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(Communicated by M. Feng)

Abstract. The gradient estimates in the weighted Lorentz spaces for solutions to a class of quasi-
linear elliptic equations with a measure on the right-hand side are established using the idea of
level-set inequality. Regularity results obtained in this paper are concerned with the quasilinear
elliptic equations driven by p -Laplacian, under certain smoothness assumptions on the bound-
ary of domain  and the data of the problem. Especially, this paper studies the “very singular”
case for the growth exponent p , i.e. when 1 < p � 3n−2

2n−1 . As far as we know, the presence of
measure source term  (being a bounded Radon measure) makes the study of regularity theory
more challenging due to the notion of solutions and their reasonable existence. The contribution
of this paper is the extension of previous results in weighted Lebesgue spaces in [9, 15].

1. Introduction

This paper deals with the gradient estimates for solutions to a class of quasilinear
elliptic equations with measure data{

−div(A(x,u)) =  in ,

u = 0 on 
(1.1)

in the setting of weighted Lorentz spaces. The operator on the left-hand side is driven
by p -Laplacian and the given data  on the right-hand side is a signed Radon measure
defined on  with finite total mass. It also allows us to define  on the whole space Rn

by letting (Rn \) = 0, n � 2. More precisely, the coefficient A is a Carathéodory
vector field satisfying two following conditions: there is a constant > 0 such that

|A(x, )|+ |〈A(x, ), 〉| � | |p−1,

〈A(x,1)−A(x,2),1− 2〉 � −1(|1|2 + |2|2)
p−2
2 |1 − 2|2

hold for almost every x ∈ and every pair (1,2) ∈ Rn ×Rn \ {(0,0)} .
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In the past years, special attention has been devoted to the study of elliptic equa-
tions/systems with measure data  . Further, to the question of explaining the existence
of the very weak solutions, there has been a substantial amount of work in the specific
case when p is singular. The existence and regularity of solutions to measure data prob-
lems have been investigated by many authors in the past years. Here, we may mention
a few for instance by Boccardo et al. [1, 2, 3] for the existence, and by Mingione [7],
Hung-Phuc [8, 9], Tran-Nguyen [10, 11, 12, 14] for regularity results, together with a
huge literature concerning the problems with measure data by different authors.

To provide detailed results regarding the regularity results of equation (1.1), let us
briefly summarize these works as follows. For the case when 3n−2

2n−1 < p � 2− 1
n , p is

said “very singular”, under various assumptions on the data and domain  , Nguyen-
Phuc in [8, 16], Tran-Nguyen in [10, 11, 12] proved the global gradient estimates for
(renormalized) solutions to (1.1) in weighted (or non-weighted) Lebesgue and Lorentz
also Lorentz-Morrey spaces. With two different points of view for the data of prob-
lem (1.1), [9] and [14] have established the global regularity estimates for (renormal-
ized) solutions in the case when p is very singular, 1 < p � 3n−2

2n−1 .

Inspired by these above results, in this paper, we are devoted to extending results
to the weighted Lorentz spaces, for this very singular growth exponent. Our work is
inherited from what has been done with the good- or level-set inequality in previous
studies [9, 15]. So, here we show how to extend these above results.

2. Preliminaries

2.1. Notation

In order to make the paper more clearly, from now on we always consider ⊂ Rn ,
n � 2 an open bounded region. As usual, we write a ball with center x0 ∈ Rn and
radius  > 0 as B(x0) . Throughout the estimates in proofs, we shall denote by C
the symbol of a general positive constant. The actual value of C is not important, it
may change and we continue to denote it by C in the chain of estimates without loss
of generality. Parentheses are used to clarify the dependence of the constant C on the
certain parameters. If necessary, we also use specific constants such as C1,C2 , etc.

Moreover, for any measurable subset D ⊂ Rn , let h ∈ L1
loc(R

n) be a measurable
mapping, we shall denote the average integral of h on D by

 
D

h(x)dx =
1

L n(D)

ˆ

D

h(x)dx,

where L n(D) or |D| is the notation of Lebesgue measure of a measurable set D in
Rn .
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2.2. Assumption on domain: p-capacity thickness complement

As aforementioned in previous sections, there have been many suitable assump-
tions on  considered to obtain the global estimates. In the limit of our work, we
consider a weak assumption on  : the domain whose complement satisfies the p -
capacity.

