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MASS EFFECT ON AN ELLIPTIC PDE INVOLVING
TWO HARDY-SOBOLEV CRITICAL EXPONENTS

EL HADJT ABDOULAYE THIAM

(Communicated by P. Souplet)

Abstract. We let Q be a bounded domain of R3 and I" be a smooth closed curve contained in
Q. We study existence of positive solutions u € Hé (Q) to the equation

7Au+hu:/lp;”u572°" +p;szu572°'2 in Q

where h:Q — R is a function and pr is the distance function to I'. We prove existence of
solutions depending on the regular part of the Green function of linear operator. We prove the
existence of positive mountain pass solutions for this Euler-Lagrange equation depending on the
mass which is the regular part of the Green function of the linear operator —A+ /.

1. Introduction

In this paper, we are concerned with the mass effect on the existence of mountain
pass solutions of the following nonlinear partial differential equation involving two
Hardy-Sobolev critical exponents in R3. More precisely, letting Q to be a bounded
domain of R3, T a smooth closed curve contained, & : Q — R a function and A a real
parameter, we consider

u5—2s1 (x) u5—2s2 (x)
S + 52
pr (x) pr’ (x) (1.1)
u(x)>0 and u(x)=0 on dQ,

—Au(x) + hu(x) = A

where
= inf |y —
pr(x) = inf [y

is the distance function to the curve I" and for 0 < 5, < 51 < 2, Zjl :=6—2s1 and
2§, := 6 —2s; are two critical Hardy-Sobolev exponents. To study equation (1.1), we
consider the following non-linear functional ¥ : H& (Q) — R defined by:

Y(u) = /\Vu|2dx+ /h 2dx——/p_51 )|ul® Ldx

/pf82 (x)|u[>2dx, (1.2)
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where /: Q — R is a function and H} (Q) is the completion of ¢°(Q) in
HY(Q):={ucl*(Q): Vue (LI*(Q))°}.

Thanks to the continuous embedding of Hé (Q) into the weighted Lebesgue spaces

1/2¢
L%(Q,pp*) i= {u : Q — R such that ||u||L2§(Q,pl?°') = (/Q ”|2“p1~“'dx) < oo},

the functional ¥ is well defined. Then there exists a positive constant » > 0 and ug €
HJ () such that 0l 73 () > 7 and

inf W(u) > ¥(0) > ¥(up),

HMHH(%(Q)ZV

see for instance Lemma 4.5 in the paper of the author and Diatta [1]. Then the point
(0,'¥(0)) is separated from the point (ug, ¥ (up)) by a ring of mountains. Set

*
¢’ = inf max¥ 1.3
PcZ veP ( ) (1.3)
where & is the class of continuous paths in H]}(Q) connecting 0 to ug. Since 25, >
2§, , the function ¢ — ¥(¢v) has the unique maximum for # > 0. Furthermore, we
have
*

= inf max ¥ (ru).

uEH] (Q),u=>0,u#0 120
Due to the fact that the embedding of Hé (Q) into the weighted Lebesgue spaces
L% (or $1) is not compact, the functional ¥ does not satisfy the Palais-Smale condi-
tion. Therefore, in general ¢* might not be a critical value for V.

To recover compactness, we study the following non-linear problem: let x =
(v,z) € R x R? and consider

2r —1 2% —1
u o (x)  u™ .
+ in R3
|2Js1 |22 (1.4)
u(x) >0 in R3.

—Au=A7A

To obtain solutions of (1.4), we consider the functional ® : 2'?(R?) — R defined by

l *
i g vt g [P o [ e

P12(IR3) is the completion of € (R?) with respect to the norm

ul—q// |Vu|2dx.
R3

B* = inf max ®(tu).
ueDL2(R3),u>0,u£0 120

Next, we define
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Then we get compactness provided
< B,

see Proposition 4.1 in [1]. Therefore the existence, symmetry and decay estimates of
non-trivial solution w € 2'2(R3) of (1.4) play an important role in problem (1.1).
Then we have the following results.

