrix (A,B) has maximal rank, that is, rank(A,B) = J .

(A2) AB∗ is self-adjoint, that is, AB∗ = (AB∗)∗ , where X∗ denotes the adjoint of the

matrix X and is defined as X∗ := X
T

.

Under the assumption (A1) and (A2) , the Laplacian ΔG is self-adjoint on L2(G )
(see [18, 19]) and hence, eitΔG can be defined as the unitary operator on L2(G ) by the
Stone’s theorem. Here, we introduce typical boundary condition.
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(a) Kirchhoff boundary condition: Let A and B be

A =

⎛⎜⎜⎜⎜⎜⎝
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
1 1 1 · · · 1 1

⎞⎟⎟⎟⎟⎟⎠ . (1.5)

For such A and B , A fff (+0)+B∂x fff (+0) = 0 implies that fi(+0) = f j(+0) for
any i, j ∈ {1,2, . . . ,J} and ∑J

j=1 ∂x f j(+0)= 0. This is called Kirchhoff boundary
condition.

(b) Dirac delta boundary condition: Let γ �= 0 and A , B be

A =

⎛⎜⎜⎜⎜⎜⎝
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1
−γ 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
1 1 1 · · · 1 1

⎞⎟⎟⎟⎟⎟⎠ . (1.6)

For such A and B , A fff (+0)+B∂x fff (+0) = 0 implies that fi(+0) = f j(+0) for
any i, j ∈ {1,2, . . . ,J} and ∑J

j=1 ∂x f j(+0) = γ f1(+0) . This is called the Dirac
delta boundary condition.

(c) δ ′ boundary condition: Let γ ∈ R and A , B be

A =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
1 1 1 · · · 1 1

⎞⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎝
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1
−γ 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ . (1.7)

For such A and B , A fff (+0)+B∂x fff (+0) = 0 implies that ∂x fi(+0) = ∂x f j(+0)
for any i, j ∈ {1,2, . . . ,J} and ∑J

j=1 f j(+0) = γ∂x f1(+0) . This is called δ ′
boundary condition.

Lebesgue space and Sobolev space on the star graph G is defined respectively as

Lp(G ) :=
J⊕

j=1

Lp(0,∞), Hs(G ) :=
J⊕

j=1

Hs(0,∞) for s = 1,2
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with a norm

‖ fff‖Lp(G ) :=

⎧⎪⎪⎨⎪⎪⎩
(

J

∑
j=1

‖ f j‖p
Lp(0,∞)

) 1
p

, (1 � p < ∞),

max
1� j�J

‖ f j‖L∞(0,∞), (p = ∞),

‖ fff‖2
Hs(G ) :=

J

∑
j=1

‖ f j‖2
Hs(0,∞) for s = 1,2.

In addition, we set initial data space

H1
c (G ) := { fff ∈ H1(G ) : f1(0) = . . . = fJ(0)}

for (NLSG ) with (1.5) or (1.6). Local well-posedness results of (NLSG ) were cited in
[1, 2, 5, 13].

THEOREM 1.9. Let (A,B) be one of (1.5), (1.6), or (1.7). Assume that either
uuu000 ∈H1

c (G ) if (A,B) satisfies (1.5) or (1.6) or uuu000 ∈ H1(G ) if (A,B) satisfies (1.7). We
suppose that γ > 0 when (A,B) satisfies (1.6) or (1.7). If EG [uuu000] < 0 , then the solution
uuu to (NLSG ) blows up, where the energy EG is defined as

EG [ fff ] :=
1
2
‖∂x fff ‖2

L2(G )−
1
6
‖ fff‖6

L6(G ) +
1
2
P( fff ),

where

P( fff ) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, (if (A,B) is (1.5).),

γ| f1(+0)|2, (if (A,B) is (1.6).),

1
γ

∣∣∣∣∣ J

∑
j=1

f j(+0)

∣∣∣∣∣
2

, (if (A,B) is (1.7).).

REMARK 1.10. When γ < 0 in Theorem 1.4, the condition Eγ [u0] < 0 does not
guarantee the blow-up for the equation (NLSγ ). Indeed, the standing wave solution
u(t,x) = eiωtQω,γ (x) to (NLSγ ) was gotten in [7], where Qω,γ satisfies

−ωφ + ∂ 2
x φ − γ

|x|μ φ = −|φ |4φ .

The standing wave solution is time global and has negative energy. For the equations
(NLSγδ ) and (NLSG ), we can say the same thing with (NLSγ ). The standing wave
solution of (NLSγδ ) or (NLSG ) can be seen in [1, 9, 12, 14].

