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Abstract. The main objective of this work is to investigate a class of  -Caputo fractional dif-
ferential systems with impulsive effects and nonlocal conditions. We used Banach fixed point
theorem, fractional calculus, and semigroup theory to study the existence of piecewise continu-
ous mild solution for the proposed system. Moreover, we proved the novel stability criteria for
the considered system. Further, we investigated the exact and trajectory controllability of the
proposed system. Finally, the main results are validated with the aid of an example.

1. Introduction

The fractional differential equations (FDEs for short) have acquired considerable
significance due to lots of practical applications such as in multi-agent systems, epi-
demiological models, electric circuits, fluid mechanics, neural networks, viscoelastic-
ity, and control theory. For the basic theory of FDEs and their applications, see [19,
22, 27, 28, 39]. Fractional derivatives are important tools for the description of the
hereditary characteristic of many materials and processes. Several definitions of frac-
tional derivative exist for special kinds of kernel dependency, for example, Caputo,
Caputo-Hadamard, Hadamard, Caputo Erdélyi-Kober, and Riemann-Liouville. In [3],
Almeida derived a new fractional derivative corresponding to another function, which
is known as  -Caputo derivative. The  -Caputo derivative depends on a kernel  and
fractional derivatives like Caputo, Caputo Erdélyi-Kober and Caputo-Hadamard are
obtained by choosing the particular kernel. The  -Caputo fractional systems are con-
sidered by many researchers, see [4, 5, 18, 35] and the references therein. Suechoei and
Sa Ngiamsunthorn [31] investigated the existence and stability of fractional differential
system with  -Caputo derivative. Many real-life problems have some sudden changes
in their states and these sudden changes are called the impulsive effects. These impul-
sive effects are classified into two types namely, instantaneous impulsive effects, and
another is non-instantaneous impulsive effects. Impulsive effects begin at any arbitrary
fixed point and continuewith a finite time interval, which is known as non-instantaneous
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impulses. For more details on non-instantaneous impulses, see [2, 6, 10–13, 16, 36–38]
and the references therein.

There are only few papers that deal with the stability of the non-instantaneous im-
pulsive fractional system [1,15,23] and the references therein. Kumar et al. [21] studied
the stability and controllability of fractional differential system with impulsive effect.
The controllability problem has drawn the attention of many scientists and researchers
since it plays a crucial role in engineering and control theory. Exact controllability is the
possibility to transfer the system from any initial state to any target state by choosing a
control function. Trajectory controllability is the possibility to transfer the system from
any initial state to any target state along a prescribed trajectory, rather than a suitable
control function steering a given initial state to any target state. For more details on the
exact and trajectory controllability, see [7–9,14,24–26,29,32,34]. Si et al. [30] studied
the controllability of a system governed by Stieltjes differential equations. Venkate-
san and George [33] analyzed the trajectory controllability for fractional differential
equations in Hilbert spaces. To the author’s knowledge, no manuscript exists on the
existence, stability, exact, and trajectory controllability for  -Caputo fractional sys-
tems with impulsive effects and nonlocal conditions in the literature which is the key
inspiration to our research work in this manuscript.

Motivated by the above research, we establish the existence and stability for the
following  -Caputo fractional system defined as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

C
0 D

z() = H z()+(,z()),  ∈ ∪
l=0(l ,l+1],

z() = Pl(,z(−l )),  ∈ ∪
l=1(l,l ],

z(0)+Q(z) = z0,

(1.1)

and for the controllability results, we consider the following  -Caputo fractional con-
trol system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

C
0 D

z() = H z()+G v()+(,z()),  ∈ ∪
l=0(l,l+1],

z() = Pl(,z(−l )),  ∈ ∪
l=1(l ,l ],

z(0)+Q(z) = z0,

(1.2)

where the state z(·) takes its values in Hilbert space Z and C
0 D

 denotes the  -
Caputo derivative of order  ∈ (0,1). 0 = 0 = 0 < 1 < 1 < 2 < · · · <  <  <
+1 = b <, J1 = [0,b] and H is the generator of a C0 -semigroup {T ()}�0 on
Z . The functions Pl(,z(−l )) represents non-instantaneous impulses on (l ,l], l =
1,2, . . . , . The function v(·) in L2(J1,S ) is the control and G is an operator from
Banach space S into Z , which is linear and bounded. The functions  : J1 ×Z →
Z , Q : C(J1,Z ) → Z , and Pl : (l ,l]×Z → Z , l = 1,2, . . . , , are fulfilled
some suitable assumptions that will be specified later.

The work is arranged as follows. In section 2, we recall some useful results. In
section 3 and section 4, we proved the existence of mild solution and stability for the
considered system, respectively. Moreover, in section 5 and section 6, we investigated
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the exact and trajectory controllability of the above system. In section 7, an example is
given to demonstrate the obtained results.