PROPOSITION 1. Let 0 < 55 <51 <2, A € R. Then equation
2 1 2 1
u-1 X u2 .
() in R3

_|_
‘Z|Sl ‘Z|52 (16)
u(x) >0 in R?

—Au=A7A

has a positive ground state solution w € 2*(R?) depending only on |y| and |z|. More-
over there exists two positive constants C| and C, such that

lil\x\ <wix) < 1%\)4 in R3 (1.7)
and for |x| =|(¢,z)| < 1, we have
[Vw(x)] + [%]|D*w(x)] < Calel' ™ (1.8)
and if |x| = |(¢,2)| = 1, we have
[Vw(x)| + |l [D*w(x)| < Cymax(1, [z] 1) e (1.9)

For a complete proof, we refer to the paper of Fabbri-Mancini-Sandeep and Propo-
sition 2.4 in [1]. Next, we let G(x,y) be the Dirichlet Green function of the operator
—A+ h, with Dirichlet boundary conditions. It satisfies

(1.10)

—AG(x,y) + h(x)G(x,y) =0 forevery x € Q\ {y}
G(x,y) =0 for every x € 0Q.

In addition there exists a continuous function m : Q — R and a positive constant ¢ > 0
such that

G(x,y) = +cm(y)+o(1) as x —y, (L.11)

c
=y
see for instance [3]. We call the function m : Q — R the mass of —A+h in Q. We note
that —m is occasionally called the Robin function of —A+ h in the literature. Then our
main result is the following:

THEOREM 2. Let 0 < 55 < 51 <2 and Q be a bounded domain of R3. Consider
I' a smooth closed curve contained in Q. Let h: Q — R be a given function such that
the linear operator —A+ h is coercive. We assume that there exists yo € I such that

m(yo) > 0. (1.12)
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Then there exists u € Hj (Q) \ {0} non-negative solution of

u572.\~1 (x) u572sz (x)

—Au(x) + hu(x) = A P (x) + P (x)

in Q.

In contrast to the case N > 4 (see [1] for more details), the existence of solution
does not depend on the local geometry of the singularity but on the location of the
curve I'. Besides in the study of Hardy-Sobolev equations in domains with interior
singularity for the three dimensional case, the effect of the mass plays an important role
in the existence of positive solutions. For Hardy-Sobolev inequality on Riemannian
manifolds with singularity a point, Jaber [7] proved the existence of positive solutions
when the mass is positive. We refer also to [8] for existence of mountain pass solution to
a Hardy-Sobolev equation with an additional perturbation term. For the Hardy-Sobolev
equations on domains with singularity a curve, we refer to the papers of the author and
Fall [3] and the author and Ijaodoro [6]. We also suggest to the interested readers the
nice work of Druet [2], Schoen-Yau [9] and [10] for more details related to the positive
mass theorem. We also mention that this paper is the 3-dimensional version of the work
of thye author [1].

The proof of Theorem 2 relies on test function methods. Namely we build ap-
propriate test functions allowing to compare ¢* and *. Near the concentration point
vo € I', the test function is similar to the test function in the case N > 4 but away from
it is replaced with the regular part of the Green function which makes apear the mass,
see Section 3.

2. Tool box

We consider the function

1
Z R\ {0} = R, x»—n@(x):m
which satisfies
—AZ =0 in R¥\ {0}. 2.1)
We denote by G the solution to the equation
G(y,")=0 on 0Q, '
and satisfying
G(x,y)=Z(x—y)+0(1) for x,y € Q and x#y. (2.3)

We note that G is proportional to the Green function of —A+ £ with Dirichlet boundary
conditions.
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We let x € C(—2,2) with y =1 on (—1,1) and 0 < x < 1. For r >0, we
consider the cylindrical symmetric cut-off function

n(t,2) =% (M) for every (1,z) € R x R?. (2.4)

r

Then there exists a positive contant C such that:

=1 in O, ME€H(Q), |VnJ]<= in R,

S A

where Q, 1= (—r,r) x B2 (0,r) and Bp2(0,r) is the 2-dimensional euclidean ball cen-
tered at the origin and of radius r. For yp € Q, we let rp € (0,1) such that

