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MASS EFFECT ON AN ELLIPTIC PDE INVOLVING

TWO HARDY–SOBOLEV CRITICAL EXPONENTS

EL HADJI ABDOULAYE THIAM

(Communicated by P. Souplet)

Abstract. We let  be a bounded domain of R
3 and  be a smooth closed curve contained in

 . We study existence of positive solutions u ∈ H1
0 () to the equation

−u+hu = −s1
 u5−2s1 +−s2

 u5−2s2 in 

where h :  → R is a function and  is the distance function to  . We prove existence of
solutions depending on the regular part of the Green function of linear operator. We prove the
existence of positive mountain pass solutions for this Euler-Lagrange equation depending on the
mass which is the regular part of the Green function of the linear operator −+h .

1. Introduction

In this paper, we are concerned with the mass effect on the existence of mountain
pass solutions of the following nonlinear partial differential equation involving two
Hardy-Sobolev critical exponents in R

3 . More precisely, letting  to be a bounded
domain of R

3 ,  a smooth closed curve contained, h :→ R a function and  a real
parameter, we consider⎧⎪⎨⎪⎩

−u(x)+hu(x) = 
u5−2s1(x)
 s1
 (x)

+
u5−2s2(x)
 s2
 (x)

in 

u(x) > 0 and u(x) = 0 on ,

(1.1)

where
(x) := inf

y∈
|y− x|

is the distance function to the curve  and for 0 < s2 < s1 < 2, 2∗s1 := 6− 2s1 and
2∗s2 := 6− 2s2 are two critical Hardy-Sobolev exponents. To study equation (1.1), we
consider the following non-linear functional  : H1

0 () → R defined by:

(u) :=
1
2

∫

|u|2dx+

1
2

∫


h(x)u2dx− 
2∗s1

∫

−s1
 (x)|u|2∗s1 dx

− 1
2∗s2

∫

−s2
 (x)|u|2∗s2 dx, (1.2)
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where h :→ R is a function and H1
0 () is the completion of C 

c () in

H1() := {u ∈ L2() : u ∈ (L2())3}.
Thanks to the continuous embedding of H1

0 () into the weighted Lebesgue spaces

L2∗s (,−s
 ) :=

{
u :→ R such that ‖u‖L2∗s (,−s

 ) :=
(∫


|u|2∗s−s

 dx

)1/2∗s
< 

}
,

the functional  is well defined. Then there exists a positive constant r > 0 and u0 ∈
H1

0 () such that ‖u0‖H1
0 () > r and

inf
‖u‖

H1
0 ()=r

(u) > (0) � (u0),

see for instance Lemma 4.5 in the paper of the author and Diatta [1]. Then the point
(0,(0)) is separated from the point (u0,(u0)) by a ring of mountains. Set

c∗ := inf
P∈P

max
v∈P

(v), (1.3)

where P is the class of continuous paths in H1
0 () connecting 0 to u0 . Since 2∗s2 >

2∗s1 , the function t �−→ (tv) has the unique maximum for t � 0. Furthermore, we
have

c∗ := inf
u∈H1

0 (),u�0,u �=0
max
t�0

(tu).

Due to the fact that the embedding of H1
0 () into the weighted Lebesgue spaces

L2∗si(−si
 ) is not compact, the functional  does not satisfy the Palais-Smale condi-

tion. Therefore, in general c∗ might not be a critical value for  .
To recover compactness, we study the following non-linear problem: let x =

(y,z) ∈ R×R
2 and consider⎧⎪⎨⎪⎩−u = 

u2∗s1−1(x)
|z|s1 +

u2∗s2−1

|z|s2 in R
3

u(x) > 0 in R
3.

(1.4)

To obtain solutions of (1.4), we consider the functional  : D1,2(R3) → R defined by

(u) :=
1
2

∫
R3

|u|2dx− 
2∗s1

∫
R3

|z|−s1 |u|2∗s1 dx− 1
2∗s2

∫
R3

|z|−s2 |u|2∗s2 dx, (1.5)

D1,2(R3) is the completion of C 
c (R3) with respect to the norm

u �−→
√∫

R3
|u|2dx .

