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FOR p(x)–KIRCHHOFF TYPE PROBLEMS WITH
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Abstract. In this paper, we are interested to discuss the existence of multiple solutions for a class
of p(x) -Kirchhoff type equations with nonhomogeneous Neumann boundary conditions arising
in modelling of various phenomena in the study of nonlinear elasticity theory, electro-rheological
fluids, and so on. By using a consequence of the local minimum theorem due to Bonanno we
look into the existence of one solution under algebraic conditions on the nonlinear term, and two
solutions for the problem under algebraic conditions with the classical Ambrosetti-Rabinowitz
condition on the nonlinear term. Furthermore, by employing a three-critical-point theorem due to
Bonanno and Marano, we guarantee the existence of three solutions for the problem in a special
case.

1. Introduction

In this work, we study the existence and multiplicity of solutions for the following
perturbed p(x)-Kirchhoff-type problem{

T (u) =  f (x,u(x)), in ,

|u|p(x)−2 u
 = g((u(x))), on ,

(1.1)

where

T (u) = M
(∫



1
p(x)

(|u|p(x) +(x)|u(x)|p(x))dx
)
(−p(x)u+(x)|u|p(x)−2u),

p(x)u = div(|u|p(x)−2u) is the p(x)-Laplacian operator, ⊂R
N is a bounded open

set with smooth boundary  , and let  be the outward unit normal to  . M :
[0,+) → R is a continuous function such that there are two positive constants m0

and m1 with m0 � M(t) � m1 for all t � 0. Let  ∈ L() with ess infx∈(x) > 0,
p ∈ C() ,  > 0 and  � 0 referred to as control parameters. f : ×R → R is
an L1 -Carathéodory function, g : R → R is a nonnegative continuous function and
 : W 1,p(x)() → Lp(x)() is the trace operator.
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The p(x)-Laplacian is a meaningful generalization of the p -Laplacian. In recent
years, the study of various mathematical problems with variable exponent problem has
received considerable attention. One of the topic fields of partial differential equations
that has been continuously noticed is that concerning the Sobolev space with variable
exponents,W1,p(.)() (where p is a function depending on x ); see for example the
monograph [15]. The necessary framework for the study of these problems is repre-
sented by the function spaces with variable exponent W 1,p(x)() and Lp(x)() . The
basic properties of such spaces can be found in [18, 24, 25].

The problem (1.1) is a generalization of the stationary problem of a model intro-
duced by Kirchhoff [24]. More precisely, Kirchhoff proposed a model given by the
equation


 2u
 t2

−
(
0

h
+

E
2L

∫ L

0

∣∣∣u
x

∣∣∣2dx

)
 2u
x2 = 0,

for 0 < x < L , t � 0 where u = u(x,t) is the lateral displacement at the space coordinate
x and the time t,E the Young modulus,  the mass density, h the cross-section area,
L the length and 0 the initial axial tension, which extends the classical D’Alembert’s
wave equation for free vibrations of elastic strings. The Kirchhoff’s model takes into
account the length changes of the string produced by transverse vibrations. Kirchhoff’s
model like the problem (1.1) model several physical and biological systems where u
describes a process which depend on the average of itself, as for example, the popula-
tion density.

Working in the framework of variable exponent spaces, opens the door for multi-
ple applications. The study of various mathematical problems with variable exponent
growth condition has been received considerable attention in recent years. These prob-
lems are interesting in applications and raise many difficult mathematical problems.
One of the most studied models leading to problems of this type is the model of mo-
tion of electro-rheological fluids, which are characterized by their ability to drastically
change the mechanical properties under the influence of an exterior electromagnetic
field (see [14, 26, 29] and their references). In addition, the variable exponent spaces
are involved in studies hat provide other types of applications, e.g., in image restora-
tion [9] and contact mechanics [6]. Recently, this theory has been expanded by many
researchers. For example, Fan and Ji have treated in [17] the problem

