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SOLVABILITY FOR A COUPLED SYSTEM OF
4-SEQUENTIAL FRACTIONAL DIFFERENTIAL EQUATIONS

KAMEL BENSASSA, ZOUBIR DAHMANI AND MEHMET ZEKI SARIKAYA *

(Communicated by R. Luca)

Abstract. The present work deals with a coupled system of fractional differential equations in-
volving four sequential Caputo derivatives in each of its components. The fractional differential
system gives rise to a standard coupled system of two ordinary differential equations of order
four, which has practical applications in some real-world phenomena such as robotics, aerospace,
and electrical engineering. The existence of a unique vector solution for our sequential system
is studied. The existence of at least one vector solution for the considered system is also investi-
gated. Some illustrative examples are discussed in detail to show the main results’ applicability.
The stabilities in the sense of Ulam Hyers for the system is discussed. A conclusion follows at
the end.

1. Introduction

Over the last three decades, fractional differential equations have been attractive
to many researchers in the past decades due to the non-localization properties of the
fractional derivatives contrary to the integer-order derivatives [12, 16, 18]. It has been
discovered that this subject has applications in a wide range of technical and physical
sciences, including complex media electrodynamics, control theory ecology, viscoelas-
ticity, biomathematics, and electrical circuits, we refer the reader to [2, 3, 5, 6, 7, 10,
15, 17,20, 21, 22, 23] for some important applications. Other important results can be
found in the following references:

We begin by citing the paper [1 1] where the authors investigated the existence of
unique maximal and minimal solutions for the following coupled differential system in
terms of the generalized fractional derivative

DY u(t)+ Fi(t,v(t) =0, ¢ € [a,b],
Dgf’v(t) + B (tu(r) =0, t €[a,b],

u(b) + Aqu(a) = I F3(b,v(b)), u"'(a)=0,

v(b) + Agv(a) = IP Fy(b,u(b)), v Y(a) =0,
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where Dg‘f’u and DE;S, n—1<a,B <n, n>2 are the fractional derivatives of a
“function u concerning another function”: 3 and —1 < A¢,4g < 0.

We cite also the work in [24] where it can be found that the authors discussed
the existence, uniqueness, and some Ulam stability results for the following fractional
coupled system

D%x (1) = fi(t,x1(2)),
D%x; (1) = fo(t,x1(2),x2(1)),
Do‘"xn(t) = fn-(taxl(t)a)@(t)? cee ’x"(t))’

O0<t<l, k—l<o<k, k=1,2,...,n,

a0)=ah, k=1, x(0)=d5, j=0,1,...k~2, k=23,....n,

Di1x(1) =0, k—1<&_ <k, k=2,3,....n,

where, n€ N—{0,1}. Forall k=1,2,...,n, the functions f; : (0,1] x R* — R are con-
tinuous, singular at = 0, lim,_,o+ f;(¢) = oo and there exist ff; € (0,1), k=1,2,...,n,
such that 1P« £, k=1,2,...,n are continuous on [0,1].

In [8], the two-Beddani studied the existence and uniqueness of solutions for the
coupled system of Caputo fractional differential equations

DPUDN + g1 (0)ult) + fi(t,u(t),v(1), D% (), D¥v(1)) = hi (t,u(t),v(1)),
DP2(D% 4 g3 (1)ult) + fa(t,u(t),v(1), D% u(t), D¥v(1)) = ha(1,u(t),v(1)),

u(0) =ay, v(0)=az, u(l)=>by, v(l)=by, t€J

where, J =1[0,1], 0 < og, B < 1, 0 < & < o < 1, k= 1; the functions f; : [0,1] x
R* — R, k= 1,2 are continuous g; : (0, 1] — [0, o) are continuous functions singular
at £ =0, and lim, o+ gx(r) = o and the operators DPx, D% and D% k = 1,2 are the
derivatives in the sense of Caputo and the constants ai, by are reals.