Next, we define
 ∗ := inf

u∈D1,2(R3),u�0,u �=0
max
t�0

(tu).
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Then we get compactness provided

c∗ <  ∗,

see Proposition 4.1 in [1]. Therefore the existence, symmetry and decay estimates of
non-trivial solution w ∈ D1,2(R3) of (1.4) play an important role in problem (1.1).
Then we have the following results.

PROPOSITION 1. Let 0 � s2 < s1 < 2 ,  ∈ R . Then equation⎧⎪⎨⎪⎩−u = 
u2∗s1−1(x)

|z|s1 +
u2∗s2−1

|z|s2 in R
3

u(x) > 0 in R
3

(1.6)

has a positive ground state solution w∈D1,2(R3) depending only on |y| and |z| . More-
over there exists two positive constants C1 and C2 such that

C1

1+ |x| � w(x) � C2

1+ |x| in R
3 (1.7)

and for |x| = |(t,z)| � 1 , we have

|w(x)|+ |x||D2w(x)| � C2|z|1−s1 (1.8)

and if |x| = |(t,z)| � 1 , we have

|w(x)|+ |x||D2w(x)| � C2 max(1, |z|−s1)|x|1−N . (1.9)

For a complete proof, we refer to the paper of Fabbri-Mancini-Sandeep and Propo-
sition 2.4 in [1]. Next, we let G(x,y) be the Dirichlet Green function of the operator
−+h , with Dirichlet boundary conditions. It satisfies{

−xG(x,y)+h(x)G(x,y) = 0 for every x ∈\ {y}
G(x,y) = 0 for every x ∈ .

(1.10)

In addition there exists a continuous function m :→ R and a positive constant c > 0
such that

G(x,y) =
c

|x− y| + cm(y)+o(1) as x → y , (1.11)

see for instance [3]. We call the function m :→R the mass of −+h in  . We note
that −m is occasionally called the Robin function of −+h in the literature. Then our
main result is the following:

THEOREM 2. Let 0 � s2 < s1 < 2 and  be a bounded domain of R
3 . Consider

 a smooth closed curve contained in  . Let h : → R be a given function such that
the linear operator −+h is coercive. We assume that there exists y0 ∈  such that

m(y0) > 0. (1.12)
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Then there exists u ∈ H1
0 ()\ {0} non-negative solution of

−u(x)+hu(x) = 
u5−2s1(x)
 s1
 (x)

+
u5−2s2(x)
 s2
 (x)

in  .

In contrast to the case N � 4 (see [1] for more details), the existence of solution
does not depend on the local geometry of the singularity but on the location of the
curve  . Besides in the study of Hardy-Sobolev equations in domains with interior
singularity for the three dimensional case, the effect of the mass plays an important role
in the existence of positive solutions. For Hardy-Sobolev inequality on Riemannian
manifolds with singularity a point, Jaber [7] proved the existence of positive solutions
when the mass is positive. We refer also to [8] for existence of mountain pass solution to
a Hardy-Sobolev equation with an additional perturbation term. For the Hardy-Sobolev
equations on domains with singularity a curve, we refer to the papers of the author and
Fall [3] and the author and Ijaodoro [6]. We also suggest to the interested readers the
nice work of Druet [2], Schoen-Yau [9] and [10] for more details related to the positive
mass theorem. We also mention that this paper is the 3-dimensional version of the work
of thye author [1].

The proof of Theorem 2 relies on test function methods. Namely we build ap-
propriate test functions allowing to compare c∗ and  ∗ . Near the concentration point
y0 ∈  , the test function is similar to the test function in the case N � 4 but away from
it is replaced with the regular part of the Green function which makes apear the mass,
see Section 3.

