
D ifferential
Equations

& Applications

Volume 16, Number 2 (2024), 151–169 doi:10.7153/dea-2024-16-09

SOLVABILITY FOR A COUPLED SYSTEM OF

4–SEQUENTIAL FRACTIONAL DIFFERENTIAL EQUATIONS

KAMEL BENSASSA, ZOUBIR DAHMANI AND MEHMET ZEKI SARIKAYA ∗

(Communicated by R. Luca)

Abstract. The present work deals with a coupled system of fractional differential equations in-
volving four sequential Caputo derivatives in each of its components. The fractional differential
system gives rise to a standard coupled system of two ordinary differential equations of order
four, which has practical applications in some real-world phenomena such as robotics, aerospace,
and electrical engineering. The existence of a unique vector solution for our sequential system
is studied. The existence of at least one vector solution for the considered system is also investi-
gated. Some illustrative examples are discussed in detail to show the main results’ applicability.
The stabilities in the sense of Ulam Hyers for the system is discussed. A conclusion follows at
the end.

1. Introduction

Over the last three decades, fractional differential equations have been attractive
to many researchers in the past decades due to the non-localization properties of the
fractional derivatives contrary to the integer-order derivatives [12, 16, 18]. It has been
discovered that this subject has applications in a wide range of technical and physical
sciences, including complex media electrodynamics, control theory ecology, viscoelas-
ticity, biomathematics, and electrical circuits, we refer the reader to [2, 3, 5, 6, 7, 10,
15, 17, 20, 21, 22, 23] for some important applications. Other important results can be
found in the following references:

We begin by citing the paper [11] where the authors investigated the existence of
unique maximal and minimal solutions for the following coupled differential system in
terms of the generalized fractional derivative⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D ,
a+ u(t)+F1(t,v(t)) = 0, t ∈ [a,b] ,

D ,
a+ v(t)+F2(t,u(t)) = 0, t ∈ [a,b] ,

u(b)+u(a) = I ,
a+ F3(b,v(b)), u′n−1(a) = 0,

v(b)+v(a) = I ,
a+ F4(b,u(b)), v′n−1(a) = 0,
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where D ,
a+ u and D ,

a+ , n− 1 < , < n , n � 2 are the fractional derivatives of a
“function u concerning another function”:  and −1 <  , � 0.

We cite also the work in [24] where it can be found that the authors discussed
the existence, uniqueness, and some Ulam stability results for the following fractional
coupled system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1x1(t) = f1(t,x1(t)),

D2x2(t) = f2(t,x1(t),x2(t)),

...
Dnxn(t) = fn(t,x1(t),x2(t), . . . ,xn(t)),

0 < t � 1, k−1 < k < k, k = 1,2, . . . ,n,

x1(0) = a1
0, k = 1, x( j)

k (0) = ak
j, j = 0,1, . . . ,k−2, k = 2,3, . . . ,n,

Dk−1xk(1) = 0, k−1 < k−1 < k, k = 2,3, . . . ,n,

where, n∈N−{0,1} . For all k = 1,2, . . . ,n, the functions fk : (0,1]×R
k →R are con-

tinuous, singular at t = 0, limt→0+ fk(t) = and there exist k ∈ (0,1) , k = 1,2, . . . ,n,
such that tk fk , k = 1,2, . . . ,n are continuous on [0,1] .

In [8], the two-Beddani studied the existence and uniqueness of solutions for the
coupled system of Caputo fractional differential equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D1(D1 +g1(t))u(t)+ f1(t,u(t),v(t),D1u(t),D2v(t)) = h1(t,u(t),v(t)),

D2(D2 +g2(t))u(t)+ f2(t,u(t),v(t),D1u(t),D2v(t)) = h2(t,u(t),v(t)),

u(0) = a1, v(0) = a2, u(1) = b1, v(1) = b2, t ∈ J

where, J = [0,1] , 0 < k,k < 1, 0 < k < k < 1, k = 1; the functions fk : [0,1]×
R

4 →R , k = 1,2 are continuous gk : (0,1]→ [0,+) are continuous functions singular
at t = 0, and limt→0+ gk(t) =  and the operators Dk ,Dk and Dk , k = 1,2 are the
derivatives in the sense of Caputo and the constants ak , bk are reals.