In [14], the authors used fixed point theorems to investigate the following coupled
system

D%u(t) = f(t,u(t),v(r)), t €[0,T],
Du(t) = f(6,ul0)v(0)), 1€ 0.T],
(u+v)(0)=—(u+v)(T), fg’ (u—v)(s)ds=A

where D* is the Caputo fractional derivatives of order y € {a,}, here o and 8 are
the orders of these fractional derivatives (see [15]); f,g: [0,T] x R2 — R are continu-
ous functions, and A is a non-negative constant.
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In [1], by applying both Schaefer and Krasnoselskii fixed point theorems, the au-
thors proved the existence and uniqueness of solutions for the problem

D%u(t) = fi(t,v(t),D* (1), D*2v(r),...,D* "=Vy(r)), 1 €0,1],
DPv(t) = fo(t,u(t),DP~'u(r), DP2u(r),...,DP~"=Vu(r)), t €[0,1],
u(0) =ug, u'(0)=u"""20)=0
W' =1(0) = yIPu(n), n€lo,1],

v(0) =vj, V(0)=v""2(0) =0,

vi=10) = 81Pu(0), ¢ €]0,1],

where D% and DP denote the Caputo fractional derivatives, p and q are non negative
reals numbers, n—1 <a <n,n—1<pB <n,withneN*, n#1, u;,v; € R, fi and
f> are two functions.

In [9], the authors studied the existence of some unique solutions for a new prob-
lem of fractional differential equations involving Caputo derivatives. Also, using the
Adam-Bashforth method, some numerical simulations for the proposed illustrative ex-
amples have been presented. The new problem of [9] is the following:

cpHep®Ren [€D%y (1) — A f(t)u(t)]
=g(t,u(t),"Du(t), D%u(t),D%u(t)), t €J=10,1],
u(0)) =0,
u(l) =ay,
D%y (0) = ay,
cp%y(1) =0

where, ‘D%, also the three others the derivatives are Caputo fractional derivatives,
O<op<l,i=1,....4, <0y, 03<0y,A>0,f: [0,1] xR—Rand g: [0,1] X
R* — R are continuous.

In this article, we are concerned with the existence and uniqueness of solutions for
the following coupled system of nonlinear fractional differential equations with four
sequential Caputo derivatives:

DU DRD%BD%x(t) = Hi(1,x(t),y(1)) + arfi(x()) + big1 (DM D*x(1)),
reJ=10,1]

DPrDP2DBsDPiy (1) = Hy(1,x(1),y(t)) + az fo(v(1)) + baga(DP1DP2y (1) ),
teJ=10,1] (1)

x(0) = x(1) = D% D%x(1) = D%x(0) = 0,

¥(0) = (1) = DP1DP2y(1) = DPiy(0) = 0,
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where, D% D% D% D% DBt pP2 DPs pPs are Caputo fractional derivatives, 0 <
o<1, 0<B;<1l,i=1,....,4, p+0oy <oy, B+ B <Pa, i R=R,g;:R—R
and H;:[0,1] x R? - R, j=1,2 are continuous functions, and H;(#,0,0) #0, f;(0) #
0, gi(0) £0, i = 1,2. We note in passing that the classical case of the above-considered
sequential system gives rise to a coupled system of two ordinary differential equations
of order four, which has important practical applications in elastic beams [4, 13, 19, 25].

We think that the present research paper on this topic has the potential to contribute
to the development of more accurate and efficient modeling techniques, as well as to
the design of new control strategies for complex systems since the standard coupled
system of order four can be seen as a limiting-case for the above fractional sequential
system.

2. Preliminaries

We recall some important notions for studying the above-coupled sequential frac-
tional system.

DEFINITION 1. The Riemann-Liouville fractional integral operator of order € >
0, for a continuous function [/ defined over [a,b] is defined as:

1 t
g :_/ —pyE! <1 <b.
JEI(t) ) a(t p) l(p)dp, €>0, a<t<b

DEFINITION 2. The fractional derivative of I € C"([a,b] in the sense of Caputo is
defined as:

t
DEI(1) = )/(t—p)"*‘g*ll(”)(p)dp, n—1<e<n, neN* telab].

o)
LEMMA 1. Let p,q >0, h € C([a,b]). Then
IP19h(t) = IP9h(t), DPIPh(t) = h(t), t € [a,b]. (2)
LEMMA 2. Let g > p >0 and h € C([a,b]). Then, DP19h = 19" Ph.
LEMMA 3. Let € > 0. The set of solutions of the equation Dfu(t) =0 is given by
u(t) =co+cit+cpt’ +...+c, 1"t 1€[0,1] (3)
where, ¢; € R, i=0,1,2,....n—1, n=[e] + 1.
LEMMA 4. Forany € >0, we have
IED%u(t) = u(t) +co+eit+cat’> +... e 1t" 1, 1€[0,1]

with, ¢c; €R, i=0,1,2,....n—1, n=[e] + 1.
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Let us now consider the notations:

ki() = Hi(t,x(2),y(t)) +aifi(x(t)) + bi1gi (D D*x(t)),
ky(1) = Ha(t,x(1),y(1)) + a2 f2(y(t)) + brg2 (DM D®y(1)),