2. Tool box

We consider the function

R : R
3 \ {0}→ R, x �→ R(x) =

1
|x|

which satisfies
−R = 0 in R

3 \ {0} . (2.1)

We denote by G the solution to the equation{
−xG(y, ·)+hG(y, ·) = 0 in \ {y}.
G(y, ·) = 0 on ,

(2.2)

and satisfying

G(x,y) = R(x− y)+O(1) for x,y ∈ and x �= y . (2.3)

We note that G is proportional to the Green function of −+h with Dirichlet boundary
conditions.
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We let  ∈ C
c (−2,2) with  ≡ 1 on (−1,1) and 0 �  < 1. For r > 0, we

consider the cylindrical symmetric cut-off function

r(t,z) = 
( |t|+ |z|

r

)
for every (t,z) ∈ R×R

2 . (2.4)

Then there exists a positive contant C such that:

r ≡ 1 in Qr , r ∈ H1
0 (Q2r), |r| � C

r
in R

3 ,

where Qr := (−r,r)×B
R2(0,r) and B

R2(0,r) is the 2-dimensional euclidean ball cen-
tered at the origin and of radius r . For y0 ∈ , we let r0 ∈ (0,1) such that

y0 +Q2r0 ⊂. (2.5)

We define the function My0 : Q2r0 → R given by

My0(x) := G(y0,x+ y0)−r(x)
1
|x| for every x ∈ Q2r0 . (2.6)

It follows from (2.3) that My0 ∈ L(Qr0) . By (2.2) and (2.1),

|−My0(x)+h(x)My0(x)| �
C
|x| = CR(x) for every x ∈ Qr0 ,

where as R ∈ Lp(Qr0) for every p ∈ (1,3) . Hence by elliptic regularity theory, see [4],
My0 ∈W 2,p(Qr0/2) for every p ∈ (1,3) . Therefore by Morrey’s embdding theorem, we
deduce that

‖My0‖C1, (Qr0/2)
� C for every  ∈ (0,1) . (2.7)

In view of (1.11), the mass of the operator −+h in  at the point y0 ∈ is given by

m(y0) = My0(0). (2.8)

Next, we have the following result which will be important in the sequel.

LEMMA 1. Let w ∈ D1,2(R3) given by Proposition 1 and consider the function
v : R

3 \ {0}→ R given by

v(x) = −1w
( x


)
.

Then there exists a constant  > 0 and a sequence (n)n∈N (still denoted by  ) such
that

v(x) → 
|x| and v(x) →− x

|x|3 for all most every x ∈ R
3

and

v(x) → 
|x| and v(x) →− x

|x|3 for every x ∈ R
3 \ {z = 0} . (2.9)
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Proof. By Proposition 1, we have that (v ) is bounded in C2
loc(R

3 \ {z = 0}) .
Therefore by Arzelá-Ascolli’s theorem v converges to v in C1

loc(R
3 \ {z = 0}) . In

particular,

v → v and v → v almost every where on R
3 .

It is plain, from (1.7), that

0 <
C1

 + |x| � v(x) � C2

 + |x| for almost every x ∈ R
3 . (2.10)

By (1.4), we have

−v(x) = 2−s1
v5−2s1
 (x)
|z|s1 + 2−s2

v5−2s2
 (x)
|z|s2 in R

3. (2.11)

Newt, we let  ∈C
c

(
R

3 \ {0}). We multiply (2.11) by  and integrate by parts to get

−
∫

R3
vdx = 2−s1

∫
R3

v5−2s1
 (x)
|z|s1 (x)dx+ 2−s2

∫
R3

v5−2s2
 (x)
|z|s2 (x)dx.