Yo+ Q2 C Q. (2.5)

We define the function My, : Oz, — R given by

1
My, (x) := G(yo,x+y0) — Nr(x) [ for every x € Qyy, - (2.6)

It follows from (2.3) that My, € L*(Q,,). By (2.2) and (2.1),

C
| — AM,, (x) 4+ h(x)M,, (x)| < [ =CZ%(x) for every x € O,
where as # € L(Q,,) for every p € (1,3). Hence by elliptic regularity theory, see [4],
My, € WHP(Q, J2) forevery p € (1,3). Therefore by Morrey’s embdding theorem, we
deduce that

HMVOH(:I.p(QrO/Z) <C for every p € (0,1). 2.7)
In view of (1.11), the mass of the operator —A 4/ in Q at the point yp € Q is given by
m(yo) = My, (0). (2.8)

Next, we have the following result which will be important in the sequel.

LEMMA 1. Let w € 2'2(R3) given by Proposition 1 and consider the function
ve : R3\ {0} — R given by
ve(x) =¢ tw (£> .
€
Then there exists a constant A > 0 and a sequence (&,)nen (still denoted by € ) such
that
A

ve(x) — i and Vve(x) — —Aﬁ for all most every x € R
X X

and

A
ve(x) — — and Vve(x) — —A%

N forevery x e R3\ {z=0}. (2.9)
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Proof. By Proposition 1, we have that (v) is bounded in C2_(R3\ {z = 0}).
Therefore by Arzeld-Ascolli’s theorem v, converges to v in CL (R*\ {z=0}). In
particular,

Ve — V and Vve — Vv almost every where on R3.
It is plain, from (1.7), that
Ci
€+ |x]
By (1.4), we have

C
<ve(x) < —2

< — for almost every x € R>. (2.10)
€+ |x|

0<

5-2s 5-2s
W) e )

v
—Ave(x) = Ae* 15 in R’. 2.11
. R EE 0

Newt, we let ¢ € C2 (R*\ {0}). We multiply (2.11) by ¢ and integrate by parts to get
5—2s1 5—2s7
_ _ 2—51 Ve (‘x) 2—sp / Ve (‘x)
/]1%3 veA@dx = A€ /R3 T Q(x)dx+¢€ e T @(x)dx.

By (2.10) and the dominated convergence theorem, we can pass to the limit in the above
identity and deduce that

Av=0 in 7' (R?\ {0}).
In particular v is equivalent to a non-negative function to a function of class C* (R3\ {0})

which is still denoted by v. Thanks to (2.10), by Bocher’s theorem, see [5], there exists
a constant A > 0 such that v(x) = % The proof of the lemma is thus finished. [

We finish this section by the following estimates. Thanks to the decay estimates
in Proposition 1, we have

LEMMA 2. Let rg € (0,1) such that (2.5) holds. Then there exists a constant
C > 0 such that for every €,r € (0,ry/2) and for s € (0,2), we have

€

/ Vw[2dx < Cmax (1,—), / \w\2dx<Cmax(1,5>, 2.12)

Qr/s r Qr/s €
/ w\Vw|dx<Cmax<1,log£>, (2.13)

Qr/s €

r 72
/ \VW|dx<Cmax(1,—), / Iwldx < Cmax 1, (2.14)

Qr/e € Qr/e 82

and

82/ |z\_s|x|2w2§dx+8/ \z|_5w2:‘_1dx+/ 2| W% dx = o(e),
Qr/g 4r/e Qr/e R3\Qr/€

(2.15)
where Q¢ := (—r/€,r/€) X Bpa(0,r/¢).