In [14], the authors used fixed point theorems to investigate the following coupled
system ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Du(t) = f (t,u(t),v(t)), t ∈ [0,T ] ,

Du(t) = f (t,u(t),v(t)), t ∈ [0,T ] ,

(u+ v)(0) = −(u+ v)(T),
∫ 
 (u− v)(s)ds = A

where D is the Caputo fractional derivatives of order  ∈ {,} , here  and  are
the orders of these fractional derivatives (see [15]); f ,g : [0,T ]×R

2 → R are continu-
ous functions, and A is a non-negative constant.
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In [1], by applying both Schaefer and Krasnoselskii fixed point theorems, the au-
thors proved the existence and uniqueness of solutions for the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Du(t) = f1(t,v(t),D−1v(t),D−2v(t), . . . ,D−(n−1)v(t)), t ∈ [0,1] ,

D v(t) = f2(t,u(t),D−1u(t),D−2u(t), . . . ,D−(n−1)u(t)), t ∈ [0,1] ,

u(0) = u∗0, u′(0) = u′′n−2(0) = 0

un−1(0) = I pu(),  ∈ ]0,1[ ,

v(0) = v∗0, v′(0) = v′′n−2(0) = 0,

vn−1(0) =  I pu(0),  ∈ ]0,1[ ,

where D and D denote the Caputo fractional derivatives, p and q are non negative
reals numbers, n−1 <  < n , n−1 <  < n , with n ∈ N

∗ , n �= 1, u∗0,v
∗
0 ∈ R , f1 and

f2 are two functions.
In [9], the authors studied the existence of some unique solutions for a new prob-

lem of fractional differential equations involving Caputo derivatives. Also, using the
Adam-Bashforth method, some numerical simulations for the proposed illustrative ex-
amples have been presented. The new problem of [9] is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD1cD2cD3 [cD4u(t)− f (t)u(t)]

= g(t,u(t),c D2u(t),c D3u(t),c D4u(t)), t ∈ J = [0,1] ,

u(0)) = 0,

u(1) = a1,

cD4u(0) = a2,

cD4u(1) = 0

where, cDi , also the three others the derivatives are Caputo fractional derivatives,
0 < i � 1, i = 1, . . . ,4, 2 < 4 , 3 < 4 ,  > 0, f : [0,1]×R → R and g : [0,1]×
R

4 → R are continuous.
In this article, we are concerned with the existence and uniqueness of solutions for

the following coupled system of nonlinear fractional differential equations with four
sequential Caputo derivatives:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1D2D3D4x(t) = H1(t,x(t),y(t))+a1 f1(x(t))+b1g1(D1D2x(t)),
t ∈ J = [0,1]

D1D2D3D4y(t) = H2(t,x(t),y(t))+a2 f2(y(t))+b2g2(D1D2y(t)),
t ∈ J = [0,1]

x(0) = x(1) = D1D2x(1) = D4x(0) = 0,

y(0) = y(1) = D1D2y(1) = D4y(0) = 0,

(1)
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where, D1 ,D2 ,D3 ,D4 ,D1 ,D2 ,D3 ,D4 are Caputo fractional derivatives, 0 <
i � 1, 0 < i � 1, i = 1, . . . ,4, 2 +1 < 4 , 1 +2 < 4, f j : R→ R , g j : R→ R

and Hj : [0,1]×R
2 →R , j = 1,2 are continuous functions, and Hi(t,0,0) �= 0, fi(0) �=

0, gi(0) �= 0, i = 1,2. We note in passing that the classical case of the above-considered
sequential system gives rise to a coupled system of two ordinary differential equations
of order four, which has important practical applications in elastic beams [4, 13, 19, 25].

We think that the present research paper on this topic has the potential to contribute
to the development of more accurate and efficient modeling techniques, as well as to
the design of new control strategies for complex systems since the standard coupled
system of order four can be seen as a limiting-case for the above fractional sequential
system.

2. Preliminaries

We recall some important notions for studying the above-coupled sequential frac-
tional system.

DEFINITION 1. The Riemann-Liouville fractional integral operator of order  >
0, for a continuous function l defined over [a,b] is defined as:

J l(t) =
1

()

∫ t

a
(t−)−1l()d ,  > 0, a � t � b.

DEFINITION 2. The fractional derivative of l ∈Cn([a,b] in the sense of Caputo is
defined as:

D l(t) =
1

(n− )

∫ t

a
(t −)n−−1l(n)()d , n−1 <  < n, n ∈ N

∗, t ∈ [a,b] .

LEMMA 1. Let p, q > 0 , h ∈C([a,b]) . Then

IpIqh(t) = I p+qh(t), DpIph(t) = h(t), t ∈ [a,b] . (2)

LEMMA 2. Let q > p > 0 and h ∈C([a,b]) . Then, DpIqh = Iq−ph.

LEMMA 3. Let  > 0 . The set of solutions of the equation Du(t) = 0 is given by

u(t) = c0 + c1t + c2t
2 + . . .+ cn−1t

n−1, t ∈ [0,1] (3)

where, ci ∈ R , i = 0,1,2, . . . ,n−1 , n = []+1.