{−p(x)u+a(x)|u|p(x)−2u = f (x,u)+g(x,u), in ,

u
 = 0, on ,

they proved the existence of infinitely many solutions of the problem under weaker hy-
potheses by applying a variational principle due to Ricceri and the theory of the variable
exponent Sobolev spaces W 1,p(x)() . D’Aguı̀ and Sciammetta in [11], investigated the
following Neumann problem

{−p(x)u+(x)|u|p(x)−2u =  f (x,u), in ,

|u|p(x)−2 u
 = g((u)), on ,
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under an appropriate oscillating behavior of the primitive of the nonlinearity and a
suitable growth of the primitive of g at infinity, the existence of infinitely many weak
solutions for the problem was obtained. Recently, Kirchhoff type equations involving
the p(x)-Laplacian have been investigated, but the results are rare. We refer the reader
to [7, 8, 10, 12, 13, 19, 21, 22, 27] for an overview of and references on this subject.
For example, In [22] the authors studied the existence and multiplicity of solutions for
the nonlocal elliptic problem under Neumann boundary condition:

{
T (u) =  f (x,u), in ,

u
 = 0, on .

The authors for the above problem, by using the variational method, under suitable as-
sumptions on f , obtained first one solution, then two weak solutions, when T (u) =
M(
∫


1
p(x) (|u|p(x) + (x)|u(x)|p(x))dx)(−p(x)u + (x)|u|p(x)−2u) . In [20] using a

three-critical-point theorem due to Bonanno and Candito the existence of at least three
weak solutions for the problem (1.1) has been discussed, while in [13] the existence
of at least one weak solution for the same problem under rather different assumptions
on data has been studied using a version of Ricceri’s variational principle as given by
Bonanno and Molica Bisci.

Here, we deal with the problem (1.1) when the nonlinearity f has the subcritical
growth condition, via variational methods, we obtain the existence of at least one, two
and three weak solutions for the exact collections of the parameters  and  . The main
tools are critical point theorems obtained in [1, 2, 5].

This paper is organized as follows: In Section 2, we present some preliminary
knowledge on the anisotropic Sobolev spaces with variable exponent. Section 3 con-
tains the main results and the proofs of the main results. We prove the existence of
one weak solution in Theorem 4, the existence of two solutions in Theorem 5 and the
existence of three weak solutions in Theorem 6 for our Neumann elliptic problem.

2. Preliminaries

In this section, we introduce some definitions and results which will be used in the
next section.

In the sequel, we assume that p ∈C() verifies the following condition:

N < p− := inf
x∈

p(x) � p(x) � p+ := sup
x∈

p(x) < .

We define the variable exponent Lebesgue spaces by

Lp(x)() :=
{

u :→ R measurable and
∫

|u(x)|p(x)dx < 

}
,

Lp(x)() :=
{

u : → R measurable and
∫


|u(x)|p(x)d < 
}
,
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where d is the surface measure on  . We consider the norms on Lp(x)() and
Lp(x)() , respectively

‖u‖Lp(x)() = inf
{
 > 0 :

∫


∣∣∣ u
∣∣∣p(x)

dx � 1
}
,

‖u‖Lp(x)() = inf
{
 > 0 :

∫


∣∣∣ u
∣∣∣p(x)

d � 1
}
.

Let X be the generalized Lebesgue-Sobolev space W 1,p(x)() defined by

W 1,p(x)() =
{
u ∈ Lp(x)() : |u| ∈ Lp(x)()

}
,

equipped with the norm

‖u‖W1,p(x)() = ‖u‖Lp(x)() +‖|u|‖Lp(x)(). (2.1)

The spaces (Lp(x)(),‖.‖Lp(x)()) and (W 1,p(x)(),‖.‖W1,p(x)()) are separable, reflex-
ive and uniformly convex Banach spaces, (see [18]). Moreover, since  ∈ L() with
ess infx∈(x) > 0 is assumed, then the following norm

‖u‖ = inf
{
 > 0 :

∫


(∣∣∣u(x)


∣∣∣p(x)
+

∣∣∣u(x)


∣∣∣p(x))
d � 1

}
,

on W 1,p(x)() is equivalent to that introduce in (2.1). Since W 1,p(x)() is continuously
embedded in W 1,p−() (see [18]), and p− > N ,W 1,p(x)() is continuously embedded
in C0() (the space of continuous functions) and one has

‖u‖C0() � kp−‖u‖W1,p− ().