Proof. The inequalities in (2.12), (2.13) and (2.14) are an immediate consequence
of (1.7) and (1.8) and we get estimation (2.15) thanks to (1.7) and (1.9). [
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3. Proof of the main result

Given yp € ' C Q C R3, we let ry as defined in (2.5). For r € (0,r9/2), we
consider Fy, : Q, — Q parameterizing a neighborhood of yo in &, with the property
that F,, (0) = yo,

pr(Fy, (x)) = |z|, forall x = (t,z) € O,. (3.1)
Moreover in these local coordinates, we have
8ij(x) = 6ij+ O(|x[) (3.2)

and
Viglx) =1+(A,2)+0 (1), (3.3)

where A € R? is the vector curvature of I" and |g| stands for the determinant of g, see
[3] for more details related to this parametrization.
Next,we let w € 2'2(R3) given by Proposition 1. For & > 0, we consider u :

Q — R given by
B B F, ()
ue(y) ==& 20, (F, ' (v)w (—”8 :

We can now define the test function ¥, : Q — R by
We () = ue(y) + &' PAma(Fy ()M, (Fy ' (7)) (3.4)
Itis plain that W, € HJ (Q) and
W (Fy(x)) =20, (x)w (g) + e 2Am (x)My, (x)  forevery xRV,

To alleviate the notations, we will write € instead of &, and we will remove the sub-
script yo, by writing M and F in the place of My, and Fy, respectively. We define

) =nF 1), Vel):=ve(F'())

Mo,(y) i= mar(F () )M(F ' (9)),
where ve(x) = &~ 'w (£). With these notations, (3.4) becomes
1 ~ 1~ 1 ~
We(y) = ue(y) + €2 AMa,(y) = €21, (y)Ve (y) + €2 AMa (y). (3-5)
In the sequel we define O,(¢) as

m O:(¢)
r—0 &

=0.

Then we have the following.
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LEMMA 3. We have
/\V‘I’g|2dy+/h|‘I’g|2dy:/3\Vw|2dx+7r£m(y0)/\2+ﬁr(£), (3.6)
Q Q R
as € — 0.

Proof. Recalling (3.5), direct computations give

/ V¥, |[2dy = / |Vue > dy + eA? / \VMa,|dy
F(QZr)\F(Qr QZV Qr F(QZV)\F(Qr)

42620 / V (i) - Vo, dy
Q2r \F Qr)
- s/ IV (7, Ve) |2y + 8A2/ Vi, [2dy
F(Q20)\F(Qr) F(Q2)\F(Qr)
+2eA / V (1, Ve) - VMa,dy. (3.7)
Q2r \F Qr

By (2.4), nve = n.e 'w(-/€) is cylindrically symmetric. Therefore by the change
variable y = F(x) and using (3.2), we get

e[ IV (Ve Py
F(Q2r)\F(Qr)

—e [ 1V(ne) By
QZV\Qr

- g/ IV (nyve) [Pdx+ 0 (eﬂ/ IV (nve) |2dx> . (3.8)
Q2r\Qr Q2r\Qr

By computing, we find that

8/ IV (n,ve) |Pdx
QZV\Qr

gs/ \va\zdx—l—e/ vg\Vn,\2dx+2€/ ve|Vve||[Vn,|dx
QZr\Qr Q2r\Qr Q2r\Qr

C C
< 8/ \va\zdx—i- —28/ vgdx—k —8/ ve|Vve|dx
QZr\Qr QZV\Qr r QZV\Qr

C
= \VW|2dx—|—C 5 2dx—|——8/ w|Vw|dx.
QZr/s\Qr/a r Q2r/a\Qr/a r QZr/a\Qr/a

From this and (2.12) and (2.13), we get

0<sr2/Q " |V(nrv8)|2dx> — 0,(¢).
2r\¥r

We replace this in (3.8) to have

s/ IV (7, Ve) [Pdy = g/ V(nove)Pdx+O,(e). (3.9
(QZr \F(Q,-) QZr\Qr
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We have the following estimates

0<ve <Clx|"! forxe R\ {0} and |Vve(x)] < Clx|™2 for |x| > &,

(3.10)
which easily follows from (1.7), (3.2) and (2.1). By these estimates, (3.2), (3.3) and
(2.7) together with the change of variable y = F(x), we have

