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Abstract. This research paper explores the existence of solution to a higher-order fractional dif-
ferential equation with a general boundary condition, shedding light on novel extensions beyond
existing literature. The equation, characterized by a Caputo fractional derivative exhibits non-
linearity and resonance, making it a compelling subject of study. The investigation employs
coincidence degree theory, a robust tool for the examination of differential equations and the
identification of solution. Notably, this paper delves into nonlinear growth patterns of function.
The main results of the research are accompanied by an illustrative example to clarify the con-
cepts discussed.

1. Introduction

In this paper, we consider the fractional differential equation

− (CD
a+x)(t) = f (t,x(t),CD−1

a+ x(t)), a < t < b,  ∈ (n−1,n], n � 4, (1)

together with the boundary condition

x(i)(a) = 0, x(k)(b) =
∫ b

a
x(k)(t)dH(t), 0 � i � n−1, i �= k+1, (2)

where k is any integer between 1 and n−1, CD
a+ is the Caputo fractional derivative

of order  , f : [a,b]×R
2 → R , and

∫ b
a x(k)(t)dH(t) denotes the Riemann-Stieltjes

integral of x(k) with respect to H . We note that the problem (1)–(2) is at resonance
in the sense that the corresponding linear homogeneous equation −(CD

a+x)(t) = 0,
t ∈ [a,b] , with the boundary condition (2) has nontrivial solutions. Throughout this
article, we assume that the following holds:

(A1)
∫ b
a (t −a)dH(t) = (b−a) , and

∫ b
a (t−a)−kdH(t) �= (b−a)−k ;
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(A2) f : [a,b]×R×R→R satisfies Carathéodory conditions and further let f : [a,b]×
R

2 → R be a continuous function and f has the decomposition

f (t,x,y) = g(t,x,y)+h(t,x,y)

such that yg(t,x,y) � 0 for all (t,x,y) ∈ [a,b]×R×R . There exist nonnegative
constants e1,e2,e3,e4,e5 and constants r, l ∈ [a,b) such that for all (x,y) ∈ R

2 ,
t ∈ [a,b]

|h(t,x,y)| � e1|x|+ e2|y|+ e3|x|r + e4|y|l + e5

with

‖e2‖+
‖e1‖(b−a)−1

()
<

1
2
, (3)

where ‖e j‖ = ‖e j‖ = max
a�t�b

|e j(t)| , j = 1,2, . . . ,5.

In the analysis of the problem (1)–(2), we employ Mawhin’s coincidence theo-
rem. It’s noteworthy that Mawhin’s coincidence degree theory is formidable approach
to investigate the existence of solutions of differential equations. This approach has
application in both differential equations and difference equations for the study of ex-
istence of solutions. Notably, the application of this technique to fractional differential
equations for the study of existence of solution is a relatively recent development, for
example [2, 3, 4, 6, 9, 10, 11, 18, 22, 24, 31].

The novelty of our work lies in our consideration of the higher-order fractional
derivative with a general boundary condition. We note that we have a second boundary
point of order k � 1, which represents a novel extension beyond the earlier boundary
conditions discussed in existing literature. For example, when considering k = 0, prior
works such as [8, 16, 17, 18] become relevant. Furthermore, we delve into the analysis
of non-linear growth patterns exhibited by a function, as indicated in (A2) above. This
exploration holds profound implications across a wide array of applications. Nonlinear
growth functions can effectively capture situations where growth is initially rapid but
gradually slows down due to factors like limited resources or saturation effects. This
ability is crucial for accurately describing scenarios such as population growth and
chemical reactions. While a plethora of literature exist regarding linear growth, for
example in [2, 3, 9, 10, 18, 22, 31], on the use of nonlinear growth in using coincidence
degree theory approach remains relatively unexplored. For instance, in the context of
ordinary differential equations, one may refer to [12, 13], and for fractional differential
equations, one may refer to [1, 7, 14].