When  is convex, an explicit upper bound for the constant kp− is

kp− � 2
p−−1
p− max

{( 1
‖‖1

) 1
p− ,

d

N
1

p−

( p−−1
p−−N

meas()
) p−−1

p− ‖‖
‖‖1

}
,

where ‖‖1 =
∫
(x)dx and ‖‖ = supx∈ d = diam() and meas() is the

Lebesgue measure of  (see [3, Remark 1]). On the other hand, taking into account
that p− � p(x) , [25, Theorem 2.8] ensures that Lp(x)() ↪→ Lp−() and the constant
of such embedding does not exceed 1+meas() . So, one has

‖u‖W1,p− () � (1+meas())‖u‖W1,p(x)() � (1+meas())‖u‖ .

In conclusion, put
c = kp−(1+meas()),

it results
‖u‖C0() � c‖u‖ (2.2)

for each u ∈W 1,p(x)() .
An important role in manipulating the generalized Lebesgue spaces is played by

the p(x)(u) =
∫
 |u|p(x)dx of the space Lp(x)() , we have the following result.
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PROPOSITION 1. (See [18]) If u,un ∈ Lp(x)() and p+ <  , then

1. If ‖u‖Lp(x)() > 1 , then ‖u‖p−
Lp(x)()

� p(x)(u) � ‖u‖p+

Lp(x)()
,

2. If ‖u‖Lp(x)() < 1 , then ‖u‖p+

Lp(x)()
� p(x)(u) � ‖u‖p−

Lp(x)()
,

3. limn→ ‖un−u‖Lp(x)() = 0 ⇔ limn→p(x)(un−u) = 0 .

PROPOSITION 2. (See [18, 25]) Let (u) =
∫
(|u|p(x) +(x)|u(x)|p(x))dx for

u ∈W 1,p(x)() we have

(i) If ‖u‖ � 1 , then ‖u‖p−
 � (u) � ‖u‖p+

 ,

(ii) If ‖u‖ � 1 , then ‖u‖p+

 � (u) � ‖u‖p−
 ,

(iii) limn→ ‖un−u‖ = 0 ⇔ limn→(un−u) = 0 .

We introduce the functions F : ×R → R , G : R → R and M̂ : [0,+) → R ,
respectively, as follows

F(x,t) =
∫ t

0
f (x, )d for all (x,t) ∈×R,

G(t) =
∫ t

0
g( )d for all t ∈ R,

M̂(t) =
∫ t

0
M( )d for all t � 0.

We define, for any u ∈ X = W 1,p(x)(), the functionals , , : X → R as

(u) := M̂
(∫



1
p(x)

(|u|p(x) +(x)|u(x)|p(x))dx
)
, (2.3)

and
 ,(u) :=

∫


F(x,u(x))dx+



∫


G((u(x)))d . (2.4)

We say that a function u ∈ X is a weak solution of the problem (1.1) if

M
(∫



1
p(x)

(|u|p(x) +(x)|u(x)|p(x))dx
)

×
∫

(|u|p(x)−2u(x)v(x)+(x)|u(x)|p(x)−2u(x)v(x))dx

−
∫


f (x,u(x))v(x)dx− 
∫


g((u(x)))(v(x))d = 0,

holds for all v ∈ X . For our convenience, set

G := a() max
| |�

G( ), ∀  > 0,
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where a() =
∫
 d and

G := a() inf
t∈[0, ]

G(t), ∀  � 1.

If g is sign-changing, then clearly G � 0 and G � 0.