V(M Ve)-Vioydy = € / Y (1,ve) - VMdx
QZV\Qr

+0 (8/ |Vve|dx+ ¢ vgdx>
02 \Qr I 0 \Or

— s/ YV (1yve) - VMdx+ 6,(€).
QZV Qr

J/
F(QZr)\F(Qr)

This with (3.9), (2.7) and (3.7) give

¥Ry =6 / IV (nyve) [2dx + eA? / IV (12, M) 2dx

QZr\Qr

+2eA V (Nnve)- VMdx+ O ().
QZr\Qr

‘/F(QZr)\F(Qr

2r\¥r

Thanks to Lemma | and (3.10), we can thus use the dominated convergence theorem to
deduce that, as € — 0,

| v Pax=a* [ v(nm)Pdx+o(1). (3.11)
QZr\Qr QZV\Qr
Similarly, we easily see that
/ V (1ve) - VMdx = A V(%) VMdx+o(1)  ase—0.
QZr\Qr QZV\Qr

This and (3.11), then give

) V¥, [2dy = eA® / IV (0, %) |2dx + eA? / |VM|*dx

2r \¥r

‘/F(QZr)\F(Qr

2r\¥r

+2eA? / YV (10,%)-VMdx+ 0,(¢)
Q2r\Qr
:£A2/ V(N %+ M) *dx+ Oy (e). (3.12)
02,\0r

Since the support of W, is contained in Q4, while the one of 1, is in Qy,, it is easy to
deduce from (2.7) that

/ IV, [2dy = A / Vi, [2dy = 6,(¢)
Q\F(QZr) F(Q4r)\F(Q27)

and from Lemma 2, that

/ B |2dy = 8/\2/ h|NVe + Moy dy = 6,(e).
Q\F(Qr) F(Q4r)\F(Qr)
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Therefore by (3.12), we conclude that

Lo Py [ niwePay
Q\F(0)) Q\F(0r)

:£A2/Q " |V(nr%+M)|2dx+£A2/\ h(- +y0) |02 + MPdx + 6,(e).
2r\¥r

2r\¥r

Recall that G(x+ yo,v0) = Ny (x)Z(x) + M(x) for ever x € Q», and that by (2.2),
—AG(x+y0,y0) +h(x+y0)G(x+y0,y0) =0 for every x € 0y, \ O;.
Therefore, by integration by parts, we find that

/ VW Py + / h|¥e2dy
Q\F(Qr) Q\F(0r)

:Azs/ (nr%—i—M)WdG(x)—i-ﬁr(e),
9(02\0r) v

where V is the exterior normal vectorfield to O, \ Q,. Thanks to (2.7), we finally get

/ \V‘{‘g\zdy—i-/ 1P Py
Q\F(0,) Q\F(0))

4 OR
_ _oA2 ox _ ) [
= —¢eA aQr,@avdo(x) en aQrMavdc(x)—i—@’,(e), (3.13)

where v is the exterior normal vectorfield to Q,.
Next we make the expansion of [z, |VWe|?dy for r and & small. First, we
observe that, by Lemma 2 and (2.7), we have

/ ‘ V¥, |2dy
F(Qr)

:/ |Vu8|2dy+£A2/ \VM|2dy+2sl/2A/ Ve - VMa,dy
F(Qr) F(Qr) F(Qr)
:/ Vw|2dx+ 0 82/ |x|2|Vw|2dx+82/ Vwldx | + 0,(e)
Qr/s Qr/s Qr/s
:/ IVw[2dx + 6, (e).
Qr/s
By integration by parts and using (2.15), we deduce that
2 2 aW
/ [VW¢| dy:/ [Vw] dx—|—/ w=—do(x)+ 0,(g)
F(Qr) R3 aQr/e aV

dv
_ 2 "€
—/R3 [Vw| dx+£/8Q, Ve do(x)+ O,(¢). (3.14)
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Now (3.10), (2.9) and the dominated convergence theorem yield, for fixed » > 0 and
e—0,