By (2.10) and the dominated convergence theorem, we can pass to the limit in the above
identity and deduce that

v = 0 in D ′ (
R

3 \ {0}) .
In particular v is equivalent to a non-negative function to a function of class C (

R
3 \ {0})

which is still denoted by v . Thanks to (2.10), by Bôcher’s theorem, see [5], there exists
a constant  > 0 such that v(x) = 

|x| . The proof of the lemma is thus finished. �
We finish this section by the following estimates. Thanks to the decay estimates

in Proposition 1, we have

LEMMA 2. Let r0 ∈ (0,1) such that (2.5) holds. Then there exists a constant
C > 0 such that for every ,r ∈ (0,r0/2) and for s ∈ (0,2) , we have∫

Qr/
|w|2dx � Cmax

(
1,

r

)
,

∫
Qr/

|w|2dx � Cmax
(
1,

r


)
, (2.12)

∫
Qr/

w|w|dx � Cmax
(
1, log

r


)
, (2.13)

∫
Qr/

|w|dx � Cmax
(
1,

r


)
,

∫
Qr/

|w|dx � Cmax

(
1,

r2

2

)
(2.14)

and

2
∫

Qr/
|z|−s|x|2w2∗s dx+ 

∫
Q4r/\Qr/

|z|−sw2∗s−1dx+
∫

R3\Qr/
|z|−sw2∗s dx = o(),

(2.15)
where Qr/ := (−r/,r/)×B

R2(0,r/).

Proof. The inequalities in (2.12), (2.13) and (2.14) are an immediate consequence
of (1.7) and (1.8) and we get estimation (2.15) thanks to (1.7) and (1.9). �
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3. Proof of the main result

Given y0 ∈  ⊂  ⊂ R
3 , we let r0 as defined in (2.5). For r ∈ (0,r0/2) , we

consider Fy0 : Qr →  parameterizing a neighborhood of y0 in  , with the property
that Fy0(0) = y0 ,

(Fy0(x)) = |z|, for all x = (t,z) ∈ Qr . (3.1)

Moreover in these local coordinates, we have

gi j(x) = i j +O(|x|) (3.2)

and √
|g|(x) = 1+ 〈A,z〉+O

(|x|2) , (3.3)

where A ∈ R
2 is the vector curvature of  and |g| stands for the determinant of g , see

[3] for more details related to this parametrization.
Next,we let w ∈ D1,2(R3) given by Proposition 1. For  > 0, we consider u :

→ R given by

u(y) := −1/2r(F−1
y0

(y))w

(
F−1

y0
(y)


)
.

We can now define the test function  : → R by

 (y) = u(y)+ 1/22r(F−1
y0

(y))My0(F
−1
y0

(y)) (3.4)

It is plain that  ∈ H1
0 () and


(
Fy0(x)

)
= −1/2r(x)w

( x


)
+ 1/22r(x)My0(x) for every x ∈ R

N .

To alleviate the notations, we will write  instead of n and we will remove the sub-
script y0 , by writing M and F in the place of My0 and Fy0 respectively. We define

̃r(y) := r(F−1(y)), V(y) := v(F−1(y))

and
M̃2r(y) := 2r(F−1(y))M(F−1(y)),

where v(x) = −1w
(

x

)
. With these notations, (3.4) becomes

(y) = u(y)+ 
1
2M̃2r(y) = 

1
2 ̃r(y)V(y)+ 

1
2M̃2r(y). (3.5)

In the sequel we define Or() as

lim
r→0

Or()


= 0.

Then we have the following.



190 E. H. A. THIAM

LEMMA 3. We have∫

| |2dy+

∫


h| |2dy =
∫

R3
|w|2dx+m(y0)2 +Or(), (3.6)

as  → 0 .