2. Preliminaries

Let J2 = [a,b] and  ∈ Cm(J2,R) an increasing function such that  ′() �=
0, ∀  ∈ J2.

DEFINITION 1. [31] The  -Caputo fractional derivative of the function R of
order  (m−1 <  < m , m ∈ N), is defined as

(Ca D
R)() = (aI

m−
 R [m])() = 1

(m−)
∫ 
a (()−(e))m−−1R [m](e) ′(e)de,

where m = [ ]+1 and R [m]() =
(

1
 ′()

d
d

)m
R().

LEMMA 1. [31] Let R ∈Cm([a,b]) and  > 0. Then we have

aI



C
a D

R() = R()−
n−1


k=0

R [k](a+)
k!

(()−(a))k.

In particular, for  ∈ (0,1), we obtain

aI



C
a D

R() = R()−R(a).

LEMMA 2. [17] Let  > 0 and  > 0, then

1. aI

 (()−(a))−1() = ()

(+) (()−(a))+−1.

2. aD

(()−(a))−1(t) = ()

(−) (()−(a))+−1.

LEMMA 3. The  -Caputo fractional Cauchy problem:{
C
0 D

z() = H z()+D(),  ∈ (0,b],
z(0) = z0,

(2.1)

has a solution which is defined as follows:

z() = S

 (,0)z0 +

∫ 

0
(()−(e))−1T


 (,e)D(e) ′(e)de, (2.2)

where

S

 (,e)z =

∫ 

0
( )T ((()−(e)) )zd ,

T

 (,e)z = 

∫ 

0
( )T ((()−(e)) )zd , 0 � e �  � b,
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where ( ) =
1

 (−1− (1/))(−1/) is the probability density function defined

on (0,), i.e.

( ) � 0,  ∈ (0,) and
∫ 

0
( )d = 1.

Proof. Eq. (2.1) is rewritten in the form of the following integral equation

z() = z0 +
1

()

∫ 

0
(()−(e))−1[H z(e)+D(e)] ′(e)de, (2.3)

provided that the Eq. (2.3) exists. Let > 0. By using the Laplace transform, we obtain

Z() =
z0


+

1

(
H Z()+ D̂()

)
,

where

Z() =
∫ 

0
e−(( )−(0))z( ) ′( )d ,

D̂() =
∫ 

0
e−(( )−(0))D( ) ′( )d .

It follows that

Z() = −1(I−H )−1z0 +(I−H )−1D̂()

= −1
∫ 

0
e−

eT (e)z0de+
∫ 

0
e−

 eT (e)D̂()de.

Taking e = ̂  , we obtain

Z() = 
∫ 

0
(̂)−1e−(̂)T (̂ )z0d̂ + 

∫ 

0
̂ −1e−(̂)T (̂ )D̂()d̂

= I1 + I2,

where

I1 = 
∫ 

0
(̂)−1e−(̂)T (̂ )z0d̂,

I2 = 
∫ 

0
̂ −1e−(̂)T (̂ )D̂()d̂.

Taking ̂ = ()−(0), we obtain

I1 = 
∫ 

0
−1(()−(0))−1e−((()−(0)))T ((()−(0)))z0 ′()d

=
∫ 

0

−1


d
d

(
e−((()−(0)))

)
T ((()−(0)))z0d.
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I2 = 
∫ 

0
(()−(0))−1e−((()−(0)))T ((()−(0)))D̂() ′()d

=
∫ 

0

∫ 

0
(()−(0))−1e−((()−(0)))T ((()−(0)))

×e−(((e)−(0)))D(e) ′(e) ′()ded.

Now, we take following one-sided stable probability density

( ) =
1





i=1

(−1)i−1− i−1( i+1)
i!

sin(i),  ∈ (0,),

whose integration is defined as follows

∫ 

0
e−( )d = e−


,  ∈ (0,1). (2.4)

Using Eq. (2.4), we obtain

I1 =
∫ 

0

−1


d
d

(∫ 

0
e−((()−(0)))( )d

)
T ((()−(0)))z0d

=
∫ 

0

∫ 

0
( )e−((()−(0)))T ((()−(0)))z0 ′()dd

=
∫ 

0
e−((()−(0)))

(∫ 

0
( )T

(
(()−(0))

 

)
d
)

z0 ′()d,

and

I2 =
∫ 

0

∫ 

0

∫ 

0
(()−(0))−1( )e−((()−(0)))T ((()−(0)))

×e−(((e)−(0)))D(e) ′(e) ′()dded

=
∫ 

0

∫ 

0

∫ 

0
e−((()+(e)−2(0))) (()−(0))−1

  ( )

×T

(
(()−(0))

 

)
D(e) ′(e) ′()dded

=
∫ 

0

∫ 

0

∫ 

0
e−((( )−(0)))( )

(()−(0))−1

  T

(
(()−(0))

 

)
×D(−1(( )−()+(0)))) ′( ) ′()ddd

=
∫ 

0
e−((( )−(0)))

(∫ 

0

∫ 

0
( )

(( )−(e))−1

 

×T

(
(( )−(e))

 

)
D(e) ′(e)dde

)
 ′( )d .
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Hence, we get

Z() =
∫ 

0
e−((()−(0)))

(∫ 

0
( )T

(
(()−(0))

 

)
z0d

)
 ′()d

+
∫ 

0
e−((( )−(0)))

(∫ 

0

∫ 

0
( )

(( )−(e))−1

 

×T

(
(( )−(e))

 

)
D(e) ′(e)dde

)
 ′( )d .