Fractional differential equations are gaining popularity as a modeling tool for com-
plex systems in various fields of science and engineering [15, 21, 28]. To explore the
use of boundary value problems with integral boundary conditions, we can refer [30]
for phase field models, [26] for heat equations with nonlinear gradient source terms,
[20] for applications in biomedical computational fluid dynamics, and [27] for model-
ing world population growth. When considering applications, it is of significant impor-
tance to investigate the existence of solutions for fractional differential equations. Here,
we discuss some relevant works that provide us a real motivation for our examination
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of problem (1)–(2). Ma et al. [18] used coincidence degree theory to study the problem

CD
0+x′(t) = f (t,x(t),x′(t),x′′(t)), t ∈ (0,1),

x(0) = x′′(0) = 0, x(1) =
∫ 1

0
x(t)dH(t),

where 2 <  � 3, CD
0+x is the standard Caputo fractional derivative. In [5], Bohner et

al. applied a Vallée-Poussin theorem and obtained explicit inequality tests for fractional
functional differential equations

(CD
a+x)(t)+

m


i=0

(Tix
(i))(t) = f (t), t ∈ [a,b],

together with the boundary condition

x(i)(a) = x(k)(b) = 0, 0 � i � n−1 and i �= k,

where the operator T : C → L can be an operator with deviation (of delayed or ad-
vanced type), an integral operator, or various linear combinations and superpositions.
Inspired by the work [5], Srivastava et al. [25] derived three distinct Lyapunov inequal-
ities for the Caputo fractional boundary value problem. Recently, Domonshnitsky et
al. [10] investigate the existence of at least one solution to the higher order Riemann–
Liouville fractional differential equation

−(D
0+x)(t) = f (t,x(t),D−1

0+ x(t)), n−1 <  � n, t ∈ [0,1],

x(0) = x′(0) = . . . = x(n−2)(0) = 0, x(k)(1) =
∫ 1

0
x(k)(t)dH(t)

by using coincidence degree theory. Feckan et al. [11] based on the topological index
theory, demonstrated the existence of at least one solution to the problem which consists
of Caputo fractional differential equation

(C0 D
t x)(t) = f (t,x(t)), q ∈ (m−1,m), m ∈ N,

subject to periodic boundary conditions

x(k)(0) = x(k)(T ), k ∈ 0,m−1,

where t ∈ [0,T ] , with T > 1, x∈Cm−1([0,T ],R) , f ∈C([0,T ],R) and C
0 D

t represents
the generalized Caputo fractional derivative with lower limit at 0 .

The rest of this paper is organized as follows. Section 2, contains basic definitions
of fractional calculus, essentials of coincidence degree theory and necessary function
spaces, norms, and operators are defined to establish our results. Section 3 focuses
on establishing the main results of this work. Moving on to Section 4, we provide
an example to further illustrate the concepts discussed. Finally, Section 5 provides a
discussion, along with potential directions for future research.
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2. Preliminaries

DEFINITION 1. (see [15, 21]) The Riemann–Liouville fractional integral opera-
tor of order  > 0 of an essentially bounded function f : [a,b]→ R is defined as

(Ia+ f )(t) =
1

()

∫ t

a
(t− s)−1 f (s)ds,  > 0, t ∈ [a,b]. (4)

DEFINITION 2. (see [15, 21]) The Caputo fractional derivative of order  ∈ (n−
1,n] for the function f : [a,b] → R , n � 1, is defined by

(CD
a+ f )(t) =

1
(n−)

∫ t

a
(t − s)n−−1 f (n)(s)ds. (5)

LEMMA 1. (see [15, 21]) The general solution of the equation (CD
a+x)(t) = 0

with  > 0 and n = []+1 is of the form

x(t) = c0 + c1(t −a)+ c2(t−a)2− . . .+ cn−1(t−a)n−1, (6)

for some ci ∈ R , i = 0,1,2, . . . ,n−1 .