1 1
)L :JOC4+OC3+062+061k l )L — )L —
! (1), 42 Tutatomtl) 2 Tluwtatl)
1
A4:Ja4+a3kl(l)’ )LS:F(OM-I—O@—OQ-FI)’
Ag = ! Ay = !
ST Tastos—m—ow+1) 7 Tout+tmtomta+l)
1 1
& = JBatBstBatPiy, (1 , _ R . E—
: (1), % TBs+ B+ Bt 1) T(BatPstl)
1
54 :]064+a3k2(1)’ 55 = F(B4+B3 _Bl T 1)’
5 1 5 1
T T+ Bi—PB—Pit1) C(Bs+ B3+ Lo+ Pi+1)
R A As M M A3 s
711—/1—34'/1—6; 712—/1—3—/1—6; n3_)t—2+)t_5’ 714—72—)75;
-8 & & O -8 & & O
My =——+

= == <> :——'——’ = — — —,
& 8% T8 8 BT T MTE T

LEMMA 5. The equation

DUDDBD%x(t) =k (1), t €J,
{ DPIDP2 DB DPay (1) = ky (1), @
with the conditions:
x(0) =x(1) =D""D%x(1) = D%x(0) =0,
{ ¥(0) = y(1) = DPDP2y(1) = DPiy(0) =0, ©
admits as a solution the expression given by:
x(t) = Jourostatan (1) +/12%toc4+a3+a2 IR z_itaﬁa}’ o
V(1) = PPt Py (1) S ELePut st P 4 5383 1Pt hs,
such that, g #0, Uy #0, Ny #0, M2 #0.
Proof. First of all, we have
x(t) = JOATHTOLT (1) - JUtOT0 ey | JOUTO ey 4 J s+ ¢y,
{ §1) = I BB o 0) 1 BB gy iy i
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Thanks to (7), we can write

C4=C3=d4=d4=0,

M UK
= —, =,
N2 N4
PRSP}
u g

The solution of (6) is expressed as follows:
X(l) — Ja4+063+062+061k1 (l) _|_)L2%t064+063+a2 +A3%t064+a3’
— JBa+B3+B+B My BatPs+B M3 Byt
y(t)—.] 4+P3+P2 1k2(t)+52#2t 4+P3 2+53M4t 4+P3

This ends the proof.

Let us now be placed in the fixed point theory by considering, first, the following
space:
X :={xeC([0,1],R), D" D*x € C([0,1],R)}.

Y= {y € C([0,1],R), DPIDP2y € C([0,1] JR)} .

and the norm, foreach 0 < o; <1,0<B;<1,i=1,2:

[ x lx=Ilx [l + [| D*' D% ||, (8)
[ xlle= sup [x(t) [, [|D*'D®x|[lo= sup | DUD%x(r)|. 9)
r€[0,1] r€[0,1]

Then, we define on Y the norm

1y lly=Iy [l + || PP DP2y || (10)
[y llo= sup [y(t)|, | DPDP2y||= sup | DP1DP2y(r)|. (an
1€l0,1] t€[0,1]
Finally, we define:
1 Gey) lxsr=[lxlx + Iy ly - (12)

3. Main results

We consider the following sufficient conditions:
(H1): Suppose the existence of non negative reals numbers R;, i = 1,2,3,4, such
that for all € J and (u,v), (w,z) € R?, we have,

| Hy(t,u,v) —Hy(t,w,2) |[< Ry |u—w|+Ry | v—2z],
‘HQ(I,M,V)—HQ(I,W,Z) ‘<R3 ‘ M—W|+R4 | V_Z| :
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(H2): There are constants m;, i = 1,2 such that for all € J and (u,v) € R?, we
have:
| fi(w) = fiv) [<my [u—vl],
| 2(u) = fa(v) [<mp [u—v].
(H3): There are constants 7;, i = 1,2, such that for all 7 € J and (u,v) € R?, we
have:
[g1(u) —g1(v) [<m [u—v],
| 82(u) —g2(v) [< 2 [u—v].