LEMMA 4. For any  > 0 , we have

IDu(t) = u(t)+ c0 + c1t + c2t
2 + . . .+ cn−1t

n−1, t ∈ [0,1]

with, ci ∈ R , i = 0,1,2, . . . ,n−1 , n = []+1.
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Let us now consider the notations:

k1(t) = H1(t,x(t),y(t))+a1 f1(x(t))+b1g1(D1D2x(t)),
k2(t) = H2(t,x(t),y(t))+a2 f2(y(t))+b2g2(D1D2y(t)),

1 = J4+3+2+1k1(1), 2 =
1

(4 +3 +2 +1)
, 3 =

1
(4 +3 +1)

,

4 = J4+3k1(1), 5 =
1

(4 +3−1 +1)
,

6 =
1

(4 +3−2−1 +1)
, 7 =

1
(4 +3 +2 +1 +1)

,

1 = J4+3+2+1k2(1), 2 =
1

(4 +3 +2 +1)
, 3 =

1
(4 +3 +1)

,

4 = J4+3k2(1), 5 =
1

(4 +3−1 +1)
,

6 =
1

(4 +3−2−1 +1)
, 7 =

1
(4 +3 +2 +1 +1)

,

1 =
−1

3
+
4

6
, 2 =

2

3
− 5

6
, 3 =

−1

2
+
4

5
, 4 =

3

2
− 6

5
,

1 =
−1

3
+
4

6
, 2 =

2

3
− 5

6
, 3 =

−1

2
+
4

5
, 4 =

3

2
− 6

5
.

LEMMA 5. The equation{
D1D2D3D4x(t) = k1(t), t ∈ J,

D1D2D3D4y(t) = k2(t),
(4)

with the conditions:{
x(0) = x(1) = D1D2x(1) = D4x(0) = 0,

y(0) = y(1) = D1D2y(1) = D4y(0) = 0,
(5)

admits as a solution the expression given by:⎧⎨
⎩

x(t) = J4+3+2+1k1(t)+2
1
2

t4+3+2 +3
3
4

t4+3 ,

y(t) = J4+3+2+1k2(t)+ 2
1
2

t4+3+2 + 3
3
4

t4+3 ,
(6)

such that, 4 �= 0 , 2 �= 0 , 4 �= 0 , 2 �= 0.

Proof. First of all, we have{
x(t) = J4+3+2+1k1(t)+ J4+3+2c1 + J4+3c2 + J4c3 + c4,

y(t) = J4+3+2+1k2(t)+ J4+3+2d1 + J4+3d2 + J4d3 +d4.
(7)
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Thanks to (7), we can write

c4 = c3 = d4 = d4 = 0,

c1 =
1

2
, c2 =

3

4
,

d1 =
1

2
, d2 =

3

4
.

The solution of (6) is expressed as follows:⎧⎨
⎩

x(t) = J4+3+2+1k1(t)+2
1
2

t4+3+2 +3
3
4

t4+3 ,

y(t) = J4+3+2+1k2(t)+ 2
1
2

t4+3+2 + 3
3
4

t4+3 .

This ends the proof. �

Let us now be placed in the fixed point theory by considering, first, the following
space:

X := {x ∈C([0,1] ,R), D1D2x ∈C([0,1] ,R)} .

Y :=
{

y ∈C([0,1] ,R), D1D2y ∈C([0,1] ,R)
}

.

and the norm, for each 0 < i � 1, 0 < i � 1, i = 1,2 :

‖ x ‖X=‖ x ‖ + ‖ D1D2x ‖, (8)

‖ x ‖= sup
t∈[0,1]

| x(t) |, ‖ D1D2x ‖= sup
t∈[0,1]

| D1D2x(t) | . (9)

Then, we define on Y the norm

‖ y ‖Y=‖ y ‖ + ‖ D1D2y ‖, (10)

‖ y ‖= sup
t∈[0,1]

| y(t) |, ‖ D1D2y ‖= sup
t∈[0,1]

| D1D2y(t) | . (11)

Finally, we define:
‖ (x,y) ‖X×Y=‖ x ‖X + ‖ y ‖Y . (12)

3. Main results

We consider the following sufficient conditions:
(H1) : Suppose the existence of non negative reals numbers Ri , i = 1,2,3,4, such

that for all t ∈ J and (u,v),(w,z) ∈ R
2 , we have,

| H1(t,u,v)−H1(t,w,z) |� R1 | u−w | +R2 | v− z |,
| H2(t,u,v)−H2(t,w,z) |� R3 | u−w | +R4 | v− z | .
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(H2) : There are constants mi , i = 1,2 such that for all t ∈ J and (u,v) ∈ R
2 , we

have:

| f1(u)− f1(v) |� m1 | u− v |,
| f2(u)− f2(v) |� m2 | u− v | .

(H3) : There are constants ni , i = 1,2, such that for all t ∈ J and (u,v) ∈ R
2 , we

have:

| g1(u)−g1(v) |� n1 | u− v |,
| g2(u)−g2(v) |� n2 | u− v | .