dve
/BQ, ngdc(x)
:/ / ve(t,2)Vvel(t, z) dt—|—2/ (r,2)0ve(r,2)dz
9B (0,r) J—r

— A2 / %’(t,z)V%(t,z)~—da(z)dt+2A2 / B(1,2)0%(r,2)dz +o(1)
9B (0.) ] —r |z| B,

= A? %a—‘@da( ) +o(1), (3.15)
ag, OV

where By is the unit ball of the euclidean space R?. Moreover (2.14) implies that
/ ¥idy = O, (e).
F(Qr)
From this together with (3.14) and (3.15), we obtain
2 2 2 2 %
/ [VW,| dy—|—/ h‘Pedy:/ [Vw|“dx+ A 8/ A ——do(x)+ Or(g).

F(Qr) F(Qr) S 00, IV

Combining this with (3.13), we then have

/|V‘Pg\2dy+/ h‘Pgdy:/ \VW|2dx—gA2/ M2 46(x) + 6,() + 0 (&)
Q Q R3 90, OV

(3.16)
Recalling that Z(x) = ﬁ , we have
X4 :
7 do(x) = —/ TV ()
a0, IV o0, ||
—2r roop?
= -5 4dz 27T/ ——dt
/B 2 (0,) 72+ [zf? 2412
(14 12). (3.17)

Since (recalling (2.8)) M(y) = M(0) + O(r) =m(yg) + O(r) in Qy,, we get (3.6). This
then ends the proof. [

We finish by the following expansion

LEMMA 4.
/1 —S N
ey
S Q

A . |
— _*/]R3 ‘Z|*-\1|W|2s1dx+2—*/R3 |Z|752‘W| S2d}€+87f2/\2m(y0)+ﬁr(g)_
52
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Proof. Let p > 2. Then there exists a positive constant C(p) such that
|la+b|P —|a|? — pabla|P~2| < C(p) (|a|P~*b* + |b|?) forall a,b € R.

As a consequence, we obtain, for s € (0,2), that

/Qpl:s|‘{le|2§dy

— [ prlue+ et Aby Fdy+ [ i e + & ATy [ dy
F(Qr) F(Q4r)\F(Qr)

= [ PPy 2ae 2 [ prue P iy
F(0Or) F(Or)

r

* ~ 2 ~ *
+0 (/ o |ue > 2 (51/2M2,) dy+/ p;S|el/2M2,|2xdy)
F(Q4r) F(Q4r)

+0 (/ or " ue| > dy + ZjAsl/z/ p§5|u8|275_11\712,dy) .
F(Q4r)\F(Qr) F(Q4r)\F(Qr)

(3.18)
By Holder’s inequality and (3.3), we have
22 (1257 )
/ prluel ™~ (6 / Mr) dy
F(Q4r)
252 2
< S* 3 r * —5
B 8””8 HLZS (F(Q4r);pfé) HMZ ||LZS (F(QM);P]" )
— 252 o7 112
= £||WHL2§(Q4,;IZ\*°'\/E)||M2r||L2§(F(Q4y):pES)
< Vo, |2, ,
sel+ Cr)||M2rHL2S (F(Qar)ipr™)
= O(¢). (3.19)
where, we recall that
L» (Q,pr") == {u: Q — R such that / |u|2§pfsdx < oo}
Q
Furthermore, since 2§ > 2, by (2.7), we easily get
/ prtle! 2o, 5 dy = o(e). (3.20)
F(Q4r)
Moreover by change of variables and (2.15), we also have
/ pr’ue[* dy + 2;Ae'/? / P e [~ Mardy
F(Q4r)\F(Qr) F(Q4r)\F(Qr)

N

c/ |z|*-*'|w|2f-dx+c8/ 2~ W% dx = o(e).
4r/€\ r/e

4r/e Qr/e
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By this, (3.18), (3.20) and (3.19), it results

r

/"p;ﬂweﬁaw::/’ pilue Py + 20 [ prlue P bhody+ 6 e).
Q F(Qr) F(Qr)