By inverse Laplace transform, we get

z() =
∫ 

0
( )T

(
(()−(0))

 

)
z0d

+
∫ 

0

∫ 

0
( )

(()−(e))−1

  T

(
(()−(e))

 

)
D(e) ′(e)dde.

Thus, we obtain

z() =
∫ 

0
( )T ((()−(0)) )z0d

+
∫ 

0

∫ 

0
( )(()−(e))−1T ((()−(e)) )D(e) ′(e)dde,

where ( ) = 1
 

−1− 1
 (− 1

 ). For any z ∈ Z , the operators S

 (,e) and

T

 (,e) defined as

S 
 (,e)z =

∫ 

0
( )T ((()−(e)) )zd ,

and
T 
 (,e)z = 

∫ 

0
( )T ((()−(e)) )zd , 0 � e �  � b.

Hence, we obtain

z() = S

 (,0)z0 +

∫ 

0
(()−(e))−1T


 (,e)D(e) ′(e)de.

DEFINITION 2. A function z : J1 → Z is a mild solution of (1.1) if for every
 ∈ J1 , z() fulfills z(0) = z0, and z() = Pl(,z(−l )),  ∈ (l,l ] , l = 1,2, . . . , ,
and

z() = S 
 (,0)[z0 −Q(z)]+

∫ 

0
(()−(e))−1T 

 (,e)(e,z(e)) ′(e)de,

for all  ∈ [0,1] , l = 0 and

z() = S

 (,l)Pl(l ,z(−l ))

+
∫ 

l

(()−(e))−1T 
 (,e)(e,z(e)) ′(e)de, (2.5)

for all  ∈ (l,l+1] , l = 1,2, . . . , .
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Define the space PC (Z ) formed by functions {z() :  ∈ [0,b]} such that z is
continuous at  �= l , z(−l ) = z(l) and z(+

l ) exists for all l = 1,2, . . . , with norm

‖z‖PC = sup
0��b

‖z()‖.

Then (PC (Z ),‖ · ‖PC ) is Banach space. �

3. Solvability of  -Caputo fractional systems

We assume the subsequent hypotheses:

[A1]: The function  : J1×Z →Z is continuous and there exist constants ˆK , M̂
> 0 such that

‖(,z)‖ � ˆK(1+‖z‖), ∀ z ∈ Z ,

‖(,z1)−(,z2)‖ � M̂ ‖z1− z2‖, ∀ z1,z2 ∈ Z .

[A2]: The functions Pl : (l ,l ]×Z → Z , l = 1,2, . . . , , are continuous and there
exist constants ˆKPl , M̂Pl > 0, l = 1,2, . . . , , such that

‖Pl(,z)‖ � ˆKPl (1+‖z‖), ∀ z ∈ Z ,

‖Pl(,z1)−Pl(,z2)‖ � M̂Pl ‖z1− z2‖, ∀ z1,z2 ∈ Z .

[A3]: The function Q : C(J1,Z ) → Z is Lipschitz continuous, i.e., there exists a
constant ˆKQ > 0 such that

‖Q(z1)−Q(z2)‖ � ˆKQ‖z1− z2‖, ∀ z1,z2 ∈ Z .

[A4]: The following inequalities hold

max
1�l�

{
M ˆKQ + ˆKPl +M ˆKPl +

M

(1+ )
ˆK((b)−(0))

}
< 1.

For simplicity
h0 = M ˆKQ, hl = MM̂Pl , l = 1,2, . . . , ,

and

ol =
M

(1+ )
M̂((l+1)−(l)) , l = 0,1, . . . , .

LEMMA 4. [31] For any fixed  � e � 0, S

 (,e) and T


 (,e) are bounded

linear operators and

‖S 
 (,e)(z)‖ � M ‖z‖, ‖T 

 (,e)(z)‖ � M

(1+ )
‖z‖ =

M

()
‖z‖.
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THEOREM 1. If the hypotheses [A1]–[A4] are fulfilled. Then the  -Caputo frac-
tional system (1.1) has a unique mild solution on J1 provided

O = max
1�l�

[
0,M̂Pl ,l

]
< 1,

where l = hl +ol , l = 0,1, . . . , .

Proof. For  > 0, we define

W = {z ∈ PC (Z ) : ‖z‖PC � } .