We say that a domain  ⊂ Rn is uniformly p -capacity thick complement if the
complement Rn \ satisfies the p -capacity uniform thickness condition. To be more
precise, there exist two constants c0,r0 > 0 such that

capp((R
n \)∩B( ),B2( )) � c0capp(B( ),B2( )) (2.1)

for every  ∈ Rn \ and 0 <  � r0 . Here, the notation capp(U ,) stands for the
p -capacity of the compact set U ⊆ that is defined by

capp(U ,) = inf

{ˆ

| |pdx :  ∈C

0 (), � 1 on U

}
. (2.2)

We refer the reader to [5, Chapter 2] and [13, 10] for further details of the definition
and properties of variational capacity, also the domain satisfying this type of condition.

It is worth noticing that this assumption is very mild and essential for higher inte-
grability results up to the boundary. To better understand, domains which their comple-
ments satisfies p -capacity uniform thickness contain domains with Lipschitz continu-
ous boundaries or satisfy a uniform exterior corkscrew condition.

2.3. Assumption on measure 

In this paper, we define Mb() as the space of all Radon measures on  with
bounded total variation. With respect to the p -capacity, for any measure  ∈ Mb() ,
we denote + and − the positive and negative part of  .

It was known from [6] that any  ∈ Mb() can be decomposed uniquely in the
form  = 0 + s where 0 ∈ M0() and s ∈ Ms() . Furthermore, any 0 ∈
M0() is able to write 0 = g− div(F) for g ∈ L1() and F ∈ L

p
p−1 (;Rn) . For

the focusing on our proofs in this paper, we will not discuss much about the Radon
measure. Although, due to the importance of measure itself, the reader is referred to
the [7, 9, 10, 3, 17] for additional details related to the measure data and their properties.

In what follows, when we mention the problem(1.1) with measure data  , the case
p is very singular

(
1 < p � 3n−2

2n−1

)
and the domain  ⊂ Rn satisfies the p -capacity

thick complement assumption on  , we shall shortly write assumption (H) .

2.4. Renormalized solution

The solutions to measure data problem (1.1) considered in this paper is understood
in the sense of “renormalized solutions”. Note that when estimate the problem with
measure data and p is very sinular

(
1 < p � 2− 1

n

)
, the distributional solutions do not

belong to W 1,1
loc () . This is the important point motivating to give a sense of derivative

u generalizing the usual concept of weak derivative in W 1,1
loc () .
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First, for every l > 0, let us define the so-called two-sided truncation operator
Tl : R → R as follows. For any t ∈ R ,

Tl(t) = max{−l,min{l,t}} ,

and this value belongs to W 1,p
0 () . In the distributional sense, for a finite measure

l ∈ , it satisfies that

−div(A(x,Tl(u))) = l .

We remark here that from [1, Lemma 2.1], for a measurable function f defined
in  satisfying Tl( f ) ∈ W 1,p

loc () , for any l > 0, there exists a measurable function
V : → Rn such that Tl( f ) = {| f |�l}V almost everywhere in  . The function V is
called distributional gradient of f , and when no confusion arises, we shall still write
V as u throughout this paper.

We reproduce the definition of renormalized solution to (1.1) here and we suggest
the readers have a look in [1, 3] for a detailed explanation.

DEFINITION 1. Let a measure  ∈Mb() be decomposed as  = 0 +s where
0 ∈M0() and s ∈Ms() . Then, a measurable function u is called a renormalized
solution of (1.1) if Tl(u) ∈W 1,p

0 () for any l > 0, |u|p−1 ∈ Lr() for any 0 < r <
n

n−1 . Moreover, for any l > 0, there exist two non-negative Radon measures +
l ,−

l ∈
M0() concentrated on the sets u = l and u = −l , respectively such that +

l → +
s ,

−
l → −

s in the narrow topology of measures and thatˆ
{|u|<l}

〈A(x,u),〉dx =
ˆ
{|u|<l}

d0 +
ˆ

d+

l −
ˆ

d−

l ,

for every  ∈W 1,p
0 ()∩L() .