DEFINITION 1. Let  and  be two continuously Gâteaux differentiable func-
tionals defined on a real Banach space X and fix r ∈ R . The functional I = − is
said to verify the Palais-Smale condition cut off upper at r (in short (P.S.)[r] ) if any
sequence {un}n∈N in X such that

(e1) {I(un)} is bounded,

(e2) limn→ ‖I′(un)‖X∗ = 0,

(e3) (un) < r for each n ∈ N

has a convergent subsequence.

The following three theorems are the main tools in the next section to prove result.
While the first two results are due to Bonanno, the third one is due to Bonanno and
Marano.

THEOREM 1. [2, Theorem 2.3] (see [1, Theorem 5.1]) Let X be a real Banach
space, , : X −→R be two continuously Gâteaux differentiable functionals such that
infX =(0)=(0) = 0. Assume that there exist r > 0 and v∈X , with 0 <(v) < r
such that

(E1)
sup(u)�r (u)

r < (v)
(v) ,

(E2) for all  ∈  :=
(
(v)
(v) ,

r
sup(u)�r (u)

)
the functional I := −  satisfies

(P.S.)[r] condition.

Then, for each  ∈ there is u0, ∈−1(0,r) such that I′ (u0, ) =X∗ and I (u0, ) <

I (u) for all u ∈−1(0,r) .

THEOREM 2. [2, Theorem 3.2] Let X be a real Banach space, , : X −→ R

be two continuously Gâteaux differentiable functionals such that  is bounded from
below and (0) = (0) = 0. Fix r > 0 and assume that, for each

 ∈
(
0,

r
supu∈−1(−,r)(u)

)

the functional I :=− satisfies (P.S.) condition and it is unbounded from below.
Then, for each

 ∈
(
0,

r
supu∈−1(−,r)(u)

)
the functional I admits two distinct critical points.
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THEOREM 3. [5, Theorem 3.6] Let X be a reflexive real Banach space,  : X −→
R be a coercive and continuously Gâteaux differentiable and sequentially weakly lower
semi-continuous functional whose Gâteaux derivative admits a continuous inverse on
X∗ ,  : X −→ R be a continuously Gâteaux differentiable functional whose derivative
is compact, such that

inf
X
 = (0) = (0) = 0.

Assume that there exist r > 0 and v ∈ X , with r < (v) such that

(E3)
sup(u)�r (u)

r < (v)
(v) ,

(E4) for all  ∈  :=
(
(v)
(v) ,

r
sup(u)�r (u)

)
the functional − is coercive.

Then, for each  ∈  the functional − has at least three distinct critical points
in X .

We refer to [4] in which Theorems 1–3 have been successfully applied to obtain the
existence of solutions for a class of nonlinear elliptic Dirichlet problems with variable
exponent.

3. Main results

We start by giving the existence of one solution for the problem (1.1).

THEOREM 4. Assume that there exist positive constants  > c and  � 1 , such
that

(H1) m1p+cp−‖‖1 p+
< m0p− p− ,

(H2)
∫
 sup|t|� F(x,t)dx

 p− < p−m0

p+m1cp−‖‖1

∫
F(x, )dx

 p+ ,

(H3) F(x, t) � 0 for each (x,t) ∈×R
+.

Then, for each

 ∈  :=
] m1 p+‖‖1

p−
∫
F(x, )dx

,
m0 p−

p+cp− ∫
 sup|t|� F(x,t)dx

[
, (3.1)

and for every nonnegative continuous function g : R → R , there exists  ,g > 0 , given
by

min

{
m0 p− − p+cp− ∫

 sup|t|� F(x,t)dx

p+cp−G ,
m1 p+‖‖1− p−

∫
F(x, )dx

p−G

}
,

such that for each  ∈ [0, ,g[ , the problem (1.1) admits at least one nontrivial solution
u ∈ X such that ‖u‖ �  .
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Proof. Our goal is to apply Theorem 1 to the problem (1.1). To this end, take the
real Banach space X with the norm as defined in Section 2, with fix  and  as in the
conclusion, , , be the functionals defined in (2.3) and (2.4). It is well known that
 , is a differentiable functional whose differential at the point u ∈ X given by