(H4) : There exist positive constants i , i = 1,2, . . . ,6, such that for all t ∈ J and
(u,v) ∈ R

2, we have

| H1(t,u,v) |� 1, | H2(t,u,v) |� 2,

| f1(u) |� 3, | f2(u) |� 4,

| g1(u) |� 5, | g2(u) |� 6.

Let us finally put the notations:

T1 := max{(R1 +a1m1 +b1n1)(3 +7) ; R2(3 +7)} , (13)

T2 := max{(R3 +a2m2 +b2n2)(3 + 7) ; R4(3 + 7)} , (14)

T := T1 +T2. (15)

THEOREM 1. Assume that (H1) , (H2) and (H3) are satisfied. If T < 1 , then,
(1) admits a unique solution.

Proof. Consider the operator F : X ×Y → X ×Y defined by

F(x(t),y(t)) = (F1(x(t),y(t)),F2(x(t),y(t)))

where,

F1(x(t),y(t))

= J4+3+2+1(H1(t,x(t),y(t))+a1 f1(x(t))+b1g1(D1D2x(t))) (16)

+2
1

2
t4+3+2 +3

3

4
t4+3 ,

F2(x(t),y(t))

= J4+3+2+1(H2(t,x(t),y(t))+a2 f2(y(t))+b2g2(D1D2y(t))) (17)

+ 2
1

2
t4+3+2 + 3

3

4
t4+3 .
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We prove that F is an application that satisfies the Banach contraction principle. We
take two arbitrary elements (x1,y1),(x2,y2) ∈ X ×Y . So, we have

| F1(x2,y2)(t)−F1(x1,y1)(t) |
� J4+3+2+1 | H1(t,x2(t),y2(t))−H1(t,x1(t),y1(t)) |

+ J4+3+2+1a1 | f1(x2(t))− f1(x1(t)) |
+ J4+3+2+1b1 | g1(D1D2x2(t))−g1(D1D2x1(t))

� R1

(4 +3 +2 +1 +1)
‖ x2− x1 ‖

+
R2

(4 +3 +2 +1 +1)
‖ y2− y1 ‖

+
a1m1

(4 +3 +2 +1 +1)
‖ x2− x1 ‖

+
b1n1

(4 +3 +2 +1 +1)
‖ D1D2x2−D1D2x1 ‖ .

Therefore,

‖ (F1(x2,y2)(t)−F1(x1,y1)) ‖
� 7(R1 +a1m1) ‖ x2 − x1 ‖ +7b1n1 ‖ D1D2x2−D1D2x1 ‖ (18)

+7R2 ‖ y2− y1 ‖ .

On the other hand, one can state that

| D1D2F1(x2,y2)(t)−D1D2F1(x1,y1)(t) |
� J4+3 | H1(t,x2(t),y2(t))−H1(t,x1(t),y1(t)) |

+ J4+3a1 | f1(x2(t))− f1(x1(t)) |
+ J4+3b1 | g1(D1D2x2(t)))−g1(D1D2x1(t)))

� R1

(4 +3 +1)
‖ x2 − x1 ‖

+
R2

(4 +3 +1)
‖ y2− y1 ‖

+
a1m1

(4 +3 +1)
‖ x2− x1 ‖

+
b1n1

(4 +3 +1)
‖ D1D2x2−D1D2x1 ‖,

‖ D1D2F1(x2,y2)−D1D2F1(x1,y1) ‖
� 3(R1 +a1m1) ‖ x2 − x1 ‖ +3b1n1 ‖ D1D2x2−D1D2x1 ‖ (19)

+3R2 ‖ y2− y1 ‖ .
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Thanks to (13), (18), (19) and (11), we find

‖ F1(x2,y2)(t)−F1(x1,y1) ‖
= ‖ F1(x2,y2)−F1(x1,y1) ‖ + ‖ D1D2F1(x2)−D1D2F1(x1) ‖
� (R1 +a1m1)(3 +7) ‖ x2− x1 ‖

+(b1n1)(3 +7) ‖ x2− x1 ‖ +R2(3 +7) ‖ y2− y1 ‖
� (R1 +a1m1 +b1n1)(3 +7) ‖ x2− x1 ‖X

+R2(3 +7) ‖ y2− y1 ‖Y . (20)

Hence, we obtain

‖ F1(x2,y2)(t)−F1(x1,y1) ‖X � T1 [‖ x2 − x1 ‖X + ‖ y2− y1 ‖Y ] . (21)

In the same way, we have the following two inequalities

‖ F2(x2,y2)(t)−F2(x1,y1) ‖
� 7(R3 +a2m2) ‖ y2 − y1 ‖ +7b2n2 ‖ D1D2y2−D1D2y1 ‖ (22)

+ 7R4 ‖ x2− x1 ‖
and

‖ D1D2F2(x2,y2)−D1D2F2(x1,y1) ‖
� 3(R3 +a2m2) ‖ y2 − y1 ‖ +3b2n2 ‖ D1D2y2−D1D2y1 ‖ (23)

+ 3R4 ‖ x2− x1 ‖ .