2.5. Maximal operators

Let 0 �  �  . The fractional maximal function M of a locally integrable
function f : Rn → R is delineated by

M f (x) = sup
>0


 

B (x)
| f (y)|dy, x ∈ Rn . (2.3)

REMARK 1. When  = 0, it coincides with the Hardy-Littlewood maximal func-
tion, M0 f = M f , given by

M f (x) = sup
>0

 
B (x)

| f (y)|dy, x ∈ Rn (2.4)

for a locally integrable function f in Rn . Moreover, for a prescribedmeasure  defined
in Rn , the fractional maximal function of  , denoted by M1() , is defined as following

M1()(x) := sup
>0

| |(B(x))
n−1 , ∀x ∈ Rn.
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LEMMA 1. (Boundedness of maximal operator M) The operator M is bounded
from Ls(Rn) to Ls, for s � 1 and ∈ [0, n

s

)
. This means, ther is a positive constant

C = C(n,s) such that:

L n({x ∈ Rn : M( f )(x) > }) � C
1
 s

ˆ
Rn

| f (y)|sdy (2.5)

for all h ∈ Ls(Rn) and  > 0 .

LEMMA 2. There exists a posituve constant C such that

[
q
ˆ 

0
 s(|{y ∈ : M(h)(y) > }|) s

q
d


] 1
s

� C

[
q
ˆ 

0
 s(|{y ∈ : h(y) > }|) s

q
d


] 1
s

, (2.6)

where q > 1 , 0 < s �  and for all h ∈ Lq,s(Rn) .

2.6. Muckenhoupt weights

We call that a weight  ∈ L1
loc(R

n) belongs to Muckenhoupt class Aq for 1 � q �
 if it satisfies

• For 1 < q <  :

[ ]Aq = sup
B⊂Rn

( 
B
(y)dy

)( 
B
(y)

−1
q−1 dy

)q−1

• For q = 1:

[ ]A1 = sup
B⊂Rn

( 
B
(y)dy

)
sup
y∈B

1
(y)

< ,

• For q =  , there are two positive constants C and  such that

(E) � C

(
L n(E)
L n(B)

)
(B)

for all balls B in Rn and all measurable subsets E of B . In this case, (C,)
stands for [ ]A and we shall simply write [ ] = (C,) .
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2.7. Weighted Lorentz spaces

The weighted Lorentz space Lq,s
 () is defined for 0 < q < , 0 < s < and the

Muckenhoupt weight  ∈ A by the side of all Lebesgue measure function h on 
such that ‖h‖Lq,s

 () < + , where

‖h‖Lq,s
 () =

⎧⎪⎨
⎪⎩
[
q
ˆ 

0
 s ({x ∈ : |h(x)| > }) s

q
d


] 1
s

, if s < ,

sup>0 ({x ∈ : |h(x)| > }) 1
q , if s = .

(2.7)

If  = 1, the weighted Lorentz space Lq,s
 () becomes the un-weighted (classical)

Lorentz space Lq,s() . Furthermore, in the case of weighted Lorentz spaces, when
q = s , Lq,s

 () coincides the weighted Lebesgue space Lq
() which is defined by the

set of all measure functions h such that

‖h‖Lq
 () :=

(ˆ

|h(x)|q(x)dx

) 1
q

< +.

REMARK 2. We can aplly lemma 2.6 for weighted Lorentz space:[
q
ˆ 

0
 s(({y ∈ : M(h)(y) > })) s

q
d


] 1
s

� C

[
q
ˆ 

0
 s(({y ∈ : h(y) > })) s

q
d


] 1
s

.

3. Main regularity results

We have two main results for global regularity of renormalized solutions u of (1.1).
In order to prove two main results, it is necessary to apply the good- inequality (or
level-set inequality) that has been shown in [15, Lemma 4.1]. However, due to the
presence of Muckenhoupt weight, we shall state and prove a weighted version of this
result.