(H4): There exist positive constants A;, i =1,2,...,6, such that for all 7 € J and
(u,v) € R?, we have

|H1(I,M,V) |<A17 |H2(t,u,V) ‘gAZa
| fi(u) [ Az, | falu) |[< Ag,
| g1(u) < As, | g2(u) IS As.
Let us finally put the notations:
T := max{(Rl +aym —|—b1n1)()t3 —|—)L7) ; R2(13 —|—)L7)}, (13)
75 :=max {(R3 +aomy + bony) (83 + 87) 5 R4(63+ 67)}, (14)
T:=T+T15. (15)

THEOREM 1. Assume that (H1), (H2) and (H3) are satisfied. If T < 1, then,
(1) admits a unique solution.

Proof. Consider the operator F': X x Y — X x Y defined by

F(x(2),y(t)) = (Fi(x(2), (1)), F2(x(2),5(t)))
where,
Fi(x(1),y(t))
= JHUTOBFRTA (Hy (1,x(1),y(1)) + arfi (x(1)) + birg1 (D' D*x(1)))  (16)

+/‘{2mt064+063+062 +A’3@t064+0637
n2 N4

Fa(x(),5(1))
= JPHB BBy (B (1, x(1), y(1)) + ax (3 (1)) + baga (DPLDP2y (1)) 17)
+& ﬂtﬁ4+ﬁ3+ﬁ2 +8 &tﬁ4+ﬁ3 )
u g
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We prove that F' is an application that satisfies the Banach contraction principle. We
take two arbitrary elements (x1,y;), (x2,y2) € X x Y. So, we have

| Fi(x2,y2)(t) — Fi(x1,31)(2) |

SYGTETRTANH (1,200(1),v2 (1)) — Hi (t,21 (1), 31 (1)) |
FJHrETRThg | fi(xa) = fila)) |
AT, | g (DM DXy (1)) — g1(D* D% x1 (1))

Ry
S T(oy+ o054+ ap +1) 12 =1 [l
R
"Nt mtmtatl) 2=l
aymy
"ttt tl) %2 =51 [l
bim | D% D%x, — DU D%y || .

+
T(oy+os+op+o+1)

Therefore,

| (F1(x2,32)(t) = Fi(x1,51)) [l
< /17(R1 +a1m1) || X2 — X1 ||oo +/17b1n1 || DOCIDOQ)CQ —DalDale H‘X’

+ AR || y2 =1 |loo -

(18)

On the other hand, one can state that

| D' D*2Fy (x2,y2) (t) = D' D Fy (x1,y1)(t) |
STAFB | Hy(1,x2(2),y2(1)) — Hy (1,51 (£),1(2)) |

+IHBay | fi(xa(r) = fila() |

+JHTBD | g1 (D D% x(1))) — g1 (DM D®x1 (1))
c_ R
ST+ o3+1)

PR T ||
F((X4+(X3+1) y2 }’1 o
am [
_ X)» — X oo
Tlogt+oz+1) "%
blnl (030 »12%) Ol 0
Tloatang 1P P e =DoD%x e

o2 =1 []eo

| D D®Fy(x2,y2) — DD Fy (x1,y1) ||eo
< A3(Ri+aymy) || x2 = x1 [l +A3b1ny || D1 D®2xy — D*1D%x ||

+A3R: || y2 =1 |loo -

19)



Differ. Equ. Appl. 16, No. 2 (2024), 151-169. 159

Thanks to (13), (18), (19) and (11), we find

| F1(x2,y2)(t) = Fi(x1,31) ||
= || Fi(x2,y2) = Fi(x1,31) ||leo + || D*'D*2 F (x2) — D*' D2 Fy (x1) ||
< (Ri+aimy)(A3+47) || x2 —x1 ||
+ (b1n1) (A3 +47) || %2 = x1 [|o +R2(A3+27) [| y2 =1 [
< (Ri+aymy +biny) (A3 +A7) | x2 —x1 ||x
+Ry(A3+ A7) [[y2—y1 [y - (20)

Hence, we obtain

| F1(e2,32)(t) = Fi (o, ) [lx < T [l = flx + [ yv2 =y ly]- 1)
In the same way, we have the following two inequalities
| F2(x2,2)(t) — Fa(x1,31) |l

< 87(Rs + axmy) || y2 =1 ||eo +87b2n3 || DPDP2y, — DPIDP2y | (22)
+ R4 || X2 —x1 ||

and
| DPIDP2Fy (x3,y2) — DPIDP2 B (3, y1) [

< 83(R3 +aymy) || y2 = y1 || +83b2n2 || DPIDP2y, — DPIDP2y ||, (23)
+ Ry || X2 — X1 H‘X’ .