Thanks to (14), (22), (23) and (12), we get

‖ F2(x2,y2)(t)−F2(x1,y1) ‖Y � T2 [‖ (y2− y1) ‖Y + ‖ (x2− x1) ‖X ] . (24)

Therefore,

‖ F(x2,y2)−F(x1,y1) ‖X×Y � T ‖ (x2,y2)− (x1,y1) ‖X×Y . (25)

We have then proved that F is contractive which achieves the proof. We present to the
reader the following theorem that concerns the existence of at least a solution. Before
doing that we need the notations:

1 := 7(1 +a13 +b15)+2
1

2
+3

3

4
,

2 := 3(1 +a13 +b15)+5
1

2
+6

3

4
,

3 := 7(2 +a24 +b26)+ 2
1

2
+ 3

3

4
,

4 := 3(2 +a24 +b26)+ 5
1

2
+ 6

3

4
. �
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THEOREM 2. Suppose that (H1) ,(H2) and (H4) are satisfied, and T < 1 . If
there exists  > 0 such that

1 +2 +3 +4 �  , (26)

then problem (1) has at least one solution.

Proof. We define the following operators:

F1 := P1 +Q1,F2 := P2 +Q2,

F := (F1,F2) = P+Q,P := (P1,P2),Q := (Q1,Q2).

For (x1,x2) ∈ X ×Y and t ∈ J ,

P1(x,y)(t) = J4+3+2+1(H1(t,x(t),y(t))+a1 f1(x(t)))+2
1

2
t4+3+2 , (27)

Q1(x,y)(t) = J4+3+2+1b1g1(D1D2x(t))+3
3

4
t4+3 , (28)

P2(x,y)(t) = J4+3+2+1(H2(t,x(t),y(t))+a2 f2(y(t)))+ 2
1

2
t4+3+2 , (29)

and
Q2(x,y)(t) = J4+3+2+1b2g2(D1D2y(t))+ 3

3

4
t4+3 . (30)

• Let B = {(x,y) ∈ X ×Y :‖ (x,y) ‖X×Y� } . We will prove that P(x1,y1) +
Q(x2,y2) ∈ B , for any (x1,y1),(x2,y2) ∈ B . Let (x1,y1),(x2,y2) ∈ B and t ∈ J . We
have

| P1(x1,y1)+Q1(x2,y2) |
� J4+3+2+1(| H1(t,x1(t),y1(t)) | + | a1 f1(x1(t)) |)+2

1

2

+ J4+3+2+1 | b1g1(D1D2x2(t)) | +3
3

4

� 7(1 +a13 +b15)+2
1

2
+3

3

4
.

So,

‖ P1(x1,y1)+Q1(x2,y2) ‖� 7(1 +a13 +b15)+2
1

2
+3

3

4

and

| D1D2P1(x1,y1)(t)+D1D2Q1(x2,y2)(t) |
� J4+3(| H1(t,x1(t),y1(t)) | + | a1 f1(x1(t)) |)+5

1

2

+ J4+3 | b1g1(D1D2x2(t)) | +6
3

4

� 3(1 +a13 +b15)+5
1

2
+6

3

4
.
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Hence,

‖ D1D2P1(x1,y1)(t)+D1D2Q1(x2,y2)(t) ‖
� 3(1 +a13 +b15)+5

1

2
+6

3

4
.

Then, it yields that
‖ P1(x1,y1)+Q1(x2,y2) ‖X� 1 +2.

In the same way, we find both

‖ P2(x1,y1)+Q2(x2,y2) ‖� 7(2 +a24 +b26)+ 2
1

2
+ 3

3

4

and

‖ D1D2P2(x1,y1)(t)+D1D2Q2(x2,y2)(t) ‖
� 3(2 +a24 +b26)+ 5

1

2
+ 6

3

4
.

Consequently,
‖ P2(x1,y1)+Q2(x2,y2) ‖Y� 3 +4.

This implies that the following inequality is valid:

‖ P(x1,y1)+Q(x2,y2) ‖X×Y� 1 +2 +3 +4 �  ,

which ends the proof of the fact that P(x1,y1)+Q(x2,y2) ∈ B for any (x1,y1),(x2,y2)
∈ B .