Clearly, W is a bounded and closed subset of PC (Z ) . We define the operator F on
W as follows

(Fz)() =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S

 (,0)[z0 −Q(z)]

+
∫ 
0 (()−(e))−1T


 (,e)(e,z(e)) ′(e)de  ∈ [0,1], l = 0,

Pl(,z(−l )),  ∈ (l,l ], l � 1,

S

 (,l)Pl(l ,z(−l ))

+
∫ 
l

(()−(e))−1T

 (,e)(e,z(e)) ′(e)de  ∈ (l,l+1], l � 1.

Step 1. There exists  > 0 such that F(W)⊂W . If we assume that this assertion
is false, then for any  > 0, we can choose  ∈J1 and z ∈W such that ‖F(z)()‖>
 . For any  ∈ [0,1], we obtain

 < ‖F(z)()‖
� ‖S 

 (,0)[z0−Q(z)]‖

+
∥∥∥∥
∫ 

0
(()−(e))−1T 

 (,e)(e,z (e)) ′(e)de

∥∥∥∥
� M ‖z0‖+M ˆKQ +M ‖Q(0)‖

+
M

()
ˆK(1+ )

∫ 

0
(()−(e))−1 ′(e)de

� M ‖z0‖+M ˆKQ +M ‖Q(0)‖
+

M

(1+ )
ˆK(1+ )((1)−(0)) .

If  ∈ (l ,l ], l = 1,2, . . . , , then we obtain

 < ‖F(z)()‖ = ‖Pl(,z (−l ))‖2 � ˆKPl (1+ ). (3.1)
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Similarly, if  ∈ (l ,l+1] , l = 1,2, . . . , , then we obtain

 < ‖F(z)()‖
� ‖S 

 (,l)Pl(l,z
 (−l ))‖

+
∥∥∥∥
∫ 

l

(()−(e))−1T 
 (,e)(e,z (e)) ′(e)de

∥∥∥∥
� M ˆKPl (1+ )+

M

()
ˆK(1+ )

∫ 

l

(()−(e))−1 ′(e)de

� M ˆKPl (1+ )+
M

(1+ )
ˆK(1+ )((l+1)−(l)) .

For every  ∈ J1, we obtain

 < ‖F(z)()‖
� Y ∗ +M ˆKQ + ˆKPl+M ˆKPl +

M

(1+ )
ˆK((b)−(0)) , (3.2)

where

Y ∗ = max
1�l�

{
M ‖z0‖+M ‖Q(0)‖+ K̂Pl +M ˆKPl +

M

(1+ )
ˆK((b)−(0))

}
.

Here, Y ∗ is independent of , both sides of Eq. (3.2) are dividing by  and taking
 →  , we obtain

1 < M ˆKQ + ˆKPl +M ˆKPl +
M

(1+ )
ˆK((b)−(0)) ,

which contradicts to [A4]. Hence, we obtain F(W) ⊂ W for some  > 0.

Step 2. F is a contraction mapping on W .
For all z1,z2 ∈ W , if  ∈ [0,1], then we obtain

‖(Fz1)()− (Fz2)()‖
� M ‖Q(z1)−Q(z2)‖

+
∥∥∥∥
∫ 

0
(()−(e))−1T


 (,e)[(e,z1(e))−(e,z2(e))] ′(e)de

∥∥∥∥
� M ˆKQ‖z1− z2‖PC +

M

(1+ )
M̂((1)−(0))‖z1− z2‖PC

�
(

M ˆKQ +
M

(1+ )
M̂((1)−(0))

)
‖z1− z2‖PC . (3.3)

If  ∈ (l ,l ] , l = 1,2, . . . , , then we obtain

‖(Fz1)()− (Fz2)()‖ � M̂Pl‖z1− z2‖PC . (3.4)
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Similarly, if  ∈ (l ,l+1] , l = 1,2, . . . , , then we obtain

‖(Fz1)()− (Fz2)()‖
� M

∥∥Pl(l,z1(−l ))−Pl(l ,z2(−l )))
∥∥

+
∥∥∥∥
∫ 

l

(()−(e))−1T

 (,e)[(e,z1(e))−(e,z2(e))] ′(e)de

∥∥∥∥
� MM̂Pl‖z1− z2‖PC +

M

(1+ )
M̂((l+1)−(l))‖z1− z2‖PC

�
(

MM̂Pl +
M

(1+ )
M̂((l+1)−(l))

)
‖z1− z2‖PC . (3.5)

By Eqs. (3.3)–(3.5), we obtain

‖(Fz1)()− (Fz2)()‖ � O ‖z1− z2‖PC ,

where

O = max
1�l�

[
0,M̂Pl ,l

]
.