′
 ,(u)(v) =

∫


f (x,u(x))v(x)dx+



∫


g((u(x)))(v(x))d

for every v ∈ X . Furthermore, ′
 , : X → X∗ is a compact operator. Moreover,  is

continuously differentiable whose differential at the point u ∈ X is

′(u)(v) = M
(∫



1
p(x)

(|u|p(x) +(x)|u(x)|p(x))dx
)

×
∫

(|u|p(x)−2u(x)v(x)+(x)|u(x)|p(x)−2u(x)v(x))dx

for every v ∈ X . Moreover ′ admits a continuous inverse on X∗ . Indeed, According
to Theorem 26.A(d) in [28], it is enough to verify that ′ is coercive, hemicontinuous
and uniformly monotone. Assuming ‖u‖ � 1, we have

′(u)(u) � m0‖u‖p−
 ,

since p− > 1 it follows that ′ is coercive. Since ′ is the Fréchet derivative of  ,
it follows that ′ is continuous and bounded. Now, we show that ′ is uniformly
monotone. In fact, for any  , ∈ R , we have the following inequality (see [23]):

(| |s−2 −| |s−2)( −) �

⎧⎨
⎩

2−s| − |s, if s � 2,

2−s |−|2
(| |+||)2−s , if 1 < s < 2.

(3.2)

At this point, if p(x) � 2, then it follows that, for every u,v ∈ X , we deduce that

(′(u)−′(v))(u− v)

= M
(∫



1
p(x)

(|u|p(x) +(x)|u(x)|p(x))dx
)

×
∫

(|u|p(x)−2u(u−v)+(x)|u|p(x)−2u(u− v)dx

+M
(∫



1
p(x)

(|v|p(x) +(x)|v(x)|p(x))dx
)

×
(
−
∫

(|v|p(x)−2v(x))(u(x)−v(x))+(x)|v(x)|p(x)−2v(x)(u(x)− v(x))dx

)
� m0

∫

((|u|p(x)−2u(x)−|v|p(x)−2v(x))(u(x)−v(x))

+(x)(|u(x)|p(x)−2u(x)−|v(x)|p(x)−2v(x))(u(x)− v(x)))dx

� 2−p−m0‖u− v‖p−
 ,
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the last inequality is obtained from Proposition 2. On the other hand, if 1 < p(x) < 2,
by Hölder’s inequality, we obtain∫


(x)|u(x)− v(x)|p(x)dx

�
(∫



(x)|u(x)− v(x)|2
(|u(x)|+ |v(x)|)2−p(x) dx

) p(x)
2
(∫


(x)(|u(x)|+ |v(x)|)p(x)dx

) 2−p(x)
2

� D1

(∫


|u(x)− v(x)|2
(|u(x)|+ |v(x)|)2−p(x) dx

) p(x)
2 (‖u‖ +‖v‖

) (2−p(x))p(x)
2 .

Similarly, one has

∫

|u(x)−v(x)|p(x)dx � D2

(∫


|u(x)−v(x)|2
(|u(x)|+ |v(x)|)2−p(x) dx

) p(x)
2

×(‖u‖ +‖v‖
) (2−p(x))p(x)

2 .

On other side, we have

〈′(u)−′(v),u− v〉

� D3(‖u‖ +‖v‖
)(2−p(x))

(∫

|u(x)−v(x)|p(x)dx

) 2
p(x)

+
D3(‖u‖ +‖v‖

)(2−p(x))

(∫

(x)|u(x)− v(x)|p(x)dx

) 2
p(x)

� D4(‖u‖ +‖v‖
)(2−p(x))

((∫

|u(x)−v(x)|p(x) +(x)|u(x)− v(x)|p(x)dx

) 2
p(x)
)

=
D4(‖u‖ +‖v‖

)(2−p(x))‖u− v‖2.