LEMMA 2. (see [15, 21]) If  > 0 and n = []+1 , then

(Ia+(CD
a+x))(t) = x(t)+ c0 + c1(t −a)+ c2(t−a)2− . . .+ cn−1(t−a)n−1, (7)

where ci ∈ R , i = 0,1,2, . . . ,n−1 .

LEMMA 3. Assume that  ∈ (n− 1,n] and f ∈ L . Then the unique solution of
the fractional boundary value problem{

(CD
a+x)(t) = f (t), a < t < b,

x(i)(a) = 0, x(k)(b) = 0, 0 � i � n−1 and i �= k+1,
(8)

where k is an integer satisfying the inequality  > k + 1 , where k � 1 , can be repre-
sented by the formula

x(t) =
∫ b

a
G(t,s) f (s)ds, (9)

where Green’s function Gk(t,s) is represented as

Gk(t,s) =
1

()

⎧⎪⎨
⎪⎩

(−1)(−2)···(−k)
(k+1)!(b−a) (t −a)k+1(b− s)−k−1− (t− s)−1,

a � s � t � b,
(−1)(−2)···(−k)

(k+1)!(b−a) (t −a)k+1(b− s)−k−1, a � t � s � b.

(10)
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Proof. Clearly, a solution of

(CD
a+x)(t) = f (t)

can be expressed as

x(t) = b0 +b1(t−a)+b2(t−a)2 + . . .+bn−1(t −a)n−1− 1
()

∫ t

a
(t− s)−1 f (s)ds.

From the boundary condition x(i)(a)= 0 for 0 � i � n−1 and i �= k+1, we obtain bi =
0 for 0 � i � n−1, i �= k+1. Since x(k+1)(a) �= 0, we have bk+1 �= 0. Consequently,

x(t) = bk+1(t −a)k+1− 1
()

∫ t

a
(t − s)−1 f (s)ds, (11)

x′(t) = (k+1)bk+1(t −a)k− −1
()

∫ t

a
(t − s)−2 f (s)ds,

x′′(t) = (k+1)kbk+1(t−a)k−1− (−1)(−2)
()

∫ t

a
(t − s)−3 f (s)ds,

...

x(k)(t) = (k+1)!bk+1(t−a)− (−1)(−2) · · ·(− k)
()

∫ t

a
(t − s)−k−1 f (s)ds,

x(k)(b) = (k+1)! bk+1(b−a)− (−1)(−2) · · ·(− k)
()

∫ b

a
(b− s)−k−1 f (s)ds.

Since, x(k)(b) = 0, then

bk+1 =
(−1)(−2) · · ·(− k)

(k+1)!(b−a)()

∫ b

a
(b− s)−k−1 f (s)ds.

Hence, (11) gives

x(t) =
(−1)(−2) · · ·(− k)

(k+1)!(b−a)()
(t −a)k+1

∫ b

a
(b− s)−k−1 f (s)ds

− 1
()

∫ t

a
(t− s)−1 f (s)ds

and

x(t) =
(−1)(−2) · · ·(− k)

(k+1)!(b−a)()
(t −a)k+1

[∫ t

a
(b− s)−k−1 f (s)ds

+
∫ b

t
(b− s)−k−1 f (s)ds

]
− 1
()

∫ t

a
(t− s)−1 f (s)ds.
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This completes the proof. �

We will now present the fundamental aspects of the coincidence degree theory.
Let X and Y be the real Banach spaces, and let M : dom(M) ⊂ X → Y be Fred-
holm operator of index zero, (i.e., dim(Ker(M))− codim(Im(M)) = 0). If P : X → X
and Q : Y → Y are two continuous projectors such that Im(P) = Ker(M), Ker(Q) =
Im(M), X = Ker(M)⊕Ker(P) and Y = Im(M)⊕ Im(Q), then the inverse operator
of M|dom(M)∩Ker(P) : dom(M)∩Ker(P) → Im(M) exists and is denoted by Kp (gen-
eralized inverse operator of M ). If  is an open bounded subset of X such that
dom(M)∩ �= 0, the mapping N : X → Y will be called M -compact on  , if QN()
is bounded and Kp(I−Q)N : → X is compact. That the equation Mx = Nx is solv-
able can be seen from [19].