Thanks to (14), (22), (23) and (12), we get
| Fa(x2,y2)(t) = F2(x1,31) [ly S B2l 2 —y1) lly + 1] (o —x1) [Ix]. (24)
Therefore,

| F(x2,y2) = F(x1,y1) [lxxy < T | (x2,52) — (x1,51) |xxy - (25)

We have then proved that F' is contractive which achieves the proof. We present to the
reader the following theorem that concerns the existence of at least a solution. Before
doing that we need the notations:

—/17(A1—|—a1/\3 +b1/\5)+)k2 —|—)L iE
4

O, :=A3(A1 +a1A3+biAs) + /15 + /16

53&,
Ha

Q4= 53(/\2 +axAy —|—b2/\6) —|—55ﬂ +56&- O
u g

03 :=867(Ax+axAa + balg) + 52“— +
2
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THEOREM 2. Suppose that (H1),(H2) and (H4) are satisfied, and T < 1. If
there exists p > 0 such that

0,4+0,4+034+04<p, (26)

then problem (1) has at least one solution.

Proof. We define the following operators:
Fi:=P+0,Fh:=P+0,

F:=(F,F5) =P+ Q,P:=(P,P,),0:=(01,0).
For (x1,xp) € X xY andr € J,

Py (x,y)(r) = J4TETRTE (Hy (1,x(1),y(1)) + a1 fi (x(1))) + A2 %lo‘”aﬁa% @7
2

Q1(x,y)(t) = JHTBTRTUY 0 (DN D%2x (1)) + A3 %t“ﬁo@ , (28)

Po(x,y) (1) = JPHBAPEB (1, x(2), 9(1)) + an fo (9(2))) + &%Mﬁﬁz, (29)

and
Ox(x,y)(t) = JBatBs+Pa+B brg> (DBIDﬁZy(t)) +8 %tﬁzﬁ-lﬁ ) (30)
4

o Let B={(x,y) eXxY:|| (x,y) |[[xxyr<p}. We will prove that P(xj,y1)+
O(x2,y2) € B, for any (x1,y1),(x2,y2) € B. Let (x1,y1),(x2,y2) € B and r € J. We
have

| Pr(x1,y1) +Q1(x2,y2) |

S JHTETRTA (| Hy (6,21 (), y1(1) |+ [ anfi(x (1)) |)+/12%

_|_JO¢4+0¢3+062+061 ‘ blgl(DalDaz)Q(t)) | +,13ﬁ
N4

< A7(A1+a1As +b1As) +Azm —|—)L3m.
N2 N4

So,
| Pr(x1,31) + 01(x2,52) [|«< A7(A1 +a1A3 + b1 As) +/12% +7t3%

and
| D"D*2 Py (x1,y1)(t) + D*'"D*2 Q1 (x2,y2)(t) |
N1

IS H (01 (0)310) |+ anfi (1 (0) )+ syl

TR | el (DU D%xy (1)) | +x6%
4

<A3(A1+a1As +Db1As) +Asm —|—)L6m.
2 N4
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Hence,
| DD Py (x1,y1)(t) + D1 D*2 Q1 (x2,y2)(t) ||
< 13(/\1 +ai\;3 —|—b1/\5) —|—)tjm +Aﬁm.
N2 N4
Then, it yields that

| Pr(x1,y1) + Q1(x2,y2) [x< O+ Oa.
In the same way, we find both

| B 1)+ Qo(032) 1 B (s @rta +bals) + 81 ) 4 82
and
| DPLDP2 Py (xy,y1)(£) + DU D% Qs (x2,y2) (1) ||-»
< 83(A2 +arAa+balg) + 55& + 56&'
M2 U
Consequently,

| Po(x1,31) + Q2(x2,¥2) [ly< ©3 + O4.
This implies that the following inequality is valid:

| P(x1,31) + O(x2,y2) |lxxy< O1 + 02+ 03+ 04 < p,

which ends the proof of the fact that P(x1,y;) + Q(x2,y2) € B forany (x1,y1), (x2,y2)
€B.

e Now, we will prove that P is a contraction mapping on X X Y.