Hence,

‖Fz1−Fz2‖PC � O‖z1− z2‖PC . (3.6)

Thus, F is a contraction mapping on W . Hence, by the fixed point theorem of Banach,
there exists a unique mild solution on J1 . �

4. Stability results

DEFINITION 3. [21] A mild solution z of the system (1.1) is said to be stable, if
for arbitrary  > 0, there exists  > 0 such that

‖z()− ẑ()‖ < , whenever ‖z(0)− ẑ0‖ <  ,

where ẑ is the mild solution of the system (1.1) with initial conditions ẑ(0) = ẑ0, and
the impulsive conditions z() = Pl(, ẑ(−l )),  ∈ (l ,l ] , l = 1,2, . . . , .

THEOREM 2. If the hypotheses [A1]–[A4] are fulfilled. Then the system (1.1) has
a unique stable mild solution on J1, provided that

M ˆKQ < 1.

Proof. By Theorem 1, we obtain that the system (1.1) has a unique mild solution
z(). Let ẑ() be any mild solution of system (1.1) with conditions ẑ(0) = ẑ0, and
ẑ() = Pl(, ẑ(−l )),  ∈ (l,l ] , l = 1,2, . . . , .
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Case 1. For  ∈ [0,1], we have

‖z()− ẑ()‖ � M ‖z0 − ẑ0‖+M ‖Q(z)−Q(ẑ)‖
+
∥∥∥∥
∫ 

0
(()−(e))−1T


 (,e)[(e,z(e))−(e, ẑ(e))] ′(e)de

∥∥∥∥
� M ‖z0− ẑ0‖+M ˆKQ‖z()− ẑ()‖

+
M

()
M̂

∫ 

0
(()−(e))−1‖z(e)− ẑ(e)‖ ′(e)de

� M +M ˆKQ‖z()− ẑ()‖
+

M

()
M̂

∫ 

0
(()−(e))−1‖z(e)− ẑ(e)‖ ′(e)de.

Case 2. For  ∈ (l ,l] , l = 1,2, . . . , , we have

‖z()− ẑ()‖ = ‖Pl(,z(−l ))−Pl(, ẑ(−l ))‖
� M̂Pl ‖z(−l )− ẑ(−l )‖.

Case 3. For  ∈ (l,l+1] , l = 1,2, . . . , , we have

‖z()− ẑ()‖ � M
∥∥Pl(l,z(−l ))−Pl(l , ẑ(−l )))

∥∥
+
∥∥∥∥
∫ 

l

(()−(e))−1T

 (,e)[(e,z(e))−(e, ẑ(e))] ′(e)de

∥∥∥∥
� MM̂Pl‖z(−l )− ẑ(−l )‖

+
M

()
M̂

∫ 

l

(()−(e))−1‖z(e)− ẑ(e)‖ ′(e)de.

For  ∈ J1, we have

‖z()− ẑ()‖ � M

1−M ˆKQ

 +



l=1

(
M̂Pl +MM̂Pl

)
1−M ˆKQ

‖z(−l )− ẑ(−l )‖

+
M

()(1−MK̂Q)
M̂

∫ 

0
(()−(e))−1‖z(e)− ẑ(e)‖ ′(e)de.

By using impulsive Gronwall’s inequality [20], we get

‖z()− ẑ()‖ � M

1−M ˆKQ

×
[




l=1

(
1+

(M̂Pl +MM̂Pl)

1−MK̂Q

E (C()((l)−(0)))

)]
T0

� T  ,
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where

T =
M

1−M ˆKQ

[



l=1

(
1+

(M̂Pl +MM̂Pl )

1−M ˆKQ

E (C()((l)−(0)))

)]
T0,

C =
M

()(1−M ˆKQ)
M̂, T0 = E (C()(()−(0))) .

Next, we can choose a  > 0 such that  <

T

, then

‖z()− ẑ()‖ < .

Hence, the system (1.1) has a unique stable mild solution on J1. �

5. Exact controllability

We assume the following hypotheses

[A5]: The linear operators l+1
l

: L2((l,l+1],S ) → Z , l = 0,1, . . . , , defined by

l+1
l

v =
∫ l+1

l

((l+1)−(e))−1T

 (l+1,e)G v(e) ′(e)de,

has bounded invertible operators (l+1
l

)−1 which takes values in L2((l ,l+1],S )
/Ker(l+1

l
) and there exist constants l > 0 such that∥∥∥(l+1

l
)−1
∥∥∥� l.

[A6]: The following inequalities hold

OG = max
1�l�

[
r0, M̂Pl , rl

]
< 1,

where

r0 = 0

(
M ˆKQ +

M

(1+ )
M̂((1)−(0))

)
,

rl =
(
MM̂Pl +

M

(1+ )
M̂((l+1)−(l))

)
, l = 1,2, · · · , ,

l =
(

1+
lM ‖G ‖((l+1)−(l))

( +1)

)
, l = 0,1, · · · , .