THEOREM 1. ([19]) Let M be a Fredholm operator of index zero and let N be
the L-compact on  . Assume the following conditions are satisfied:

1) Mx �= Nx for every (x, ) ∈ [(dom(M)\Ker(M))∩]× (0,1);

2) Nx /∈ Im(M) for every x ∈ Ker(M)∩;

3) deg(QN|Ker(M),Ker(M)∩,0) �= 0 , where Q : Y → Y is a projector as above
with Im(M) = Ker(Q) .

Then, the equation Mx = Nx has at least one solution in dom(M)∩ .

In this article, take the two Banach spacse X and Y as

X = {u : [a,b] → R| u ∈C[a,b], CD−1
a+ u ∈C[a,b]}, Y = L1[a,b],

with the norms ||u||X = max{||u||, ||CD−1
a+ ||} , where ||u|| = max

t∈[a,b]
|u(t)| .

Let us define M : dom(M) ⊂ X → Y and N : X → Y as

(Mx)(t) = −(CD
a+x)(t),

and
(Nx)(t) = f (t,x(t),CD−1

a+ x(t)), t ∈ [a,b],

where

dom(M) =
{

x ∈ X |− CD
a+x ∈ Y, x(i)(a) = 0,

x(k)(b) =
∫ b

a
x(k)(t)dH(t), 0 � i � n−1, i �= k+1

}
.

Then the boundary value problem (1)–(2) becomes

(Mx)(t) = (Nx)(t), x ∈ dom(M).
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To apply Theorem 1 in the main results of the present article, we define linear
continuous projectors P : X → X and Q : Y → Y by

(Px)(t) = x(k)(b)
(t −a)
(b−a)

, (12)

(Qy)(t) =
− k

(b−a)−k− ∫ b
a (t−a)−kdH(t)

×
[∫ b

a
(b− s)−k−1y(s)ds−

∫ b

a

∫ t

a
(t − s)−k−1y(s)dsdH(t)

]
(13)

and a generalized inverse operator Kp : Im(M) → dom(M)∩Ker(P) of M by

(Kpy)(t) =
∫ b

a
G(t,s)y(s)ds (14)

=
(−1)(−2) · · ·(− k)

(k+1)!(b−a)
(t−a)k+1

∫ b

a
(b− s)−k−1y(s)ds

−
∫ t

a
(t − s)−1y(s)ds,

where G(t,s) is given in (10).

3. Main result

In this section, we enhance clarity by presenting several lemmas that establish
the prerequisites for the main theorem. We conclude this section with the theorem
concerning the existence of a solution.

LEMMA 4. M : dom(M) ⊂ X → Y is a Fredholm operator of index zero.

Proof. By Lemma 1 and Mx = 0, we have

x(t) = c0 + c1(t−a)+ c2(t−a)2 + . . .+ cn(t −a)n−1,

using the boundary conditions (2), gives

Ker(M) =
{

bk+1(t −a)k+1 : bk+1 ∈ R

}
.

Also,

Im(M) =
{

y ∈ Y :
∫ b

a
(b− s)−k−1y(s)ds−

∫ b

a

∫ t

a
(t− s)−k−1y(s)dsdH(t) = 0

}
.