Let (x1,y1),(x2,y2) € X xY and t € J. We have

| Pr(x2,y2) = Pi(x1,31) |
S JATIBTRTA | (H (1,x2(t),y2(t)) — Hi (£,x1 (), 31 (1)) |
+ JATBTRTA | g f (2 (2)) —ar fi(x1 (1)) |
A1(Ry [ x2 = x1 [ +Ry [ y2 —y1 | +Azmiar | xa — x|

<
S ARy +aimy) | x2—x1 |+ ARz [ y2 —y1 |,

| Pr(x2,y2) = Pr(x1,1) [[es
< /’{7(R1 +a1m1) || X2 — X1 ||oo +A7R, H V2 — V1 ||oo

and
| DY"D*2 Py (x2,y2) — D" D% Py (x1,y1) |
STAFB | (Hy(1,22(1),2()) — Hy (t,x1(1),y1 (1)) |
FIHEE ay fi (1) —afi(a (1)) |
S ARy [x2 —x1 [ +A3Ra | y2 —y1 | +Azmiar [ x2 — x|
<A (R +aimy) [ x2 —x1 [ +A3R2 [ y2 —y1 |,
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| D' D*2Py(x2,y2) — D' D* Py (x1,y1) ||
S MRy +aimy) || x2 = x1 ||lo +A43R2 || y2 =1 [|o0 -

Therefore,

| Pi(x2,y2) — Pi(x1,y1) ||x
< (M +A3)(Ry+aimy) || x2 —x1 ||x +R2(A74+243) || y2 =1 |y -

Then,
| Pi(x2,y2) = Pr(xi,yn) Ix<L(|| %2 —x1 [|lx + || y2—y1 |ly),

where, [} = max{(A7+A3)(R; +ajm);R2(A7 4+ A3)}. With the same arguments as
before, we have

| Pa(x2,y2) = Pa(x1,31) [y < la([| 2 = x1 [|x + [[y2 =1 lly),
where, I, = max {(07 + 83)(R3 + axmy); R4(87 + 83) } . Therefore,
| P(x2,y2) — P(x1,31) |lxxy< (L + L) (] (x2,y2) = (x1,31) [lxxy -

Using Theorem | and remarking that [; + 1, < T', we conclude that P is contractive.
We will prove that Q is continuous. Let (x,,y,), be a sequence, such that (x,,y,) —
(x,y) in X x Y. For r € J, we have

| 01 (xnayn) - Ql(xay) |
LJHTBTRTAD 01 | DD (x,(1)) — x(1)) |
< biA7 || DID® (x5(1)) — x(1)) [[oo

and

|DalDa2Ql(xn7yn) _DalDale(x7y) |
< JHFBhig) | D D™ (x,(1)) — x(1)) |
< biAs || DD (x(1)) = x(1)) || -

Hence, we obtain
| Q1 (xn,yn) = Q1(x,¥) [x< b1(A7 +43) | DD (3 (2)) — x(2)) [[x . (BD)

Also, we have

1 Q2(xn,yn) = Qa(x,¥) Iy < b2(87+ 83) | D' D® (yu(2)) —y(1)) ly - (32)

Thanks to (31) and (32), we can write

1 Qs yn) = Q6 y) lx sy < (b1 (A7 4 A3) +b2(87+ 83)) | DY/ D ((n, ) = () Iy -



Differ. Equ. Appl. 16, No. 2 (2024), 151-169. 163

Therefore, || Q(xn,yn) — O(x,¥) [lxxy — 0 as || (xn,yn) — (x,¥) ||xxy — 0. This means
that Q is continuous. We prove that OB is a bounded subset of X x Y. Let (x,y) € B
and r € J. We have

| O1(x(1),y(1)) |< JHUTHBTRTNp gy | DUD®(x(1)) | +2 %t‘x“”@
4

< biA7As + /13m
N4

and
| D D®Qy (x(1),y(1)) [< T b1 g1 | D' D (x(1)) | +/16%t°‘4+a3‘a2‘°“
4
< b1A3As +/16m-
N4
Therefore,
1Y) Ix< b1As(A7 + A3 34 ) —. (33)
| Q1(x,y) [[x< b1As(A7 + A3) + (4 +/1)Z4
In the same way, we obtain
| @a(x(1).y(0)) lly < b2Ae(87 + 83) + (85 + 56) (34)
Mg

and using (33) and (34), we find
| O(x,y) [lxxy< b1As(A7 + A3) + (43 +/16)% +byAe(87+83) + (83 + 66)% <p.