DEFINITION 4. The system (1.2) is called exactly controllable on J1 if for every
z0, z1 ∈ Z , there exists a suitable control v ∈ L2(J1,S ) such that the mild solution
of system (1.2) with respect to v satisfies z(b) = z1.
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DEFINITION 5. A function z : J1 → Z is a mild solution of (1.2) if for every
 ∈ J1 , z() fulfills z(0) = z0, and z() = Pl(,z(−l )),  ∈ (l,l ] , l = 1,2, . . . , ,
and

z() = S

 (,0)[z0 −Q(z)]

+
∫ 

0
(()−(e))−1T


 (,e)[G v(e)+(e,z(e))] ′(e)de,

for all  ∈ [0,1] , l = 0 and

z() = S 
 (,l)Pl(l ,z(−l ))

+
∫ 

l

(()−(e))−1T

 (,e)[G v(e)+(e,z(e))] ′(e)de, (5.1)

for all  ∈ (l,l+1] , l = 1,2, . . . , .

Next, we define the control function v(t) as follows

vz() =
(
l+1
l

)−1
[
zl+1 −S 

 (l+1,l)Pl(l ,z(−l ))

−
∫ l+1

l

((l+1)−(e))−1T

 (l+1,e)(e,z(e)) ′(e)de

]
,

∀ ∈ (l,l+1], l = 0, . . . , , (5.2)

where P0(0, ·) = z0 −Q(z).
We put the value of control function vz() from Eq. (5.2) in the Eq. (5.1) and

replace  by l+1 , l = 0,1, . . . , , z(+1) = z+1 = z1 , we have

z(l+1) = S

 (l+1,l)Pl(l,z(−l ))

+
∫ l+1

l

((l+1)−(e))−1T

 (l+1,e)[G vz(e)+(e,z(e))] ′(e)de

= S 
 (l+1,l)Pl(l,z(−l ))

+
(
l+1
l

)(
l+1
l

)−1
(

zl+1 −S

 (l+1,l)Pl(l ,z(−l ))

−
∫ l+1

l

((l+1)−(q))−1T

 (l+1,q)(q,z(q)) ′(q)dq

)

+
∫ l+1

l

((l+1)−(e))−1T 
 (l+1,e)(e,z(e)) ′(e)de

= zl+1 .

Hence, control function steers the state from initial state z0 to target z1.
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THEOREM 3. If the hypotheses [A1]–[A3] and [A5]–[A6] are fulfilled. Then the
 -Caputo fractional system (1.2) exactly controllable on J1 , provided that

max
1�l�

[
ˆKPl +M

(
1+

lM ‖G ‖((b)−(0))

( +1)

)
(

ˆKQ + ˆKPl +
ˆK((b)−(0))

(1+ )

)]
< 1. (5.3)

Proof. For  > 0, we define

R = {z ∈ PC (Z ) : ‖z‖PC � } .

Clearly, R is a bounded and closed subset of PC (Z ) . We define the operator G on
R as follows

(Gz)() =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S

 (,0)[z0 −Q(z)]

+
∫ 
0 (()−(e))−1T 

 (,e)G vz(e) ′(e)de

+
∫ 
0 (()−(e))−1T


 (,e)(e,z(e)) ′(e)de  ∈ [0,1], l = 0,

Pl(,z(−l )),  ∈ (l ,l ], l � 1,

S

 (,l)Pl(l ,z(−l ))

+
∫ 
l

(()−(e))−1T

 (,e)G vz(e) ′(e)de

+
∫ 
l

(()−(e))−1T

 (,e)(e,z(e)) ′(e)de  ∈ (l ,l+1], l � 1.

Step 1. There exists  > 0 such that G(R)⊂R . If we assume that the assertion
is not true, then for  > 0, we take  ∈ J1 and z ∈ R such that ‖G(z)()‖ >  .
For  ∈ [0,1], we obtain

 < ‖G(z)()‖
� ‖S 

 (,0)[z0 −Q(z)]‖

+
∥∥∥∥
∫ 

0
(()−(e))−1T


 (,e)(e,z (e)) ′(e)de

∥∥∥∥
+
∥∥∥∥
∫ 

0
(()−(e))−1T


 (,e)G vz(e) ′(e)de

∥∥∥∥
� 0M ‖G ‖((1)−(0))

( +1)
‖z1‖

+
(

1+
0M ‖G ‖((1)−(0))

( +1)

)

×
(

M ‖z0‖+M ˆKQ +M ‖Q(0)‖+
M

(1+ )
ˆK(1+)((1)−(0))

)
.
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If  ∈ (l ,l ], l = 1,2, . . . , , then we obtain

 < ‖G(z)()‖ = ‖Pl(,z (−l ))‖2 � ˆKPl (1+). (5.4)

Similarly, if  ∈ (l ,l+1] , l = 1,2, . . . , , then we obtain

 < ‖G(z)()‖
� ‖S 

 (,l)Pl(l,z
 (−l ))‖

+
∥∥∥∥
∫ 

l

(()−(e))−1T

 (,e)(e,z (e)) ′(e)de

∥∥∥∥
+
∥∥∥∥
∫ 

l

(()−(e))−1T 
 (,e)G vz(e) ′(e)de

∥∥∥∥
� lM ‖G ‖((l+1)−(l))

( +1)
‖zl+1‖

+
(

1+
lM ‖G ‖((l+1)−(l))

( +1)

)

×
(

M ˆKPl (1+)+
M

(1+ )
ˆK(1+)((l+1)−(l))

)
.