Let x ∈ dom(M) and Mx = y . Then by Lemmas 1,

x(t) = c0 + c1(t−a)+ c2(t−a)2 + . . .+ cn(t −a)n−1− Ia+y. (15)
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By boundary conditions, we obtain ci = 0, for 0 � i � n− 1, i �= k + 1. Therefore
ck+1 �= 0. Thus, from (15), we have

x(t) =ck+1(t−a)k+1− 1
()

∫ t

a
(t− s)−1y(s)ds

x′(t) =ck+1(k+1)(t−a)k − (−1)
()

∫ t

a
(t − s)−2y(s)ds

...

x(k)(t) =ck+1(k+1)k(k+1) · · · (k− (k−2))(t−a)(k−(k−1))

− (−1) · · · (− k)
()

∫ b

a
(t− s)−k−1y(s)ds

x(k)(b) =ck+1(k+1)!(b−a)− (−1) · · · (− k)
()

∫ b

a
(b− s)−k−1y(s)ds

∫ b

a
x(k)(t)dH(t) = ck+1(k+1)!

∫ b

a
(t −a)dH(t)

− (−1) · · · (− k)
()

∫ b

a

∫ t

a
(t − s)−k−1y(s)dsdH(t).

Given that in Boundary conditions (2), x(k)(b) =
∫ b
a x(k)(t)dH(t) and using assumption

(A1),
∫ b
a (t−a)dH(t) = (b−a) , we derive

∫ b

a
(b− s)−k−1y(s)ds =

∫ b

a

∫ t

a
(t − s)−k−1y(s)dsdH(t).

On the other hand, if y∈Y , then
∫ b
a (b−s)−k−1y(s)ds =

∫ b
a

∫ t
a(t−s)−k−1y(s)dsdH(t) .

If

x(t) =
(−1)(−2) · · ·(− k)

(k+1)!(b−a)()
(t−a)k+1

∫ b

a
(b− s)−k−1y(s)ds

− 1
()

∫ t

a
(t− s)−1y(s)ds

x′(t) =
(−1)(−2) · · ·(− k)

(k+1)!(b−a)()
(k+1)(t−a)k

∫ b

a
(b− s)−k−1y(s)ds

− (−1)
()

∫ t

a
(t− s)−2y(s)ds

x′′(t) =
(−1)(−2) · · ·(− k)

(k+1)!(b−a)()
(k+1)k(t−a)k−1

∫ b

a
(b− s)−k−1y(s)ds

− (−1)(−2)
()

∫ t

a
(t − s)−3y(s)ds

...
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x(k)(t) =
(−1)(−2) · · ·(− k)

(k+1)!(b−a)()
(k+1)!(t−a)

∫ b

a
(b− s)−k−1y(s)ds

− (−1)(−2) · · ·(− k)
()

∫ t

a
(t− s)−k−1y(s)ds

x(k)(b) =
(−1)(−2) · · ·(− k)

(b−a)()
(b−a)

∫ b

a
(b− s)−k−1y(s)ds

− (−1)(−2)
()

∫ b

a
(b− s)−k−1y(s)ds = 0

∫ b

a
x(k)(t)dH(t) =

(−1)(−2) · · · (− k)
(b−a)()

∫ b

a
(t−a)

∫ b

a
(b− s)−k−1y(s)dsdH(t)

− (−1)(−2) · · · (− k)
()

∫ b

a

∫ t

a
(t− s)−k−1y(s)dsdH(t) = 0.

Thus, if x ∈ dom(M) , then y ∈ Im(M) and Mx = y , Hence,

Im(M) =
{

y ∈ Y :
∫ b

a
(b− s)−k−1y(s)ds−

∫ b

a

∫ t

a
(t− s)−k−1y(s)dsdH(t) = 0

}
.

Consequently, dimKer(M) = 1 and Im(M) is closed.
From (12), we see that P is linear and it fulfills idempotence property as (P2x)(t)=

(Px)(t) , which means that P is a projection operator. Also, Ker(P) = {x∈ X |x(k)(b) =
0} and Im(P) = Ker(M) . For any x ∈ X , together with x = (x−Px)+ Px , we have
X = Ker(P)⊕Ker(M) . It is easy to show that Ker(M)∩Ker(P) = 0 which implies
X = Ker(P)⊕Ker(M) . It is not difficult to see that (Q2x)(t) = (Qx)(t) (see page 12025
in [10] for a similar argument), so Q is a projection operator. Moreover, Ker(Q) =
Im(M) .