For every  ∈ and 0 <  � r0/10, let v be a solution to the equation{
−div

(|v|p−2v
)

= 0 in 2( ),
v = u on 2( )

(3.1)

where ( ) = B( )∩ .
Here, let us recall the “reverse Hölder inequality” that related to the homogeneous

problem (3.1). We could refer to previous papers [4, 15] and especially to references
therein for the proof. It is well-known that there exists  > p such that( 

 ( )
|v|dx

) 1


� C

( 
2 ( )

|v|t dx

) 1
t

(3.2)

for every t ∈ (0, p] .
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THEOREM 1. Let  ∈ A with [ ] = (c0,) . Assume that u is a renormalized
solution to equation (1.1) satisfying |u| ∈ L2−p() under assumption (H) . Then for

any 0 <  < n(p−1)
n−1 , there exists a constant 0 ∈ (0,1) such that the following inequality


({

x ∈ :
[
M(|u|)] 1

 > −
1
 

})

� C
({

x ∈ :
[
M(|u|)(x)] 1

 > 
})

+C
({

x ∈ :
[
M1()(x)

] 1
p−1 > 

1
 − 1

 
})

+C
({

x ∈ :
[
M(|u|2−p)(x)

] 1
2−p > −

1
 
})

(3.3)

holds for any  > 0 and  ∈ (0,0) .

Proof. For simplicity of notation, for each  > 0 and  > 0, let us first introduce
several level sets as follows

P(, ) :=
{

x ∈ :
[
M(|u| )(x)] 1

 > 
}

,

Q( ) :=
{

x ∈ :
[
M1()(x)

] 1
p−1 > 

}
,

Pc(, ) = \P(, ), Qc( ) = \Q( ).

The goal inequality (3.3) can be rewritten as


(
P(,−a )

)
� C

[
 (P(, ))+

(
Q(b )

)
+

(
P(2− p,−1 )

)]
. (3.4)

Let us recall the following level set inequality which was proved in [15]. The authors
proved that there exists 0 > 0 such that for every  ∈ (0,0) and 0 <  � n(p−1)

n−1 , we
have

L n
({

x ∈ :
[
M(|u|)(x)] 1

 > −
1
  ;

[
M1()(x)

] 1
p−1 � 

1
 − 1

  ;[
M(|u|2−p)(x)

] 1
2−p � −1

})
� CL n

({
x ∈ :

[
M(|u| )(x)] 1

 > 
})

.

With our notation, this inequality is equivalent to

L n
(
P(,−

1
  )∩Pc(2− p,−1 )∩Qc(

1
 − 1

  )
)

� CL n (P(, )) . (3.5)
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One remarks that if D1 ⊂ D2 and  ∈ A with [ ] = (c0,) , we have

(D1) � c0

[
L n(D1)
L n(D2)

]
(D2).

Applying this inequality with the following fact

P(,−
1
  ) ⊂ P(, ),

one obtains from (3.5) that


(

P(,−
1
  )∩Pc(2− p,−1 )∩Qc(

1
 − 1

  )
)

� C (P(, )) . (3.6)

Let us take 0 = 0 and  =  in (3.6). That means for every  ∈ (0,0) , there holds


(

P(,−
1
  )∩Pc(2− p,−

1
  )∩Qc(

1
 − 1

  )
)

� C (P(, )) . (3.7)

We now apply the following inequality

(D1∪D2) � C
[
(D1)+(D2)

]
,

to get that


(
P(,−

1
  )

)
� C

(
P(,−

1
  )∩Pc(2− p,−

1
  )∩Qc(

1
 − 1

  )
)

+C
(

P(2− p,−
1
  )∩Q(

1
 − 1

  )
)

� C
(

P(,−
1
  )∩Pc(2− p,−

1
  )∩Qc(

1
 − 1

  )
)

+C
(

P(2− p,−
1
  )

)
+C

(
Q(

1
 − 1

  )
)

. (3.8)

We may conclude (3.4) by combining two estimates in (3.7) and (3.8). The proof is
complete. �

3.1. In weighted Lorentz spaces

We are in the position of the first global regularity result of solutions in weighted
Lorentz spaces. It will be stated in the following theorem.