Proof. Recalling (3.5), direct computations give∫
F(Q2r)\F(Qr)

| |2dy =
∫

F(Q2r)\F(Qr)
|u |2dy+ 2

∫
F(Q2r)\F(Qr)

|M̃2r|2dy

+21/2
∫

F(Q2r)\F(Qr)
(u) ·M̃2rdy

= 
∫

F(Q2r)\F(Qr)
|(̃rV) |2dy+ 2

∫
F(Q2r)\F(Qr)

|M̃2r|2dy

+2
∫

F(Q2r)\F(Qr)
(̃rV) ·M̃2rdy. (3.7)

By (2.4), rv = r−1w(·/) is cylindrically symmetric. Therefore by the change
variable y = F(x) and using (3.2), we get


∫

F(Q2r)\F(Qr)
|(̃rV) |2dy

= 
∫

Q2r\Qr

|(rv) |2g
√

gdx

= 
∫

Q2r\Qr

|(rv) |2dx+O

(
r2

∫
Q2r\Qr

|(rv) |2dx

)
. (3.8)

By computing, we find that


∫

Q2r\Qr

|(rv) |2dx

� 
∫

Q2r\Qr

|v |2dx+ 
∫

Q2r\Qr

v2
 |r|2dx+2

∫
Q2r\Qr

v |v ||r|dx

� 
∫

Q2r\Qr

|v |2dx+
C
r2 

∫
Q2r\Qr

v2
dx+

C
r

∫

Q2r\Qr

v |v |dx

=
∫

Q2r/\Qr/
|w|2dx+C


r2

∫
Q2r/\Qr/

w2dx+
C
r

∫

Q2r/\Qr/
w|w|dx.

From this and (2.12) and (2.13), we get

O

(
r2

∫
Q2r\Qr

|(rv) |2dx

)
= Or().

We replace this in (3.8) to have


∫

F(Q2r)\F(Qr)
|(̃rV) |2dy = 

∫
Q2r\Qr

|(rv)|2dx+Or(). (3.9)
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We have the following estimates

0 � v � C|x|−1 for x ∈ R
3 \ {0} and |v(x)| � C|x|−2 for |x| �  ,

(3.10)
which easily follows from (1.7), (3.2) and (2.1). By these estimates, (3.2), (3.3) and
(2.7) together with the change of variable y = F(x) , we have


∫

F(Q2r)\F(Qr)
(̃rV) ·M̃2rdy = 

∫
Q2r\Qr

(rv ) ·Mdx

+O

(

∫

Q2r\Qr

|v |dx+

r

∫
Q2r\Qr

vdx

)
= 

∫
Q2r\Qr

(rv ) ·Mdx+Or().

This with (3.9), (2.7) and (3.7) give∫
F(Q2r)\F(Qr)

| |2dy = 
∫

Q2r\Qr

|(rv) |2dx+ 2
∫

Q2r\Qr

|(2rM)|2dx

+2
∫
Q2r\Qr

(rv) ·Mdx+Or().

Thanks to Lemma 1 and (3.10), we can thus use the dominated convergence theorem to
deduce that, as  → 0,∫

Q2r\Qr

|(rv) |2dx = 2
∫

Q2r\Qr

|(rR) |2dx+o(1). (3.11)

Similarly, we easily see that∫
Q2r\Qr

(rv) ·Mdx = 
∫

Q2r\Qr

(rR) ·Mdx+o(1) as  → 0.

This and (3.11), then give∫
F(Q2r)\F(Qr)

| |2dy = 2
∫

Q2r\Qr

|(rR) |2dx+ 2
∫

Q2r\Qr

|M|2dx

+22
∫

Q2r\Qr

(rR) ·Mdx+Or()

= 2
∫

Q2r\Qr

|(rR +M)|2dx+Or(). (3.12)

Since the support of  is contained in Q4r while the one of r is in Q2r , it is easy to
deduce from (2.7) that∫

\F(Q2r)
| |2dy = 2

∫
F(Q4r)\F(Q2r)

|M̃2r|2dy = Or()

and from Lemma 2, that∫
\F(Qr)

h| |2dy = 2
∫

F(Q4r)\F(Qr)
h|rV + M̃2r|2dy = Or().
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Therefore by (3.12), we conclude that∫
\F(Qr)

| |2dy+
∫
\F(Qr)

h| |2dy

= 2
∫

Q2r\Qr

|(rR +M)|2dx+ 2
∫

Q2r\Qr

h(·+ y0)|rR +M|2dx+Or().