Next, for any y ∈ Y , setting y1 = y−Qy , we have (Qy1)(t) = Q(y−Q(y))(t) =
Qy(t)−Q2y(t) = 0. Hence y1 ∈ Im(M) and Y = Im(M) + Im(Q) . Moreover, it is
easy to verify that Im(Q)∩ Im(M) = {0} . Consequently Y = Im(M)⊕ Im(Q) . Since
Im(M) is a closed subspace of Y and dim Ker(M) = codim Im(M) = 1, then M is a
Fredholm operator of index zero. This proves the lemma. �

LEMMA 5. Kp is the inverse of M|dom(M)∩Ker(P) .

Proof. If y ∈ Im(M) , then

MKpy =− CD
a+

(
(−1)(−2) · · ·(− k)

(k+1)!(b−a)()
(t −a)(k+1)

∫ b

a
(b− s)−k−1

− 1
()

∫ t

a
(t− s)−1

)
= y.
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For x ∈ dom(M)∩Ker(P) and Mx = y , we have

−(CD
a+x(t) = y(t), t ∈ (a,b)

x(i)(a) = 0, x(k)(b) = 0, 0 � i � n−1, i �= k+1.

Furthermore, for x ∈ dom(M)∩Ker(P) , we have

(KpMx)(t) =
∫ b

a
G(t,s)(CD

a+x(s))ds =
∫ b

a
G(t,s)y(s)ds = x(t),

which implies that Kp =
(
M|dom(M)∩Ker(P)

)−1
. The proof is complete. �

LEMMA 6. QN : X →Y is continuous and bounded, and Kp(I−Q)N :→ X is
compact, where ⊂ X is bounded.

Proof. Since f is continuous, then QN() and (I−Q)N() are bounded. Hence
there exists a constant A > 0, such that |(I −Q)Nx(t)| � A for x ∈  and t ∈ [a,b] .
using the Lebesgue dominated convergence theorem, it is clear that Kp(I −Q)Ny :
Y → Y is completely continuous, then by the Arzela-Ascoli theorem, Kp(I−Q)N()
is compact. This completes the proof of the theorem. �

Now, we use of the following conditions to prove our results

(A3) There exists a constant > 0 such that if |CD−1
a+ x(t)|> for all t ∈ [a,b] , then

QNx �= 0.

(A4) There exists a constant B > 0 such that either of the following holds

cQN(c(t−a)) < 0 or cQN(c(t −a)) > 0

for |c| > B and c ∈ R .

LEMMA 7. If the conditions (A1)–(A4) are satisfied, then set 1 , defined by

1 = {x ∈ dom(M)\Ker(M) : Mx = Nx for some  ∈ [0,1]},
is bounded.

Proof. For x ∈ 1 , then x ∈ dom(M)\Ker(M) and Mx = Nx , thus  �= 0 and
Nx ∈ Im(M) = Ker(Q) . Thus, QNx = 0. For every x ∈ dom(M) , CD−1

a+ x ∈ C[a,b] .
By Lemma 2, we have I−1

a+
CD−1

a+ x(t) = x(t)+ c0 . Since, x ∈ dom(M) , x(a) implies
that c = 0. Therefore,

‖x‖ =‖I−1
a+

CD−1
a+ x‖

=
∥∥∥∥ 1
(−1)

∫ t

a
(t− s)−2CD−1

a+ x(s)ds

∥∥∥∥
� max

a�t�b

∣∣∣∣ 1
(−1)

∫ t

a
(t− s)−2ds

∣∣∣∣‖CD−1
a+ x‖

=
(b−a)−1

()
‖CD−1

a+ x‖. (16)
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From (A3), there exist t0 ∈ [a,b] such that |CD−1
a+ x(t0)| �  . Next for x ∈1 ,

CD−1
a+ x(t)CD

a+x(t) = CD−1
a+ x(t) f (t,x(t),D−1

a+ x(t)).