We define B, (x) := M(ex)\/|ge]( €x)+/|g|(ex). Then by the change of variable

y= @ in the above identity and recalhng (3.3), then by oddness, we have

/gPES|‘Pg|275dy = /Q 2|~ W™ /]geldx+ 2§8A/Q 2] " |w|* "' Bedx + O, (¢)
r/e r/e

= |z| =S w? dx+ ZZTEA/ 2|~ |w|> ' Bedx + O, (¢)
Qr/e Qr/e

+0 (82/ |z|_s|x|2w2§dx>
Qr/e

=/ IZI""IWIzzfderZ;‘sA/ |2) =5 |w|> "' Bedx
R Qr/e

0 / 2~ W dx €2 / 2P dx | + 6, (e).
R3\Qr/£ Qr/g

By (2.15) we then have
/ s dy = / |z|**‘|w|2fdx+2:sA/ 2|~ |w|% " Bedx + O,(e).  (3.21)
Q R3 Qr/e
Therefore for 0 < s, < s; < 2, we have

A -5 2% 1 —s 2%
2_*/991" Wel °1d>’+2_*/ pr 2| Wel 2 dy
S S

A

= g [ s s [
51

+EAL / 127 w1 Bedx+ €A / 12|72 W[~ Bedx+ O, (e).
Qr/e Qr/e

We multiply (1.4) by B € €'(Q,) and we integrate by parts to get

W[ Bedxk [ Beds
Q’"/e Qr/g

P)
— [ Vw-VBedx— / B 2 do(x)
Qr/s Qr/a aV
0
= [ Vw-VBedx— | B ZEdo(x).

0,/e 90, IV
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Since |VB;| < Ce, by Lemma 1 and (2.7), we then have

e[ Vw.VBedx=0 82/ Vwldx | = 6,(¢).
Qr/e Qr/e
Consequently, on the one hand,

/18/ |z\_sl\w\2;1_lBgdx+£/ \z|_52\w\2;2_138dx
Qr/s Qr/&

B v
= _E/QQrBl Wdo‘(x) + ﬁr((‘;‘).

On the other hand by Lemma 1, (2.7) and the dominated convergence theorem, we get

dve X4

B gydo=A [ B dow (1)
— AM(0) /a ., i’;—%dc(x) 00 +o(1),

so that

hee [ (et Bedrree | 2] e Bed
Qr/e Qr/e
FY
:—sA2M0/ 9% i6(x) + 6,(¢).
©0) [, Grdot+oe)

It then follows from (3.21) that

Ty / pr ey + 5 / P We Pady

/l p X4
=3 f e rldx+2—*/ el entM(o) [ SEdo()+ o)
Thanks to (3.17), we have
1 .
20, v —do(x)=—n"(147r°)

Since M(0) =m(yp), see (2.8), the proof of the lemma is thus finished. O
Now we are in position to complete the proof of our main result.

Proof of Theorem 2. The proof is mainly based on the mountain pass lemma: let
Q be a bounded domain of R?, T be a smooth closed curve contained in Q, 0 < sy <
s1 <2 and h: Q — R be a function such that the linear operator —A + & is coercive.
assume that
¢ i=supP(rw) < P(w) =: B7,

>0
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where w € 212(R¥) is given by Proposition 1. Then there exists u € Hj (Q) solution
of the Euler-Lagrange equation:

—Au+hu= /1;)F_Slus_251 +p;52u5_zs2 in Q,

see for instance Propostion 4.1. in [1]. Next, combining Lemma 3 and Lemma 4 and
recalling (1.2) and (1.5), we have

J(tug) =Y (tw) + Mre(tw), (3.22)

for some function .7, : 2'2(RY) — R satisfying
€
Mye(w) = —Ecznzm(yo) + 0,(¢).

Since 2§, > 2

s, » P(tug) has a unique maximum, we have

max ¥(rw) =¥(w) = B*.

>0

Therefore, the maximum of J(fug) occurs at z; := 1+ 0¢(1). Thanks to assumption
(1.12), we have
Mre(w) <O0.

Therefore

maxJ (tug) == J(teue) < V(tew) + Mre(tew) < Ptew) < ¥P(w) = B~

>0

We thus get the desired result. [
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