Recall that G(x+ y0,y0) = r(x)R(x)+M(x) for ever x ∈ Q2r and that by (2.2),

−xG(x+ y0,y0)+h(x+ y0)G(x+ y0,y0) = 0 for every x ∈ Q2r \Qr .

Therefore, by integration by parts, we find that∫
\F(Qr)

| |2dy+
∫
\F(Qr)

h| |2dy

= 2
∫
 (Q2r\Qr)

(rR +M)
 (rR +M)


d(x)+Or(),

where  is the exterior normal vectorfield to Q2r \Qr . Thanks to (2.7), we finally get∫
\F(Qr)

| |2dy+
∫
\F(Qr)

h| |2dy

= −2
∫
Qr

R
R


d(x)− 2

∫
Qr

M
R


d(x)+Or(), (3.13)

where  is the exterior normal vectorfield to Qr .
Next we make the expansion of

∫
F(Qr) | |2dy for r and  small. First, we

observe that, by Lemma 2 and (2.7), we have∫
F(Qr)

| |2dy

=
∫

F(Qr)
|u |2dy+ 2

∫
F(Qr)

|M|2dy+21/2
∫

F(Qr)
u ·M̃2rdy

=
∫

Qr/
|w|2dx+O

(
2
∫

Qr/
|x|2|w|2dx+ 2

∫
Qr/

|w|dx

)
+Or()

=
∫

Qr/
|w|2dx+Or().

By integration by parts and using (2.15), we deduce that∫
F(Qr)

| |2dy =
∫

R3
|w|2dx+

∫
Qr/

w
w


d(x)+Or()

=
∫

R3
|w|2dx+ 

∫
Qr

v
v


d(x)+Or(). (3.14)
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Now (3.10), (2.9) and the dominated convergence theorem yield, for fixed r > 0 and
 → 0,∫

Qr

v
v


d(x)

=
∫
B

R2 (0,r)

∫ r

−r
v(t,z)v (t,z) · z

|z|d(z)dt +2
∫
B

R2

v(r,z)t v(r,z)dz

= 2
∫
B

R2 (0,r)

∫ r

−r
R(t,z)R(t,z) · z

|z|d(z)dt +22
∫

B
R2

R(r,z)tR(r,z)dz+o(1)

= 2
∫
Qr

R
R


d(x)+o(1), (3.15)

where B
R2 is the unit ball of the euclidean space R

2 . Moreover (2.14) implies that∫
F(Qr)

h2
dy = Or().

From this together with (3.14) and (3.15), we obtain∫
F(Qr)

| |2dy+
∫
F(Qr)

h2
dy =

∫
R3

|w|2dx+2
∫
Qr

R
R


d(x)+Or().

Combining this with (3.13), we then have∫

| |2dy+

∫


h2
dy =

∫
R3

|w|2dx− 2
∫
Qr

M
R


d(x)+Or()+o() .

(3.16)

Recalling that R(x) = 1
|x| , we have∫

Qr

R


d(x) = −

∫
Qr

x ·(x)
|x|3 d(x)

=
∫

B
R2 (0,r)

−2r
r2 + |z|2 dz−2

∫ r

−r

r3

r2 + t2
dt

= −2(1+ r2). (3.17)

Since (recalling (2.8)) M(y) = M(0)+O(r) = m(y0)+O(r) in Q2r , we get (3.6). This
then ends the proof. �

We finish by the following expansion

LEMMA 4.


2∗s1

∫

−s1
 | |2

∗
s1 dy+

1
2∗s2

∫

−s2
 | |2

∗
s2 dy

=

2∗s1

∫
R3

|z|−s1 |w|2∗s1 dx+
1

2∗s2

∫
R3

|z|−s2 |w|2∗s2 dx+ 22m(y0)+Or().
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Proof. Let p > 2. Then there exists a positive constant C(p) such that

||a+b|p−|a|p− pab|a|p−2| � C(p)
(|a|p−2b2 + |b|p) for all a,b ∈ R .