Using integration and (16), we proceed

1
2

(CD−1
a+ x(t)

)2
=

1
2

(CD−1
a+ x(t0)

)2
+

∫ t

t0

CD−1
a+ x(s)g(s,x(s),CD−1

a+ x(s))ds

+
∫ t

t0

CD−1
a+ x(S)h(s,x(S),CD−1

a+ x(S))ds

�1
2
2 +

∫ b

a
|CD−1

a+ x(s)h(s,x(s),CD−1
a+ x(s))|ds

�1
2
2 +‖CD−1

a+ x(s)‖
(
e1‖x‖+ e2‖CD−1

a+ x(s)‖ + e3‖x‖r


+ e4‖CD−1
a+ x(s)‖l

 + e5

)
�1

2
2 +

e1(b−a)−1

()
‖CD−1

a+ x‖2
 + e2‖CD−1

a+ x‖2


+
e3(b−a)r(−1)

(())r ‖CD−1
a+ ‖1+r

 + e4‖CD−1
a+ x‖1+l

 + e5‖CD−1
a+ x‖.

Thus,

‖CD−1
a+ x‖2

 �
e3(b−a)r(−1)

(())r ‖CD−1
a+ ‖1+r

 + e4‖CD−1
a+ x‖1+l

 + e5‖CD−1
a+ x‖+ 1

2
2

1
2 − e1(b−a)−1

() − e2

.

Since, r, l ∈ [0,1) from the previous inequality, there exist 1 > 0 such that

‖CD−1
a+ x‖ � 1

and (16) shows that

‖x‖ � 1
()

1.

Therefore 1 is bounded. �

LEMMA 8. If the assumptions (A1), (A2) and (A4) are satisfied, then the set 2 ,
defined by

2 = {x : x ∈ Ker(M), Nx ∈ Im(M)},
is bounded.

Proof. Let x ∈2 , x(t) = c(t−a) , c ∈ R , we have Im(M) = Ker(Q) , and there-
fore QNx(c(t−a)) = 0. By (A4), we have |c| � B , hence 2 is a bounded set. �

For our next result, we define an isomorphism J : Ker(M) → Im(Q) by

J(c(t−a)) = c.
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LEMMA 9. If assumptions (A1), (A2), (A4) hold, then the set 3 , defined by

3 = {x : x ∈ Ker(M), Jx+w(1− )QNx = 0,  ∈ [0,1]},

with

w =

{
−1, if cQN(c(t −a)) < 0,

1, if cQN(c(t −a)) > 0,

is bounded.

Proof. Let x ∈ 3 , we have x(t) = c(t −a), c ∈ R and c+w(1− )QN(c(t −
a)) = 0. If  = 1, then then c = 0. If  = 0, by condition (A5), we have |c| � B .
Finally, suppose that  ∈ (0,1) . We claim that |c|� B . If |c|� B , then c2 =−w(1−
 )cQN(c(t −a)) < 0, which contradicts c2 > 0. Thus, our claim remains valid, that
is, |c| � B . Thus, 3 is bounded. �

We now prove the main result of this article.

THEOREM 2. Suppose that the conditions (A1)–(A4) hold. Then problem (1) has
at least one solution in X .