Thus, by [1, see Proposition 2.1] the functional I , = −  , verifies (P.S.)[r]

condition for each r > 0 and so condition (E2) of Theorem 1 is verified. Therefore, it
remains to verify assumption (E1) of Theorem 1. To this end, we put r := m0

p+ ( c )p− ,
and pick w ∈ X , defined as

w(x) =
{
 , if x ∈,
0, otherwise ,

(3.3)

one has
m0 p−

p+ ‖‖1 � (w) � m1 p+

p−
‖‖1. (3.4)

Hence, it follows from (H1) that 0 < (w) < r . Now, let u ∈ X such that u ∈
−1([0,r]) , by Proposition 2, one has

‖u‖ < max
{(rp+

m0

) 1
p+

,
( rp+

m0

) 1
p−
}
.
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Since c <  , we obtain

|u(x)| � ‖u‖ � c‖u‖ <  ∀x ∈.

Therefore, using (H2) , one has

sup(u)�r ,(u)
r

=
supu∈−1(−,r](

∫
F(x,u(x))dx+ 


∫
G((u(x)))d)

m0
p+ ( c )p+

�
∫
 sup|t|� F(x,u)dx+ 

 a()max|t|� G(t)
m0
p+ ( c )p−

=

∫
 sup|t|� F(x,u)dx+ 

 G

m0
p+ ( c )p− .

On the other hand, we have

 ,(w) =
∫


F(x,w(x))dx+



∫


G((w(x)))d) �
∫


F(x,w(x))dx+



G .

Moreover, thanks to (3.4), one has

 ,(w)
(w)

� p−
∫
F(x, )dx

m1 p+‖‖1
+



p−G

m1 p+‖‖1
.

Since  <  , , we have

 <
m0 p− − p+cp− ∫

 sup|t|� F(x,t)dx

p+cp−G (3.5)

and

 <
 p−

∫
F(x, )dx−m1 p+‖‖1

−p−G
. (3.6)

From (3.5) and (3.6), we get

p+cp− ∫
 sup|t|� F(x,t)dx

m0 p− +



p+cp−G

m0 p− <
1


,

and
p−
∫
F(x, )dx

m1‖‖1 p+ +



p−G
m1‖‖1 p+ >

1


.

Then,
sup(x)�r(u)

r
<

1


<
(w)
(w)

,

therefor, condition (E1) of Theorem 1 is verified.

Since  ∈
]
(w)
(w) ,

r
sup(x)�r (u)

[
, Theorem 1 with v = w guarantees the existence

of a local minimum point u for the functional I , such that 0 < (u ) < r and so
u is a nontrivial weak solution of the problem (1.1) such that ‖u‖ <  . �
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REMARK 1. Condition (H2) in Theorem 4 can be replaced by the less general but
more easily verifiable condition

∫


sup
|t|�

F(x,t)dx <

∫


F(x, )dx.

As an illustration of Theorem 4, we have the following example.

EXAMPLE 1. Given the domain = {(x,y) ∈ R
2,x2 + y2 � 1} , set

M(t) = 2+ cos(t) ∀ t ∈ [0,+[,

p(x,y) = 2(2+ x+ y), (x,y) ∈,

then, m0 = 1,m1 = 3, p− = 4 and p+ = 6. For all ((x,y),t) ∈×R put f ((x,y),t) =
−p(x,y)e−

t
2 . By the expression of f we have

F((x,y),t) = 2p(x,y)e−
t
2 , ∀((x,y),t) ∈×R.

By choosing (x,y) = 1,  = 1,  = 48 and c4 = 123

 (1+)4 , by simple calculations,
obviously all assumptions of Theorem 4 are satisfied. Hence, by applying Theorem 4,
for every

 ∈
(

3e
1
2

8
∫
 p(x,y)dxdy

,
44

(1+)4
∫
 p(x,y)dxdy

)
,

and for each g : R → R , there exists  ,g > 0, such that for each  ∈ [0, ,g[ , the
problem (1.1) admits at least one nontrivial solution u ∈ X such that ‖u‖ � 48.