THEOREM 2. Let  ∈ A with [ ] = (c0,) . Assume that u is a renormalized
solution to equation (1.1) satisfying |u| ∈ L2−p() under assumption (H) . Then
for any q ∈ (2− p,) and 0 < s �  , the renormalized solution u of equation (1.1)
satisfies

‖u‖Lq,s
 () � C‖M1()

1
p−1 ‖Lq,s

 (). (3.9)
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Proof. Following Theorem 1, there exists  > p ,  > 0, C > 0,  ∈ (0,0) , where
0 ∈ (0,1) such that


({

x ∈ :
[
M(|u|)] 1

 > −
1
 

})

� C
({

x ∈ :
[
M(|u| )(x)] 1

 > 
})

+C
({

x ∈ :
[
M1()(x)

] 1
p−1 > 

1
 − 1

 
})

+C
({

x ∈ :
[
M(|u|2−p)(x)

] 1
2−p > −

1
 
})

.

We replace a = 1
 , b = 1

 − 1
 , then the inequality is rewritten:


({

x ∈ :
[
M(|u|)] 1

 > −a
})

� C
({

x ∈ :
[
M(|u| )(x)] 1

 > 
})

+C
({

x ∈ :
[
M1()(x)

] 1
p−1 > b

})

+C
({

x ∈ :
[
M(|u|2−p)(x)

] 1
2−p > −

1
 
})

.

Next, we firstly investigate global gradient estimates of solution u :

‖(M(|u| )) 1
 ‖s

Lq,s


= q−as
ˆ 

0
 s

(
{(M(|u| )) 1

 > −a}
) s

q d


� C
s
q−as

ˆ 

0
 s

(
{x ∈ : [M(|u| )(x)] 1

 > }
) s

q d


+C−as
ˆ 

0
 s

(
x ∈ : [M1()(x)]

1
p−1 > b

) s
q d


+C−as
ˆ 

0
 s

(
{x ∈ :

[
M(|u|2−p)(x)

] 1
2−p > −

1
 }

) s
q d


� C
s
q−as‖(M(|u| )) 1

 ‖s
Lq,s
 () +C−as−bs‖M1()

1
p−1 ‖s

Lq,s
 ()

+C−as+ 1
 ‖(M(|u|)2−p)

1
2−p ‖s

Lq,s
 ().

We have an estiamte ‖(M(|u|)2−p)
1

2−p ‖s
Lq,s
 ()

= ‖(M(|u|)2−p)‖
s

2−p

L
q

2−p , s
2−p

 ()
.
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It implies to:

‖(M(|u|)) 1
 ‖s

Lq,s
 ()

� C
s
q−as‖(M(|u|)) 1

 ‖s
Lq,s
 ()

+C−as−bs‖M1()
1

p−1 ‖s
Lq,s
 ()

+C−as+ 1
 ‖(M(|u|)2−p)‖

s
2−p

L
q

2−p , s
2−p

 ()
.

Using the Lemma 2.6, it leads to:

‖(M(|u|)) 1
 ‖s

Lq,s
 () � C

s
q−as‖(M(|u|)) 1

 ‖s
Lq,s
 () +C−as−bs‖M1()

1
p−1 ‖s

Lq,s
 ()

+C−as+ 1
 ‖(|u|2−p)‖

s
2−p

L
q

2−p , s
2−p

 ()
.

This gives:

‖(M(|u|)) 1
 ‖s

Lq,s
 () � C

s
q−as‖(M(|u|)) 1

 ‖s
Lq,s
 () +C−as−bs‖M1()

1
p−1 ‖s

Lq,s
 ()

+C−as+ 1
 ‖(|u|)‖s

Lq,s
 ().

We choose  ∈ (0,0) such that:

⎧⎨
⎩

C
s
q−as � 1

2

C−as+ 1
 � 1

4

, re-examine into our estimate, we

conclude that:

‖(M(|u| )) 1
 ‖s

Lq,s
 ()

� 1
2‖(M(|u| )) 1

 ‖s
Lq,s
 ()

+C‖M1()
1

p−1 ‖s
Lq,s
 ()

and obtain:
‖(|u|)‖Lq,s

 () � C‖M1()
1

p−1 ‖s
Lq,s
 ().