• Now, we will prove that P is a contraction mapping on X ×Y .
Let (x1,y1),(x2,y2) ∈ X ×Y and t ∈ J . We have

| P1(x2,y2)−P1(x1,y1) |
� J4+3+2+1 | (H1(t,x2(t),y2(t))−H1(t,x1(t),y1(t)) |

+ J4+3+2+1 | a1 f1(x2(t))−a1 f1(x1(t)) |
� 7(R1 | x2− x1 | +R2 | y2− y1 | +7m1a1 | x2 − x1 |
� 7(R1 +a1m1) | x2− x1 | +7R2 | y2− y1 |,

‖ P1(x2,y2)−P1(x1,y1) ‖
� 7(R1 +a1m1) ‖ x2 − x1 ‖ +7R2 ‖ y2− y1 ‖

and

| D1D2P1(x2,y2)−D1D2P1(x1,y1) |
� J4+3 | (H1(t,x2(t),y2(t))−H1(t,x1(t),y1(t)) |

+ J4+3 | a1 f1(x2(t))−a1 f1(x1(t)) |
� 3R1 | x2− x1 | +3R2 | y2 − y1 | +3m1a1 | x2 − x1 |

� 3(R1 +a1m1) | x2− x1 | +3R2 | y2 − y1 |,
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‖ D1D2P1(x2,y2)−D1D2P1(x1,y1) ‖
� 3(R1 +a1m1) ‖ x2− x1 ‖ +3R2 ‖ y2− y1 ‖ .

Therefore,

‖ P1(x2,y2)−P1(x1,y1) ‖X

� (7 +3)(R1 +a1m1) ‖ x2− x1 ‖X +R2(7 +3) ‖ y2− y1 ‖Y .

Then,
‖ P1(x2,y2)−P1(x1,y1) ‖X� l1(‖ x2− x1 ‖X + ‖ y2− y1 ‖Y ),

where, l1 = max{(7 +3)(R1 +a1m1);R2(7 +3)} . With the same arguments as
before, we have

‖ P2(x2,y2)−P2(x1,y1) ‖Y� l2(‖ x2− x1 ‖X + ‖ y2 − y1 ‖Y ),

where, l2 = max{(7 + 3)(R3 +a2m2);R4(7 + 3)} . Therefore,

‖ P(x2,y2)−P(x1,y1) ‖X×Y� (l1 + l2)(‖ (x2,y2)− (x1,y1) ‖X×Y .

Using Theorem 1 and remarking that l1 + l2 < T , we conclude that P is contractive.
We will prove that Q is continuous. Let (xn,yn)n be a sequence, such that (xn,yn)→

(x,y) in X ×Y . For t ∈ J , we have

| Q1(xn,yn)−Q1(x,y) |
� J4+3+2+1b1g1 | D1D2(xn(t))− x(t)) |
� b17 ‖ D1D2(xn(t))− x(t)) ‖

and

| D1D2Q1(xn,yn)−D1D2Q1(x,y) |
� J4+3b1g1 | D1D2(xn(t))− x(t)) |
� b13 ‖ D1D2(xn(t))− x(t)) ‖ .

Hence, we obtain

‖ Q1(xn,yn)−Q1(x,y) ‖X� b1(7 +3) ‖ D1D2(xn(t))− x(t)) ‖X . (31)

Also, we have

‖ Q2(xn,yn)−Q2(x,y) ‖Y� b2(7 + 3) ‖ D1D2(yn(t))− y(t)) ‖Y . (32)

Thanks to (31) and (32), we can write

‖Q(xn,yn)−Q(x,y) ‖X×Y� (b1(7+3)+b2(7+3)) ‖D1D2((xn,yn)−(x,y)) ‖X×Y .
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Therefore, ‖ Q(xn,yn)−Q(x,y) ‖X×Y → 0 as ‖ (xn,yn)− (x,y) ‖X×Y → 0. This means
that Q is continuous. We prove that QB is a bounded subset of X ×Y . Let (x,y) ∈ B
and t ∈ J . We have

| Q1(x(t),y(t)) |� J4+3+2+1b1g1 | D1D2(x(t)) | +3
3

4
t4+3

� b175 +3
3

4

and

| D1D2Q1(x(t),y(t)) |� J4+3b1g1 | D1D2(x(t)) | +6
3

4
t4+3−2−1

� b135 +6
3

4
.

Therefore,

‖ Q1(x,y) ‖X� b15(7 +3)+ (3 +6)
3

4
. (33)

In the same way, we obtain

‖ Q2(x(t),y(t)) ‖Y� b26(7 + 3)+ (3 + 6)
3

4
(34)

and using (33) and (34), we find

‖ Q(x,y) ‖X×Y� b15(7 +3)+ (3 +6)
3

4
+b26(7 + 3)+ (3 + 6)

3

4
�  .