Idea of the proof. Ogawa–Tsutsumi [20] used a localized virial identity (Proposi-
tion 2.2) with a weighted function X (see (3.1) below for the definition). The func-
tion X is equal to x2 on {x : |x| � 1} and Ogawa–Tsutsumi collect initial data into
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{x : |x|� 1} by the scaling (1.2). However, the equations (NLSγ ), (NLSγδ ), and (NLSG )
are not scale invariant. So, we replace X with XR and spread a domain (where the
weighted function is equal to x2 ) by taking sufficiently large R . We note that radial
functions have estimate

‖ f‖p+1
Lp+1(|x|�R) � R− (d−1)(p−1)

2 ‖ f‖
p+3
2

L2(|x|�R)‖∇ f‖
p−1
2

L2(|x|�R)

for spatial dimension d . Since the inequality gives us decay estimate of ‖ f‖Lp+1(|x|�R)
as R → ∞ for d � 2, the weighted function XR is often utilized in d � 2. However,
we cannot get the decay in d = 1. In this paper, we apply XR to the proof and see that
it performs effectively also in d = 1.

The organization of the rest of this paper is as follows: In Section 2, we prepare
some notations and tools. In Section 3, we give an alternative proof of Theorem 1.3. In
Section 4, we prove a blow-up result of (NLSγ ), (NLSγδ ), and (NLSG ) (Theorem 1.4,
1.8, and 1.9) by using the alternative proof.

2. Preliminary

In this section, we define some notations and collect some tools.

2.1. Notations and definitions

For 1 � p � ∞ , Lp(R) denotes the usual Lebesgue space. H1(R) and Ws,∞(R)
(s ∈ N) denote the usual Sobolev spaces. If a space domain is not specified, then x -
norm is taken over R . That is, ‖ f‖Lp = ‖ f‖Lp(R) .

2.2. Some tools

The following lemma is given in [20, Lemma 2.1].

LEMMA 2.1. Let f ∈ H1(R) and g ∈W 1,∞(R) be a real-valued function. Then,
we have

‖ f g‖L∞(|x|�R) � ‖ f‖
1
2
L2(|x|�R)

{
2‖g2∂x f‖L2(|x|�R) +‖ f∂x(g2)‖L2(|x|�R)

} 1
2

for any R > 0 .

The next proposition is seen in [20, Lemma 2.2].

PROPOSITION 2.2. (Localized virial identity I) We assume that ϕ ∈W 3,∞(R) has
a compact support. If we define

Iw(t) :=
∫

R

w(x)|u(t,x)|2dx
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for w :=
∫ x
0 ϕ(y)dy and the solution u(t) to (NLS0), then we have

I′w(t) = 2Im
∫

R

w′(x)u(t,x)∂xu(t,x)dx,

I′′w(t) = 4
∫

R

w′′(x)|∂xu(t,x)|2dx− 4
3

∫
R

w′′(x)|u(t,x)|6dx−
∫

R

w(4)(x)|u(t,x)|2dx.

3. An alternative proof of Theorem 1.3

We define a smooth odd function ζ on R satisfying

ζ (s) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2s (0 � s � 1),

2[s− (s−1)3] (1 � s � 1+1/
√

3),

ζ ′(s) < 0 (1+1/
√

3 < s < 2),

0 (2 � s).

For the function ζ , we set the following functions:

X (x) :=
∫ x

0
ζ (s)ds, XR(x) := R2X

( x
R

)
. (3.1)

PROPOSITION 3.1. Let V = 0 and u0 ∈ H1(R) . If the solution u ∈Ct([0,Tmax);
H1

x (R)) to (NLS0) with (IC) satisfies

‖u(t)‖L2(|x|�R) �
(

3
8

) 1
4

=: a0, (3.2)

then we have

I′′XR
(t) � −2η̃ := 16E0[u0]+2η ,

where

η :=
4

3R2

(√
6+

‖ζ ′′‖L∞(1+1/
√

3�|x|�2)

2

)2

‖u0‖6
L2 +

‖ζ (3)‖L∞(1�|x|�2)

2R2 ‖u0‖2
L2 .

Proof. Applying Proposition 2.2 with w = XR given in (3.1), we have

I′′XR
(t) = 16E0[u0]−

∫
R

gR(x)4
[
4|∂xu(t,x)|2− 4

3
|u(t,x)|6

]
dx (3.3)

−
∫

R

1
R2 X (4)

( x
R

)
|u(t,x)|2dx

by a simple calculation, where gR is defined as

gR(x) :=
{

2−X ′′
( x

R

)} 1
4
.
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By Lemma 2.1, we have∫
R

gR(x)
4|u(t,x)|6dx =

∫
|x|�R

gR(x)4|u(t,x)|6dx

� ‖u‖2
L2(|x|�R)‖gRu‖4

L∞(|x|�R)

� ‖u‖4
L2(|x|�R)

{
2‖g2

R
∂xu‖L2(|x|�R) +‖u∂x(g2

R
)‖L2(|x|�R)

}2

� 8‖u‖4
L2(|x|�R)‖g2

R
∂xu‖2

L2(|x|�R) +2‖u‖6
L2(|x|�R)‖∂x(g2

R
)‖2

L∞(|x|�R).