Thus QOB is a bounded subset of X x Y. Now, we prove that Q is equicontinuous. Let
(x,y) €X XY and t1,t, € J, with #; < t,. We have

| 01(x(12),y(t2)) — Q1 (x(t1),¥(t1)) |

b "2
S [0y + a3 —l|— o+ ) /0 (2= S)O‘4+O‘3+O‘2+O‘1*1 | 61(DRD™x()) | ds
b gl _
CT(u+os 41— o+ o) /o (1 — )Tt @t g (D% D%x(r) | ds

13 oy+og Oy+03
+A3—= |1, —1 \
4

oy+oz+anto oy+oz+onto N3, ay+o oy+o
<A7b1/\5(t24 3 2 l_t14 3 2 1)+)L3a(t24 3_t14 3) (35)
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and

| DU'D*2Q, (x(12),y(82)) = DU D® Q1 (x(11), y(11)) |

by 2 _
< Farra o9 a0 D) | ds
by n _
ey ) (9T s (DD x(n)) | ds
+/’{'6@ ‘ t5)64+06370627061 _t{14+06370627061 ‘
N4
< by As(ty 0 — %)
+/16%(t§1“+“3_“2_“‘ -, (36)
4

With the same arguments as before, we observe that the following inequalities

| @2(x(12),¥(22)) = Qa(x(t1),¥(11)) |

b ) -
TR +ﬁ3—2|—ﬁ2 vy /0 {1y — 5) BB BB | g0 (DB DBy (1)) | dis
b 4l -
_ F(ﬁ4+ﬁ3-2|—B2+B1) /0 (1 _S)B4+B3+ﬁz+ﬁ1 1 | gz(DﬁlDBZ.X(ZQ)) | ds
+ 53& | t2ﬁ4+ﬁ3 _tf4+ﬁ3 |
g
< 57b2A6(t£4+ﬁ3+ﬁ2+B1 o tf4+ﬁ3+ﬁ2+ﬁ1 )+ 53&(1‘544#33 - tlﬁ4+ﬁ3) 37

g

and

| DPDP20, (x(12),9(12)) — DPDP2 0y (x(11),y(11)) |

_ b R BB Bi pbz
s F(ﬁ4+33)/0 (2 — 5)PtP1 | oy (DPLDP2x(1y)) | ds
b B B pb>
F(ﬁ4+ﬁ3)/0 (n—s)™* | g2(DP"'DP2x(ty)) | ds

_|_56ﬁ | t§4+53—ﬁ2—ﬁ1 _tff4+ﬁ3—l32—51 |

< 53b1/\6(tg4+ﬁ3 o t?4+ﬁ3) + 56£(t§4+ﬁ3—52—51 o tf?4+53—ﬁ2—ﬁ1) (38)

are satisfied.

Under the conditions #; — f;, one can observe that (35)—(36)—(37)—(38) tend to
0. Then Q is equicontinuous. Thanks to the fixed-point theorem of Krasnoselskii, we
state that problem (1) has a solution. [l
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EXAMPLE 1. We consider (1) under the following particular cases:
—2t

1 1 e cost
- = ——— H(t = — A7
filx) 3 g1(x) 213" 16,xy) z+10x+12efy’
ag =0 17 b] =0 27
1 1 e’ e ¥sint
=—, = s H t,x,y) = )
L) Vi3 82(y) 739 2653 = 555 o
1 1
= — b -
ar 2, 2 37

a; =05, =055 o=0.52, o4=0.58,
B =037, B,=0.72, B3=0.31, p4=0.8,

we find

= Z7
T, = max{0.2237;0.1157} = 0.2237,
T, = max{0.1363;0.1685} = 0.1685,
T=T +T,=03922<1.

Therefore, by Theorem 1, we state that the above example has a unique solution.

EXAMPLE 2. We consider (1), with the conditions:
2

—3t —t : H
e e sint + cost sint
fl(x) x2+8’ gl(x) et+16x’ l( ,X,y) 1+20 X 12+10y’
ag :0.1, b1 20.37
1 e 3sint cost cost
fZ(y) 7(€t+1)y’ g2(y) 212 2( ,.X,y) e +15 x+612+10y’
1 1
a) = b2= =

5’ 7
a; =0.51, =057 o3=0.53, o4=0.58,
B =036, P,=0.7, p3=038, pB4=0.71.

We have
Rl:i, R, =0.1, R3=0.2, R4:i,
10 10
1 1 1 1
m1:§7 mzz? nl:ﬁ’ nzz;»

T, = max{0.1794;0.1367} = 0.1794,
T, = max{0.4180;0.1393} = 0.4180,
T=T +T=05974 < 1.
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Thanks to Theorem 1, we state that the above example has a unique solution.