In the other case, our goal is to obtain the existence of two distinct solutions for
the problem (1.1). The following result is obtained by applying Theorem 2.

THEOREM 5. Assume that there exists positive constant  such that  > c. More-
over, assume that

(H4) there exist  > p+m1
m0

and R > 0 such that

0 < F(x,t) < t f (x,t)

for all x ∈ and |t| � R.

Then, for each

 ∈  :=
]
0,

m0 p−

p+cp− ∫
 sup|t|� F(x,t)dx

[
,

and for every nonnegative continuous function g : R → R satisfying



146 F. GHAREHGAZLOUEI AND S. HEIDARKHANI

(H5) there exist c1 > 0 and function r(x) ∈ C+,0 < r(x) � r+ < p such that

|g(t)| � c1(1+ |t|r(x)−1), for all x ∈ , t ∈ R.

There exists  ,g > 0 , given by in Theorem 4 such that for each  ∈ [0, ,g[ , the
problem (1.1) admits at least two nontrivial solutions.

Proof. Let , , be the functionals defined in Theorem 4 which satisfy all reg-
ularity assumptions requested in Theorem 2. Arguing as in the proof of Theorem 4,
choosing r := m0

p+ ( c )p− , and pick w ∈ X . Now, from condition (H4) , by standard
computations, there is a positive constant m such that

F(x,t) � m|t| for all x ∈. (3.7)

Hence, due to the Trace Theorem [16] for the function g , condition (H5) and (3.7), for
every  ∈  , u ∈ X \ {0} and t > 1, we obtain

I ,(tu) = (tu)−
∫


F(x,tu(x))dx− 
∫


G((tu(x)))d

� m1

p−
max{‖tu‖p+

 ,‖tu‖p−
 }−mt

∫

|u(x)|dx

+c1
(
‖(tu)‖L1() +

1
r−

‖(tu)‖r+

Lr(x)()

)

� m1t p+

p−
max{‖u‖p+

 ,‖u‖p−
 }−mt

∫

|u(x)|dx

+c2t‖u‖W1,1() + c3t
r+‖u‖r+

W1,r(x)().

Since  > p+ , this condition guarantees that I , is unbounded from below. We recall
that I , is a Gâteaux differentiable functional whose Gâteaux derivative at the point
u ∈ X is the functional I′ ,(u) ∈ X∗ given by

I′ ,(u)(v) = M
(∫



1
p(x)

(|u|p(x) +(x)|u(x)|p(x))dx
)

×
∫

(|u|p(x)−2u(x)v(x)+(x)|u(x)|p(x)−2u(x)v(x))dx

−
∫


f (x,u(x))v(x)dx− 
∫


g((u(x)))(v(x))d ,

for every v ∈ X . Finally, we verify that I , satisfies the (PS)-condition. Indeed, if
{un}n∈N ⊂ X such that {I ,(un)}n∈N is bounded and I′ ,(un)→ 0 in X∗ as n→+ .
Then, there exists a positive constant s0 such that

|I ,(un)| � s0, ‖I′ ,(un)‖ � s0 ∀n ∈ N.
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Using the conditions (H4) , (H5) and the definition of I′ , , we deduce that, for all
n ∈ N ,

s0 + s0‖un‖ � I ,(un(x))− I′ ,(un(x))un(x)

� m0

p+

∫

(|un|p(x) +(x)|un(x)|p(x))dx−

∫


F(x,un(x))dx

−
∫


G((un(x)))d −m1

∫

(|un|p(x) +(x)|un(x)|p(x))dx

+
∫


f (x,un(x))un(x)dx+ 
∫


g((un(x)))(un(x))d

�
(m0

p+ −m1

)
max{‖un‖p+

 ,‖un‖p−
 }

+
∫

( f (x,un(x))un(x)−F(x,un(x)))dx

−c2‖un‖W1,1()− c3‖un‖r+

W1,r(x)()

�
(m0

p+ −m1

)
max{‖un‖p+

 ,‖un‖p−
 }− s1‖un‖ − s2‖un‖r+



for some s1,s2 > 0. Since  > p+m1
m0

it follows {un}n∈N is bounded. Consequently,
since X is a reflexive Banach space we have, up to a subsequence,

un ⇀ u in X .