(3.4)

By the simple calculation, we have

|∂x(gR(x)2)|

⎧⎪⎪⎪⎨⎪⎪⎪⎩
= 0, (0 � |x/R| � 1, 2 � |x/R|),
�
√

6/R, (1 � |x/R| � 1+1/
√

3),

� 1
2R

‖ζ ′′‖L∞(1+1/
√

3�|x|�2), (1+1/
√

3 < |x/R| < 2).

(3.5)

Therefore, it follows from (3.3), (3.4), and (3.5) that

I′′XR
(t) � 16E0[u0]−4

{
1− 8

3
‖u‖4

L2(|x|�R)

}∫
|x|�R

{
2−X ′′

( x
R

)}
|∂xu(t,x)|2dx

+
8

3R2

(√
6+

‖ζ ′′‖L∞(1+1/
√

3�|x|�2)

2

)2

‖u‖6
L2(|x|�R)

+
‖ζ (3)‖L∞(1�|x|�2)

R2 ‖u‖2
L2(|x|�R),

which completes the proof by (3.2) and the mass conservation. �
Proof. [An alternative proof of theorem 1.3] We consider only positive time. We

assume for contradiction that u exists globally in positive time direction.
We take sufficiently large R > 0 satisfying that

η̃ > 0,

1
R

(∫
R

XR(x)|u0(x)|2dx

) 1
2
(

1+
4
η̃
‖∂xu0‖2

L2

) 1
2

� 1
2
a0, (3.6)

where η̃ and a0 are given in Proposition 3.1. We note that η̃ −→ −8E0[u0] > 0 as
R → ∞ and

1
R2

∫
R

XR(x)|u0(x)|2dx =
∫

R

X
( x

R

)
|u0(x)|2dx =

∫
R

∫ x/R

0
ζ (s)ds|u0(x)|2dx −→ 0

as R → ∞ by the dominated convergence theorem. We prove that u(t) satisfies (3.2)
for any 0 � t < ∞ . We note that it follows from (3.6), η̃ > 0, and

XR(x) � XR(R) = R2
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for |x| � R that

‖u0‖L2(|x|�R) � 1
2
a0. (3.7)

Here, we define t0 as

t0 := sup{t > 0 : ‖u(s)‖L2(|x|�R) � a0 for any 0 � s < t}.

By (3.7) and the continuity of ‖u(t)‖L2 , we note t0 > 0. We recall that u is a positive
time global solution. Let us prove that t0 = ∞(= Tmax) . If we assume that 0 < t0 < ∞(=
Tmax) , we have ‖u(t0)‖L2(|x|�R) = a0 by the continuity of ‖u(t)‖L2 . Then, the solution
u(t) satisfies (3.2) for any 0 � t � t0 , so it follows from Proposition 3.1 that

I′′XR
(τ) � −2η̃

for any 0 � τ � t0 . Integrating this inequality over τ ∈ [0,s] and over s ∈ [0, t] ,

IXR(t) � IXR(0)+ I′XR
(0)t − η̃t2. (3.8)

Combining (3.8) and η̃ > 0, we have by Proposition 2.2

IXR(t) � IXR(0)− η̃
{

t− 1
2η̃

I′XR
(0)

}2

+
1

4η̃
I′XR

(0)2

� IXR(0)+
1
η̃
‖u0X

′
R‖2

L2‖∂xu0‖2
L2 (3.9)

for any 0 � t � t0 . Using XR � R2 (|x|� R) , (3.9), (X ′
R)2 � 4XR , and (3.6), we have

‖u(t)‖L2(|x|�R) � 1
R

IXR(t)
1
2 � 1

R
IXR(0)

1
2

(
1+

4
η̃
‖∂xu0‖2

L2

) 1
2

� 1
2
a0

for any 0 � t � t0 . However, this is contradiction and therefore, t0 = ∞(= Tmax) holds.
Finally, by (3.8), we conclude that IXR(t) < 0 for some finite time, which is ab-

surd. Therefore, the solution u to (NLS0) with (IC) blows up. �

4. Applications

To prove Theorem 1.4, we use the following localized virial identity.

PROPOSITION 4.1. (Localized virial identity II, [8, 21]) Let V = γ
|x|μ and 0 <

μ < 1 . We assume that ϕ ∈W 3,∞(R) has a compact support. If we define

Iγ,w(t) :=
∫

R

w(x)|u(t,x)|2dx
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for w :=
∫ x
0 ϕ(y)dy and the solution u(t) to (NLSγ ), then we have

I′γ,w(t) = 2Im
∫

R

w′(x)u(t,x)∂xu(t,x)dx,

I′′γ,w(t) = 4
∫

R

w′′(x)|∂xu(t,x)|2dx− 4
3

∫
R

w′′(x)|u(t,x)|6dx

−
∫

R

w(4)(x)|u(t,x)|2dx+2μ
∫

R

w′(x)
x

· γ
|x|μ |u(t,x)|2dx.