As a consequence, we obtain, for s ∈ (0,2) , that∫

−s
 | |2∗s dy

=
∫

F(Qr)
−s
 |u + 

1
2M̃2r|2∗s dy+

∫
F(Q4r)\F(Qr)

−s
 |u + 

1
2M̃2r|2∗s dy

=
∫

F(Qr)
−s
 |u |2∗s dy+2∗s

1/2
∫

F(Qr)
−s
 |u |2∗s−1M̃2rdy

+O

(∫
F(Q4r)

−s
 |u |2∗s−2

(
1/2M̃2r

)2
dy+

∫
F(Q4r)

−s
 |1/2M̃2r|2∗s dy

)
+O

(∫
F(Q4r)\F(Qr)

−s
 |u |2∗s dy+2∗s

1/2
∫

F(Q4r)\F(Qr)
−s
 |u |2∗s−1M̃2rdy

)
.

(3.18)

By Hölder’s inequality and (3.3), we have∫
F(Q4r)

−s
 |u |2∗s−2

(
1/2M̃r

)2
dy

� ‖u‖2∗s−2

L2∗s (F(Q4r);−s
 )

‖M̃2r‖2
L2∗s (F(Q4r);−s

 )

= ‖w‖2∗s−2

L2∗s (Q4r ;|z|−s
√

|g|)‖M̃2r‖2
L2∗s (F(Q4r);−s

 )

� (1+Cr)‖M̃2r‖2
L2∗s (F(Q4r);−s

 )

= Or(). (3.19)

where, we recall that

L2∗s (,−s
 ) := {u :→ R such that

∫

|u|2∗s−s

 dx < }.

Furthermore, since 2∗s > 2, by (2.7), we easily get∫
F(Q4r)

−s
 |1/2M̃2r|2∗s dy = o(). (3.20)

Moreover by change of variables and (2.15), we also have∫
F(Q4r)\F(Qr)

−s
 |u |2∗s dy+2∗s

1/2
∫

F(Q4r)\F(Qr)
−s
 |u |2∗s−1M̃2rdy

� C
∫

Q4r/\Qr/
|z|−s|w|2∗s dx+C

∫
Q4r/\Qr/

|z|−s|w|2∗s−1dx = o().
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By this, (3.18), (3.20) and (3.19), it results∫

−s
 | |2∗s dy =

∫
F(Qr)

−s
 |u |2∗s dy+2∗s1/2

∫
F(Qr)

−
 |u |2∗s−1M̃2rdy+Or().

We define B(x) := M(x)
√|g |(x) = M(x)

√|g|(x) . Then by the change of variable

y = F(x)
 in the above identity and recalling (3.3), then by oddness, we have∫


−s
 | |2∗s dy =

∫
Qr/

|z|−sw2∗s
√
|g |dx+2∗s

∫
Qr/

|z|−s|w|2∗s−1Bdx+Or()

=
∫

Qr/
|z|−sw2∗s dx+2∗s

∫
Qr/

|z|−s|w|2∗s−1Bdx+Or()

+O

(
2
∫

Qr/
|z|−s|x|2w2∗s dx

)
=
∫

R3
|z|−s|w|2∗s dx+2∗s

∫
Qr/

|z|−s|w|2∗s−1Bdx

+O

(∫
R3\Qr/

|z|−sw2∗s dx+ 2
∫

Qr/
|z|−s|x|2w2∗s dx

)
+Or().