By I′ ,(un) → 0 and un ⇀ u in X , we obtain

(I′ ,(un)− I′ ,(u))(un−u)→ 0.

From the continuity of f and g we have∫

( f (x,un)− f (x,u))(un−u)dx→ 0, as n → +,

and ∫


(g((un))−g((u)))(un−u)d → 0, as n → +.

Moreover, an easy computation shows

(I′ ,(un)− I′ ,(u))(un−u)

= (′(un)−′(u))(un −u)− (′
 ,(un)−′

 ,(u))(un −u)

� 2−p−m0‖un−u‖p−
 −

∫

( f (x,un(x))− f (x,u(x)))(un(x)−u(x))dx

−
∫


(g((un(x)))−g((u(x))))(un(x)−u(x))d

� 2−p−m0‖un−u‖p−
 .
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The last of the above inequality is obtained by using (3.2). Combining the last relation
with Proposition 1 (iii) , we find that the sequence {un}n∈N converges strongly to u in
X . Therefore, I , satisfies the (PS)-condition and so all hypotheses of Theorem 2 are
verified. Hence, applying Theorem 2, for each  ∈  the function I , admits at least
two distinct critical points that are the solutions of the problem (1.1). �

Finally, we discuss the existence of at least three solutions for the problem (1.1).

THEOREM 6. Assume

(H6) There exist s3 > 0 and function r(x) ∈ C+,0 < r(x) � r+ < p such that

|F(x,t)| � s3(1+ |t|r(x)), for all (x,t) ∈×R.

Assume that there exist positive constants  > c and  , such that

(H7) cp− p−‖‖1 >  p− ,

and let the assumptions (H2) and (H3) in Theorem 4 hold. Then for every  ∈  as in
(3.1), and for each g : R → R satisfying

|G(t)| � s3(1+ |t|r(x)), for all x ∈ , t ∈ R,

there exists  ,g > 0 , get in Theorem 4 such that for each  ∈ [0, ,g[ , the problem
(1.1) admits at least three distinct solutions.

Proof. Our aim is to apply Theorem 3. We consider the functionals  and  , ,
as seen before, they satisfy the regularity assumptions requested in Theorem 3. Now,
arguing as in the proof of Theorem 4, put w(x) as in (3.3) and r := m0

p+ ( c )p− , bearing
in mind (H7) we obtain

(w) > r > 0.

Therefore, according to the proof of Theorem 4, the assumption (E3) of Theorem 3
holds. Now, we prove that, for each  ∈  the functional I , is coercive. By using
conditions (H6) , and by the Sobolev embedding theorem and the Trace Theorem [16],
we easily obtain for all u ∈ X :

I ,(u) � m0

p+ ‖u‖p−
 −

∫

|F(x,t)|dx− 

∫


G((u))d

� m0

p+ ‖u‖p−
 − s3‖u‖r+

Lr(x)() − s3‖(u))‖r+

Lr(x)()−S

� m0

p+ ‖u‖p−
 − s3‖u‖r+

W1,r(x)() − s3‖u‖r+

W1,r(x)() −S

� m0

p+ ‖u‖p−
 − s3‖u‖r+

 − s3‖u‖r+
 −S

which I , →+ as ‖u‖→+ . Hence the functional I , is coercive, also condition
(E4) holds. So, for each  ∈  , Theorem 3 implies that the functional I , admits at
least three critical points in X that are solutions of the problem (1.1). �
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