Applying Proposition 4.1 with the weighted function XR , we have

I′′γ,XR
(t) � 16Eγ [u0]+2η +2

∫
R

{
μ

R
x
X ′

( x
R

)
−4

}
γ

|x|μ |u(t,x)|2dx

by the same argument with Proposition 3.1, where η is given in Proposition 3.1. It
follows from μ R

|x|X
′ ( x

R

)−4 � 0 that

I′′γ,XR
(t) � 16Eγ [u0]+2η .

The rest of the proof of Theorem 1.4 repeats the proof of Theorem 1.3.
We turn to the nonlinear Schrödinger equation with the delta potential. To prove

Theorem 1.8, we use the following localized virial identity.

PROPOSITION 4.2. (Localized virial identity III, [4, 16]) Let V = γδ . We as-
sume that ϕ ∈W 3,∞(R) has a compact support and satisfies ϕ(0) = 0 . If we define

Iδ ,w(t) :=
∫

R

w(x)|u(t,x)|2dx

for w :=
∫ x
0 ϕ(y)dy and the solution u(t) to (NLSγδ ), then we have

I′δ ,w(t) = 2Im
∫

R

w′(x)u(t,x)∂xu(t,x)dx,

I′′δ ,w(t) = 4
∫

R

w′′(x)|∂xu(t,x)|2dx− 4
3

∫
R

w′′(x)|u(t,x)|6dx

−
∫

R

w(4)(x)|u(t,x)|2dx+2γw′′(0)|u(t,0)|2.

Applying Proposition 4.2 with the weighted function XR , we have

I′′δ ,XR
(t) � 16Eγδ [u0]+2η −4γ|u(t,0)|2

by the same argument as in Proposition 3.1, where η is given in Proposition 3.1. It
follows from −4γ|u(t,0)|2 � 0 that

I′′δ ,XR
(t) � 16Eγδ [u0]+2η .

The rest of the proof of Theorem 1.8 repeats the proof of Theorem 1.3.
To prove Theorem 1.9, we use the following localized virial identity.



82 M. HAMANO, M. IKEDA AND S. MACHIHARA

PROPOSITION 4.3. (Localized virial identity IV, [12, 13]) We assume that ϕ ∈
W 3,∞(0,∞) has compact support and satisfies ϕ(0) = 0 . If we define

IG ,w(t) :=
∫

G
w(x)|uuu(t,x)|2dx :=

J

∑
j=1

∫ ∞

0
w(x)|u j(t,x)|2dx

for w =
∫ x
0 ϕ(y)dy and the solution uuu to (NLSG ), then we have

I′G ,w(t) = 2Im
∫

G
w′(x)uuu(t,x)∂xuuu(t,x)dx,

I′′G ,w(t) = 4
∫

G
w′′(x)|∂xuuu(t,x)|2dx− 4

3

∫
G

w′′(x)|uuu(t,x)|6dx

−
∫

G
w(4)(x)|uuu(t,x)|2dx+2w′′(0)P(uuu(t)),

where P is defined in Theorem 1.9.

Applying Proposition 4.3 with the weighted function XR , we have

I′′G ,XR
(t) � 16EG [uuu000]+2η

G
−4P(u(t))

by the same argument with Proposition 3.1, where

η
G

:=
4

3R2

(√
6+

‖ζ ′′‖L∞(1+1/
√

3�|x|�2)

2

)2

‖uuu000‖6
L2(G ) +

‖ζ (3)‖L∞(1�|x|�2)

2R2 ‖uuu000‖2
L2(G ).

It follows from −4P(u(t)) � 0 that

I′′G ,XR
(t) � 16EG [uuu000]+2η

G
.

The rest of the proof of Theorem 1.9 repeats the proof of Theorem 1.3.

RE F ER EN C ES

[1] R. ADAMI, C. CACCIAPUOTI, D. FINCO, AND D. NOJA, Variational properties and orbital stability
of standing waves for NLS equation on a star graph, J. Differential Equations 257 (2014), no. 10,
3738–3777, MR3260240.

[2] J. P. ANGULO AND N. GOLOSHCHAPOVA,Extension theory approach in the stability of the standing
waves for the NLS equation with point interactions on a star graph, Adv. Differential Equations 23
(2018), no. 11-12, 793–846, MR3857871.

[3] J. B. BAILLON, T. CAZENAVE, AND M. FIGUEIRA, Équation de Schrödinger avec non-linéarité
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