By (2.15) we then have∫

−s
 | |2∗s dy =

∫
R3

|z|−s|w|2∗s dx+2∗s
∫

Qr/
|z|−s|w|2∗s−1Bdx+Or(). (3.21)

Therefore for 0 < s2 < s1 < 2, we have


2∗s1

∫

−s1
 | |2

∗
s1 dy+

1
2∗s2

∫

−s2
 | |2

∗
s2 dy

=

2∗s1

∫
R3

|z|−s1 |w|2∗s1 dx+
1

2∗s2

∫
R3

|z|−s2 |w|2∗s2 dx

+ 
∫

Qr/
|z|−s1 |w|2∗s1−1Bdx+ 

∫
Qr/

|z|−s2 |w|2∗s2−1Bdx+Or().

We multiply (1.4) by B ∈ C 1(Qr) and we integrate by parts to get


∫

Qr/
|z|−s1 |w|2∗s1−1Bdx+

∫
Qr/

|z|−s2 |w|2∗s2−1Bdx

=
∫

Qr/
w ·Bdx−

∫
Qr/

B
w


d(x)

=
∫

Qr/
w ·Bdx−

∫
Qr

B1
v


d(x).
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Since |B | � C , by Lemma 1 and (2.7), we then have


∫

Qr/
w ·Bdx = O

(
2
∫

Qr/
|w|dx

)
= Or().

Consequently, on the one hand,


∫

Qr/
|z|−s1 |w|2∗s1−1Bdx+ 

∫
Qr/

|z|−s2 |w|2∗s2−1Bdx

= −
∫
Qr

B1
v


d(x)+Or().

On the other hand by Lemma 1, (2.7) and the dominated convergence theorem, we get∫
Qr

B1
v


d(x) = 
∫
Qr

B1
R


d(x)+o(1)

= M(0)
∫
Qr

R


d(x)+O(r)+o(1),

so that

c
∫

Qr/
|z|−s1 |w|2∗s1−1Bdx+ c

∫
Qr/

|z|−s2 |w|2∗s2−1Bdx

= −2M(0)
∫
Qr

R


d(x)+Or().

It then follows from (3.21) that


2∗s1

∫

−s1
 | |2

∗
s1 dy+

1
2∗s2

∫

−s2
 | |2

∗
s2 dy

=

2∗s1

∫
R3

|z|−s1 |w|2∗s1 dx+
1

2∗s2

∫
R3

|z|−s2 |w|2∗s2 dx− 2M(0)
∫
Qr

R


d(x)+Or().

Thanks to (3.17), we have ∫
Qr

R


d(x) = −2(1+ r2).

Since M(0) = m(y0) , see (2.8), the proof of the lemma is thus finished. �
Now we are in position to complete the proof of our main result.

Proof of Theorem 2. The proof is mainly based on the mountain pass lemma: let
 be a bounded domain of R

3 ,  be a smooth closed curve contained in  , 0 � s2 <
s1 < 2 and h : → R be a function such that the linear operator −+ h is coercive.
assume that

c∗ := sup
t�0

(tw) < (w) =:  ∗,
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where w ∈ D1,2(R3) is given by Proposition 1. Then there exists u ∈ H1
0 () solution

of the Euler-Lagrange equation:

−u+hu = −s1
 u5−2s1 +−s2

 u5−2s2 in ,

see for instance Propostion 4.1. in [1]. Next, combining Lemma 3 and Lemma 4 and
recalling (1.2) and (1.5), we have

J (tu) = (tw)+Mr,(tw), (3.22)

for some function Mr, : D1,2(RN) → R satisfying

Mr,(w) = −
2
c22m(y0)+Or().

Since 2∗s2 > 2∗s1 , (tu) has a unique maximum, we have

max
t�0

(tw) =(w) =  ∗.

Therefore, the maximum of J(tu) occurs at t := 1+ o(1) . Thanks to assumption
(1.12), we have

Mr,(w) < 0.

Therefore

max
t�0

J(tu) := J(tu) � (tw)+Mr,(tw) � (tw) < (w) =  ∗.

We thus get the desired result. �
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BP: A967 Thies, Senegal

e-mail: elhadjiabdoulaye.thiam@univ-thies.sn

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