4. Ulam stability results

We start this section by presenting the Ulam-Hyers stability definitions.Then, we
prove some results regarding the introduced concepts.

DEFINITION 3. The System (1) has the Ulam Hyers stability if there exists a real
number Oy ¢, > 0, such that for all: &,& >0, :r € J and for each (x;y) X XY
solution of the inequality

DA D%DBD% (1) — Hy (t,x(t),y(t)) — arfi (x()) — big1 (D D%x(1)) < &1,

DPDBDPDPay (1) — Hy (1, x(2),y(t)) — axfo (y(t)) — bag2 (DPLDP2y (1)) < &3,
(39)
under the conditions:
x(0) =x(1) = DM D*x(1) = D%x(0) =0,
(40)
¥(0) =y(1) = DPtDP2y(1) = DP4y(0) =0,
there exists (x*;y*) € X x Y a solution of system (1) such that
| (x=x"y=y") [[xxr< €O s, € > 0.

DEFINITION 4. The System (1) has the Ulam Hyers stability in the generalized
sense if there is Vi ¢, € C(RT,RT); Vi £4(0) = 0 such that for all: € >0, : and for
each (x;y) € X xY solution of (39)—(40), there exists (x*;y*) € X x Y a solution of
system (1) such that

|| ()C_)C*7y_y*) HXXY< VH7_f7g(£)~

THEOREM 3. [f the conditions of Theorem 1 are satisfied, then problem (1) is
Ulam Hyers stable.

Proof. Let (x;y) € X x Y be a solution of (39)-(40), and let, by Theorem I
(x*;¥*) € X X Y be the unique solution of (1). We integrate (39), we can write

[3l0) ~ i [ (1= vyttt a 1,x0) (1)
aufi(x(0) + bigy (DU D (1) )dv

- lgmta4+a3+a2 - ﬂ3mla4+a3 |§ )L781, 41)
M2 N4

and

s / V)PtBs BBl g, (1 x(2),y(t)) + as fo (x(2))

+b2g2(DB1DB2x( 1)))dv — Azzlrﬁ“"ﬁﬁz & Bibitbs < 8rer, (42
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Using (39), (41) and (42), we have

| x—x" || < €147+ A7 (R +a@1my) || x — X" [0
+ARy || vy =V || +A7b11y || D' D%2x — DM D®2 X" ||co,

and

[y =y lleo < €287 4 87(Ry +azma) || y =" ||
+81R; || x —x* ||eo +87bons || DP D2y — DPIDP2y* ||, .
On the other hand, we have
| D' D*x — D*1D%2x" ||
< g3 +/’{3(R1 +a1m1) || x—x* Hoo +A3R, || y—y* Hoo
+A3biny || DX D% x — DY D% x" ||,

and
| DPrDP2y — DPIDP2y |
< 883+ & (Re+aym) |y =y [l +83Rs || x —x" [|oo
+ 83byny || DP DRy — DPI DRy .. .
So, it yields that

H x—x" ||X < 81(/’{7 +lg)+(/’{7+/’{3)(R1 +aym +b1n1) ||x—x* HX
+A+ )R |y =y Iy

and
[y=y"lly < &(87+63) + (67 + 63) (Ry + aoma + bama) [| y — " [|y
+(67+63)R3 || x —x" |x,
[ (x=xy =) [xxy < €E+T || (x—x"y—y") llxxv,
where
€ =max{e;, &}
and
E=max{(A7+A3) :,: (67 + &)},

Hence,

—

[1]

| (x—=x"y —=y") [lxxr< =€0pre, Opye=

€E
1-T
Thus, the solution of (1) is Ulam Hyers stable. [

1-T

:S)

1-T°

REMARK 1. If we consider the case Vy 7 .(€) =
alised Ulam Hyers stability for (1).

then, we obtain the gener-
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5. Conclusion

We have analyzed a coupled system of sequential differential equations in the

sense of Caputo. We first established the existence of a unique solution for the se-
quential differential system. Subsequently, we extended our investigation to explore
the existence of at least one solution for the same system. Our analysis and examples
presented in this paper support the existence of solutions to various hypotheses that have
been imposed in the paper. The obtained results have implications for applications in
diverse fields, engineering, and mathematical modeling, where sequential systems play
a crucial role.

Further research can build upon this work by considering additional properties,

stability analysis, or exploring specific applications in real-world problems.
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