Proof. Let  any bounded open subset of X such that 1 ∪2∪3 ⊂ . From
Lemma 6, N is M -compact. From Lemmas 7, 8 and 9, it is clear that the assumptions
1) and 2) of Theorem 1 are fulfilled. In order to finalize the proof of the theorem, it is
necessary to confirm condition 3) as stated in Theorem 1. We define

Z(x, ) = x+w(1− )QNx;

then it follows from Lemma 9 that Z(x, ) �= 0, x∈Ker(M)∩ . Thus, by Homotopy
property of degree

deg(QN|Ker(M),∩Ker(M),0) = deg(Z(·,0),∩Ker(M),0)

= deg(Z(·,1),∩Ker(M),0)
= deg(Z(wJ,∩Ker(M),0) �= 0.

Hence, by Theorem 1, the problem (1)–(2) has at least one solution in dom(M) ∩
 . �

4. Examples

EXAMPLE 1. consider the problem⎧⎨
⎩−(CD

7
2
0+x)(t) = f (t,x(t),CD

5
2
0+x(t))

x(0) = x′(0) = x′′′(0) = 0, x′(1) =
∫ 1
0 x′(t)dH(t)

(17)
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where H(t) = 2t

∫ 1

0
td(2t) = 1 and

∫ 1

0
t

7
2−1d(2t) =

4
7
�= 1

holds. Thus, (A1) is satisfied. Take e1 = 1
7 , e2 = 1

5 , e3 = e4 = r = l = 0, e5 = 3 and

f (t,x,y) =
1

7(2+ cosy)
+

x
5(2+ sinx)

+
5
4

sin(xy)+
7
4

cos(t)− x4y5 − y7.

Thus, we have
yg(t,x,y) = −x4y6 − y8 � 0,

|h(t,x,y)| � 1
7

+
|x|
5

+3,

‖e2‖+
‖e1‖(b−a)−1

()
=

1
5

+
1

7×3.32335
= 0.24296 <

1
2
.

Thus, (A2) is satisfied. Moreover, we can choose  = 20, we have f (t,x,y) �= 0 if
|y| > 20. (A3) is also satisfied. Finally, take B = 10, when |c| > 10,

c f (t,ct,0) =c

(
1

7(2+1)
+

ct
5(2+ sin(ct))

+
5
4

sin0+
7
4

cost

)

=c

(
1
21

+
ct

10+4sin(ct)
+

7
4

cost

)
�= 0,

then we obtain cQN(c(t −a)) �= 0, that is, condition (A4) is satisfied. It follows from
Theorem 2 that the problem (17) has at least one solution.

5. Discussion

In this paper, employing coincidence degree theory, we have shown that solutions
exist for the higher-order fractional differential equation with general boundary condi-
tions, subject to the specified assumptions. Our work generalizes previous studies by
allowing a second boundary point of order k � 1. This novel extension enables the
analysis of more complex systems that were not covered by earlier research. A signifi-
cant aspect of our study is the inclusion of nonlinear growth patterns in the function f .
To elucidate the theoretical concepts discussed, we provided an illustrative example.

Several potential avenues for future research based on this paper include apply-
ing this technique in conjunction with matrix spectral theory [29], and the method of
matrix diagonalization [23]. Additionally, exploring more general fractional deriva-
tives, such as Hilfer or -Hilfer derivatives, could yield more comprehensive results.
It would be intriguing to investigate how the results manifest with these derivatives, as
they generalize Caputo fractional derivatives by introducing extra parameters. More-
over, investigating the stability and uniqueness of solutions in this context remains an
important area for exploration. It is noteworthy that the boundary condition employed
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in this study is introduced for the first time in the literature. Consequently, the newly
constructed Green’s function can be utilized in other methodologies, including different
fixed-point theorems, Vallée-Poussin theorem and various numerical methods. Explor-
ing how these techniques yield existence results and the assumptions required on f
would be of considerable interest. While this paper focuses on theoretical existence re-
sults, implementing numerical methods to approximate the solutions of such fractional
differential equations could be a valuable complement to this work.

Acknowledgement. The authors would like to thank the anonymous referee for
valuable comments and suggestions, leading to a better presentation of our results.
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