Thus QB is a bounded subset of X ×Y . Now, we prove that Q is equicontinuous. Let
(x,y) ∈ X ×Y and t1,t2 ∈ J , with t1 < t2 . We have

| Q1(x(t2),y(t2))−Q1(x(t1),y(t1)) |
� b1

(4 +3 +2 +1)

∫ t2

0
(t2− s)4+3+2+1−1 | g1(D1D2x(t2)) | ds

− b1

(4 +3 +2 +1)

∫ t1

0
(t1− s)4+3+2+1−1 | g1(D1D2x(t2)) | ds

+3
3

4
| t4+3

2 − t4+3
1 |

� 7b15(t
4+3+2+1
2 − t4+3+2+1

1 )+3
3

4
(t4+3

2 − t4+3
1 ) (35)
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and

| D1D2Q1(x(t2),y(t2))−D1D2Q1(x(t1),y(t1)) |
� b1

(4 +3)

∫ t2

0
(t2− s)4+3−1 | g1(D1D2x(t2)) | ds

− b1

(4 +3)

∫ t1

0
(t1 − s)4+3−1 | g1(D1D2x(t2)) | ds

+6
3

4
| t4+3−2−1

2 − t4+3−2−1
1 |

� 3b15(t
4+3
2 − t4+3

1 )

+6
3

4
(t4+3−2−1

2 − t4+3−2−1
1 ). (36)

With the same arguments as before, we observe that the following inequalities

| Q2(x(t2),y(t2))−Q2(x(t1),y(t1)) |
� b2

(4 +3 +2 +1)

∫ t2

0
(t2 − s)4+3+2+1−1 | g2(D1D2y(t2)) | ds

− b2

(4 +3 +2 +1)

∫ t1

0
(t1 − s)4+3+2+1−1 | g2(D1D2x(t2)) | ds

+ 3
3

4
| t4+3

2 − t4+3
1 |

� 7b26(t
4+3+2+1
2 − t4+3+2+1

1 )+ 3
3

4
(t4+3

2 − t4+3
1 ) (37)

and

| D1D2Q2(x(t2),y(t2))−D1D2Q2(x(t1),y(t1)) |
� b2

(4 +3)

∫ t2

0
(t2− s)4+3−1 | g2(D1D2x(t2)) | ds

− b2

(4 +3)

∫ t1

0
(t1 − s)4+3−1 | g2(D1D2x(t2)) | ds

+ 6
3

4
| t4+3−2−1

2 − t4+3−2−1
1 |

� 3b16(t
4+3
2 − t4+3

1 )+ 6
3

4
(t4+3−2−1

2 − t4+3−2−1
1 ) (38)

are satisfied.

Under the conditions t1 → t2 , one can observe that (35)–(36)–(37)–(38) tend to
0. Then Q is equicontinuous. Thanks to the fixed-point theorem of Krasnoselskii, we
state that problem (1) has a solution. �
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EXAMPLE 1. We consider (1) under the following particular cases:

f1(x) =
1

x+3
, g1(x) =

1
x2 +3

, H1(t,x,y) =
e−2t

t +10
x+

cost
12et y,

a1 = 0.1, b1 = 0.2,

f2(y) =
1

y+5
, g2(y) =

1
y2 +9

, H2(t,x,y) =
e−t

t2 +15
x+

e−3t sin t
10

y,

a2 =
1
2
, b2 =

1
3
,

1 = 0.5, 2 = 0.55, 3 = 0.52, 4 = 0.58,

1 = 0.37, 2 = 0.72, 3 = 0.31, 4 = 0.8,

we find

R1 =
1
10

, R2 =
1
12

, R3 =
1
3
, R4 =

1
10

,

m1 =
1
9
, m2 =

1
4
, n1 =

1
4
, n2 =

1
9
,

T1 = max{0.2237;0.1157}= 0.2237,

T2 = max{0.1363;0.1685}= 0.1685,

T = T1 +T2 = 0.3922 < 1.

Therefore, by Theorem 1, we state that the above example has a unique solution.

EXAMPLE 2. We consider (1), with the conditions:

f1(x) =
e−3t

x2 +8
, g1(x) =

e−t2

et +16
x, H1(t,x,y) =

sin t + cost
t +20

x+
sin t

t2 +10
y,

a1 = 0.1, b1 = 0.3,

f2(y) =
1

7(et +1)
y, g2(y) =

e−t2

t2 +2
, H2(t,x,y) =

3sin t cost
e−t +15

x+
cost

et2 +10
y,

a2 =
1
5
, b2 =

1
7
,

1 = 0.51, 2 = 0.57, 3 = 0.53, 4 = 0.58,

1 = 0.36, 2 = 0.7, 3 = 0.38, 4 = 0.71.

We have

R1 =
1
10

, R2 = 0.1, R3 = 0.2, R4 =
1
10

,

m1 =
1
8
, m2 =

1
7
, n1 =

1
16

, n2 =
1
7
,

T1 = max{0.1794;0.1367}= 0.1794,

T2 = max{0.4180;0.1393}= 0.4180,

T = T1 +T2 = 0.5974 < 1.
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Thanks to Theorem 1, we state that the above example has a unique solution.

4. Ulam stability results

We start this section by presenting the Ulam-Hyers stability definitions.Then, we
prove some results regarding the introduced concepts.