For every  ∈ J1, we obtain

 < ‖G(z)()‖
� X ∗ + ˆKPl +

(
1+

lM ‖G ‖((b)−(0))

( +1)

)

×
(

M ˆKQ +M ˆKPl +
M ˆK((b)−(0))

(1+ )

)
, (5.5)

where

X ∗ = max
1�l�

{
lM ‖G ‖((l+1)−(l))

( +1)
‖zl+1‖+ ˆKPl

+
(
1+

lM ‖G ‖((l+1)−(l))

( +1)

)

×
(
M ‖z0‖+M ‖Q(0)‖+MK̂Pl +

M

(1+ )
ˆK((l+1)−(l))

)}
.

Here, X ∗ is independent of  , both sides of Eq. (5.5) are dividing by  and taking
 →  , we obtain

1 < ˆKPl +M

(
1+

lM ‖G ‖((b)−(0))

( +1)

)(
ˆKQ + ˆKPl +

ˆK((b)−(0))

(1+ )

)
,

which contradicts to Eq. (5.3). Hence, for some  > 0, G(R) ⊂ R .
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Step 2. G is a contraction mapping on R .
For all z1,z2 ∈ R , if  ∈ [0,1], then we obtain

‖(Gz1)()− (Gz2)()‖
� M ‖Q(z1)−Q(z2)‖

+
∥∥∥∥
∫ 

0
(()−(e))−1T


 (,e)[(e,z1(e))−(e,z2(e))] ′(e)de

∥∥∥∥
+
∥∥∥∥
∫ 

0
(()−(e))−1T


 (,e)(vz1(e)− vz2(e))

′(e)de

∥∥∥∥
�
(

1+
0M ‖G ‖((1)−(0))

( +1)

)

×
(

M ˆKQ +
M

(1+ )
M̂((1)−(0))

)
‖z1− z2‖PC . (5.6)

If  ∈ (l ,l ] , l = 1,2, . . . , , then we obtain

‖(Gz1)()− (Gz2)()‖ � M̂Pl‖z1− z2‖PC . (5.7)

Similarly, if  ∈ (l ,l+1] , l = 1,2, . . . , , then we obtain

‖(Gz1)()− (Gz2)()‖
� M

∥∥Pl(l,z1(−l ))−Pl(l ,z2(−l )))
∥∥

+
∥∥∥∥
∫ 

l

(()−(e))−1T

 (,e)[(e,z1(e))−(e,z2(e))] ′(e)de

∥∥∥∥
+
∥∥∥∥
∫ 

l

(()−(e))−1T

 (,e)(vz1(e)− vz2(e))

′(e)de

∥∥∥∥
�
(

1+
lM ‖G ‖((l+1)−(l))

( +1)

)

×
(

MM̂Pl +
M

(1+ )
M̂((l+1)−(l))

)
‖z1− z2‖PC . (5.8)

By Eqs. (5.6)–(5.8), we obtain

‖(Gz1)()− (Gz2)()‖ � OG ‖z1− z2‖PC ,

where

OG = max
1�l�

[
r0, M̂Pl , rl

]
.

Hence,

‖Gz1−Gz2‖PC � OG‖z1− z2‖PC . (5.9)

Thus, G is a contraction mapping on R . Hence, by the Banach fixed point theo-
rem, there exists a unique mild solution of system (1.2). Hence, the system (1.2) is
controllable on J1. �
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6. Trajectory controllability

Let E be the set of all functions z(·) defined on J1 such that z(0) = z0 and
z(b) = z1 for all  ∈ J1 and the fractional derivative C

0 D
 exists almost everywhere

on J1. We call E the set of all feasible trajectories for the system (1.2).

DEFINITION 6. [26] The system (1.2) is said to be trajectory controllable (T -
controllable) on J1, if for y ∈ E , there exists a control v such that the mild solution
of system (1.2) satisfies z() = y() almost everywhere.

We assume the following hypotheses

[B]: The continuous operator G is non-zero.

THEOREM 4. Assume that the hypotheses [A1]–[A4] and [B] are hold, then the
 -Caputo fractional system (1.2) is T -controllable on J1 , provided that

M ˆKQ +MM̂Pl < 1.

Proof. Let y() be any given prescribed trajectory on J1. For, 0 <  < 1, we
define a suitable control function v() as follows

v() =

⎧⎨
⎩

C
0 D

y()−H y()−(,y())
G

,  ∈ (l ,l+1], l � 1

0,  ∈ (l ,l], l � 1.