By this final estimate, Theorem 2 is complete. �

4. Conclusion

This paper gives global regularity of renormalized solution for the very singular
quasilinear elliptic equations in weighted Lorentz spaces with measure data. The re-
sults were based on the -capacity thickness complement, renormalized solution, the
Carathéodory vector field. This study also was inspired and extended results from pre-
vious papers which we read before. The results also extend the range of the study for
space of solutions of the equation{−div(x,u) =  in ,

u = 0 on .
(4.1)

The authors would like to thank Minh-Phuong Tran for the helpful inspiration, the
interesting discussions, and her constant encouragement in this research. Also, we
would like to thank the Editors and Referees for investigating our manuscript, critical
remarks, as well as for their helpful suggestions.

The next studies can be viewed as extending the problems as a wider spaces of so-
lutions, the solutions are equal to 0 on the boundary, or changing conditions in domain
 .
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[5] J. HEINONEN, T. KILPELÄINEN AND O. MARTIO, Nonlinear potential theory of degenerate elliptic
equations, Clarendon Press, 1993.

[6] M. FUKUSHIMA, K. SATO, AND S. TANIGUCHI, On the closable part of pre-Dirichlet forms and the
fine support of the underlying measures, Osaka J. Math. 28, (1991), 517–535.

[7] G. MINGIONE, Gradient estimates below the duality exponent, Math. Ann. 346, (2010), 571–627.
[8] Q.-H. NGUYEN AND N. C. PHUC, Good- and Muckenhoupt-Wheeden type bounds in quasilinear

measure datum problems with applications, Math. Ann. 374, (2019), 67–98.
[9] Q.-H.NGUYEN AND N.C.PHUC, Existence and regularity estimates for quasilinear equations with

measure data: the case 1 < p � 3n−2
2n−1 , Analysis & PDE 15 (8), (2020), 1879–1895.

[10] M.-P. TRAN, Good- type bounds of quasilinear elliptic equations for the singular case, Nonlinear
Anal. 178 (2019), 266–281.

[11] M.-P. TRAN, T.-N. NGUYEN, Generalized good- techniques and applications to weighted Lorentz
regularity for quasilinear elliptic equations, C. R. Math. Acad. Sci. Paris 357 (8) (2019), 664–670.

[12] M.-P. TRAN, T.-N. NGUYEN, Lorentz-Morrey global bounds for singular quasilinear elliptic equa-
tions with measure data, Commun. Contemp. Math. 22 (5) (2020), 1950033.

[13] THANH-NHAN NGUYEN, MINH-PHUONG TRAN, Lorentz improving estimates for the p-Laplace
equations with mixed data, Nonlinear Analysis 200, (2020), 111960.

[14] M.-P. TRAN, T.-N. NGUYEN, Global gradient estimates for very singular quasilinear elliptic equa-
tions with non-divergence data, Nonlinear Anal. 214, (2022), 112613.

[15] MINH-PHUONG TRAN, THANH-NHAN NGUYEN AND PHUOC-NGUYEN HUYNH, Calderón-
Zygmund-type estimates for singular quasilinear elliptic obstacle problems with measure data, Studia
Mathematica 271, (2023), 287–319.

[16] Q.-H. NGUYEN, N.-C. PHUC, Good- and Muckenhoupt-Wheeden type bounds in quasilinear mea-
sure datum problems, with applications, Math. Ann. 374, (2019), 67–98.

[17] G. DAL MASO, F. MURAT, L. ORSINA, A. PRIGNET, Renormalized solutions of elliptic equations
with general measure data, Ann. Scuola Norm. Super. Pisa (IV) 28, (1999), 741–808

(Received May 25, 2024) Ly Truong Giang
Faculty of Mathematics and Statistics

Ton Duc Thang university
Distrcit 7, Ho Chi Minh City, Viet Nam

e-mail: c2000188@student.tdtu.edu.vn

Nguyen Tuong Vy
Faculty of Mathematics and Statistics

Ton Duc Thang university
Distrcit 7, Ho Chi Minh City, Viet Nam

e-mail: 9.5nguyentuongvy@gmail.com

Vu Trung Nam
Faculty of Mathematics and Statistics

Ton Duc Thang university
Distrcit 7, Ho Chi Minh City, Viet Nam

e-mail: vunam3782@gmail.com

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