DEFINITION 3. The System (1) has the Ulam Hyers stability if there exists a real
number H, f ,g > 0, such that for all: 1,2 > 0, :t ∈ J and for each (x;y) ∈ X ×Y
solution of the inequality⎧⎨

⎩
D1D2D3D4x(t)−H1(t,x(t),y(t))−a1 f1(x(t))−b1g1(D1D2x(t)) � 1,

D1D2D3D4y(t)−H2(t,x(t),y(t))−a2 f2(y(t))−b2g2(D1D2y(t)) � 2,
(39)

under the conditions:⎧⎨
⎩

x(0) = x(1) = D1D2x(1) = D4x(0) = 0,

y(0) = y(1) = D1D2y(1) = D4y(0) = 0,
(40)

there exists (x∗;y∗) ∈ X ×Y a solution of system (1) such that

‖ (x− x∗,y− y∗) ‖X×Y� H, f ,g,  > 0.

DEFINITION 4. The System (1) has the Ulam Hyers stability in the generalized
sense if there is H, f ,g ∈C(R+,R+) ; H, f ,g(0) = 0 such that for all:  > 0, : and for
each (x;y) ∈ X ×Y solution of (39)–(40), there exists (x∗;y∗) ∈ X ×Y a solution of
system (1) such that

‖ (x− x∗,y− y∗) ‖X×Y� H, f ,g().

THEOREM 3. If the conditions of Theorem 1 are satisfied, then problem (1) is
Ulam Hyers stable.

Proof. Let (x;y) ∈ X ×Y be a solution of (39)–(40), and let, by Theorem 1
(x∗;y∗) ∈ X ×Y be the unique solution of (1). We integrate (39), we can write

| x(t)−7

∫ t

0
(1−)4+3+2+1−1(H1(t,x(t),y(t))

+a1 f1(x(t))+b1g1(D1D2x(t)))d

−2
1

2
t4+3+2 −3

3

4
t4+3 |:� 71, (41)

and

| y(t)− 7

∫ t

0
(1−)4+3+2+1−1(H2(t,x(t),y(t))+a2 f2(x(t))

+b2g2(D1D2x(t)))d−2
1

2
t4+3+2 − 3

3

4
t4+3 |:� 72, (42)
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Using (39), (41) and (42), we have

‖ x− x∗ ‖ � 17 +7(R1 +a1m1) ‖ x− x∗ ‖
+7R2 ‖ y− y∗ ‖ +7b1n1 ‖ D1D2x−D1D2x∗ ‖,

and

‖ y− y∗ ‖ � 27 + 7(R4 +a2m2) ‖ y− y∗ ‖
+7R3 ‖ x− x∗ ‖ +7b2n2 ‖ D1D2y−D1D2y∗ ‖ .

On the other hand, we have

‖ D1D2x−D1D2x∗ ‖
� 13 +3(R1 +a1m1) ‖ x− x∗ ‖ +3R2 ‖ y− y∗ ‖

+3b1n1 ‖ D1D2x−D1D2x∗ ‖,

and

‖ D1D2y−D1D2y∗ ‖
� 23 + 3(R4 +a2m2) ‖ y− y∗ ‖ +3R3 ‖ x− x∗ ‖

+ 3b2n2 ‖ D1D2y−D1D2y∗ ‖ .

So, it yields that

‖ x− x∗ ‖X � 1(7 +3)+ (7 +3)(R1 +a1m1 +b1n1) ‖ x− x∗ ‖X

+(7 +3)R2 ‖ y− y∗ ‖Y

and

‖ y− y∗ ‖Y � 2(7 + 3)+ (7 + 3)(R4 +a2m2 +b2n2) ‖ y− y∗ ‖Y

+(7 + 3)R3 ‖ x− x∗ ‖X ,

‖ (x− x∗,y− y∗) ‖X×Y� +T ‖ (x− x∗,y− y∗) ‖X×Y ,

where
 = max{1,2}

and
 = max{(7 +3) :, : (7 + 3)} ,

Hence,

‖ (x− x∗,y− y∗) ‖X×Y� 
1−T

:= H, f ,g, H, f ,g =


1−T

Thus, the solution of (1) is Ulam Hyers stable. �

REMARK 1. If we consider the case H, f ,g() = 
1−T , then, we obtain the gener-

alised Ulam Hyers stability for (1).
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5. Conclusion

We have analyzed a coupled system of sequential differential equations in the
sense of Caputo. We first established the existence of a unique solution for the se-
quential differential system. Subsequently, we extended our investigation to explore
the existence of at least one solution for the same system. Our analysis and examples
presented in this paper support the existence of solutions to various hypotheses that have
been imposed in the paper. The obtained results have implications for applications in
diverse fields, engineering, and mathematical modeling, where sequential systems play
a crucial role.

Further research can build upon this work by considering additional properties,
stability analysis, or exploring specific applications in real-world problems.
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