Put the value of v() in Eq. (1.2) and choose () = z()− y() . We consider IVP
defined as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

C
0 D

() = H ()+ [(,z())−(,y())],  ∈ (l ,l+1], l � 1

() = Pl(,z(−l ))−Pl(,y(−l )),  ∈ (l ,l ], l � 1,

(0)+ [Q(z)−Q(y)] = 0.

(6.1)

Then the mild solution of the IVP (6.1), is given by

() =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S 
 (,0)[Q(y)−Q(z)]

+
∫ 
0 (()−(e))−1T


 (,e)

×[(e,z(e))−(e,y(e))] ′(e)de  ∈ [0,1], l = 0,

S

 (,l)[Pl(l ,z(−l ))−Pl(l ,y(−l ))]

+
∫ 
l

(()−(e))−1T 
 (,e)

×[(e,z(e))−(e,y(e))] ′(e)de,  ∈ (l ,l+1], l � 1.

(6.2)
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For  ∈ [0,1], we obtain

‖()‖ � M ‖Q(y)−Q(z)‖
+
∥∥∥∥
∫ 

0
(()−(e))−1T 

 (,e)[(e,z(e))−(e,y(e))] ′(e)de

∥∥∥∥
� M ˆKQ‖z− y‖+

M

()
M̂

∫ 

0
(()−(e))−1‖(e)‖ ′(e)de.

For each  ∈ (l ,l+1] , l = 1,2, . . . , , we obtain

‖()‖ � M
∥∥Pl(l,z(−l ))−Pl(l ,y(−l ))

∥∥
+
∥∥∥∥
∫ 

l

(()−(e))−1T

 (,e)[(e,z(e))−(e,y(e))] ′(e)de

∥∥∥∥
� MM̂Pl‖z− y‖+

M

()
M̂

∫ 

l

(()−(e))−1‖(e)‖ ′(e)de.

Hence, for  ∈ J1, we obtain

[1−M ˆKQ−MM̂Pl ] sup
∈J1

‖()‖

� M

()
M̂

∫ 

0
(()−(e))−1 sup

e∈J1

‖(e)‖ ′(e)de.

Then, we get

sup
∈J1

‖()‖ � MM̂

()[1−M ˆKQ −MM̂Pl ]

×
∫ 

0
(()−(e))−1 sup

e∈J1

‖(e)‖ ′(e)de.

By Gronwall’s inequality, we obtain

sup
∈J1

‖()‖ = 0.

Hence,

() = 0,

i.e. z() = y() almost everywhere. Thus, the  -Caputo fractional system (1.2) is
T -controllable on J1 .
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7. Example

Consider the following  -Caputo fractional system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

z(,) = z (,)+
 e−z(,)

3(1+ |z(,)|) ,  ∈ (0,0.30]∪ (0.60,1],  ∈ [0, ],

z(,) =
1
5
(sin )z(0.30−,),  ∈ (0.30,0.60],  ∈ [0, ],

z(,0) = 0 = z(,),

z(0,)+
1
15

z(,) = z0(),
(7.1)

where  = 2/3 and 0 =0 = 0 < 1 <1 < 2 = b, with 1 = 0.30, 1 = 0.60, 2 = 1.
Let () =  and Z = S = L2([0, ]). Define an operator H : D(H ) ⊆ Z → Z
by H  =  ′′ with

D(H ) = { ∈ Z :  , ′ are absolutely continuous and  ′′ ∈ Z ,  (0) = 0 =  ()}.
H has a discrete spectrum, the normalized eigenvectors en() =

√
2/ sin(n) cor-

responding to eigenvalue are −n2 , n ∈ N and H generates an analytic semigroup
{T ()}�0 in Z , which uniformly bounded and defined as

T () =



n=1

e−n2 〈,en〉en,  ∈ Z ,

with ‖T ()‖ � e− ∀  � 0. Thus, we choose M = 1 that implies that

sup
∈[0,)

‖T ()‖ = 1.

Let z()() = z(,) and the functions , P1 and Q are defined as

(,z)() =
 e−z(,)

3(1+ |z(,)|) ,

P1(,z(−1 ))() =
1
5
(sin )z(0.30−,),

Q(z)() =
1
15

z(,).

We obtain ˆK = M̂ = 1/3, ˆKQ = 1/15, ˆKP1 = M̂P1 = 1/5, and

1. M ˆKQ = 1/15 < 1.

2. M ˆKQ + ˆKP1 +M ˆKP1 + M
(1+)

ˆK((b)−(0)) = 0.8359 < 1.

3. max
[
M ˆKQ + M

(1+)M̂((1)−(0)) , M̂Pl , MM̂P1 + M
(1+)M̂((2)

−(1))
]

=max [0.2321,1/5,0.4005]= 0.4005 < 1.



132 R. DHAYAL, M. MALIK AND K. S. NISAR

All hypotheses of Theorem (2) are satisfied. Hence, the system (7.1) has a unique stable
mild solution on J1.
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