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ON AN INVERSE BOUNDARY-VALUE PROBLEM
FOR THE EQUATION OF MOTION OF A
HOMOGENEOUS ELASTIC BEAM WITH PINNED ENDS

ELVIN I. AZIZBAYOV ", AFAG I. HASANOVA AND YASHAR T. MEHRALIYEV

(Communicated by I. Vel¢i¢)

Abstract. This paper is devoted to the study of the inverse boundary-value problem for the lin-
earized equation of motion of a homogeneous beam with pinned ends. The primary goal of the
work is to study the existence and uniqueness of the classical solution of the considered inverse
boundary-value problem. To investigate the solvability of the considered problem, we carried
out a transformation from the original problem to some auxiliary equivalent problem with trivial
boundary conditions. Furthermore, we prove the existence and uniqueness theorem for the auxil-
iary problem by the contraction mappings principle. Based on the equivalency of these problems
is shown the existence and uniqueness of the classical solution of the original problem.

1. Introduction

It is known that mathematical modeling of many real processes occurring during
experiments in the field of some natural sciences leads to the study of inverse problems
for partial differential equations. In the theory of equations of mathematical physics, in-
verse problems are understood as problems of simultaneous determination of unknown
coefficients and right-hand side of partial differential equations from some additional
measurements.

Inverse problems arise in various fields of human activity, such as seismology,
mineral exploration, biology, medical visualization, computed tomography, Earth re-
mote sensing, spectral analysis, nondestructive control, etc. From historical background
can be seen, that the theoretical foundations of the study of inverse problems were es-
tablished and developed in the works by Tikhonov [29], Lavrentiev [15], Ivanov [8],
and their followers (see for example, [7, 14, 16, 23, 24, 25, 26], and the references
therein).

Actually, inverse boundary-value problems for second-order partial differential
equations extensively studied with different methods and different boundary conditions,
notably in [5, 10, 13, 20, 21], etc. But it should be noted that inverse problems for pseu-
dohyperbolic equations, namely for the equation of motion of a homogeneous beam,
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are developed much less than for second-order equations. This can be explained by the
fact that the corresponding direct problems are less studied. Let us now browse the con-
tent of some works devoted to direct and inverse coefficient problems for the equation
of motion of a homogeneous beam: In the article published by Sabitov [27] investi-
gated the Cauchy problem for the equation of the beam’s motion with clamped ends.
The authors Goy, Negrych and Savka [6] established conditions for the solvability of
the boundary-value problem for the equation of motion of a homogeneous elastic beam
with nonlocal two-point conditions and local boundary conditions. The works [2, 3] are
devoted to the investigation of direct boundary-value problems for the one-dimensional
equation of motion of a homogeneous elastic beam. But in the papers [1, 18, 19], one-
dimensional nonlocal inverse boundary-value problems are studied for the equation of
motion of a homogeneous elastic beam with different boundary and different overde-
termination conditions. The authors proved the theorems for existence and uniqueness
of classical solution of the one-dimensional inverse coefficient problem. A distinctive
feature of this article is the consideration of a two-dimensional inverse boundary-value
problem for a linearized equation of motion of a homogeneous beam with pinned ends.

Moreover, the vibrations and wave movements of an elastic beam on an elastic
base investigated by Mitropolsky and Moseenkov [22], Thompson [28], Bardin and
Furta [4], Vlasov and Leont’ev [30], Kostin [12] et al. The simplest nonlinear model of
the motion of a homogeneous beam described by the equation

Pw  d*w  Pw

W+W+k8 5 +OCW+W —O

where w is beam deflection. Note that a similar equation also arises in the theory of
crystals, in which w is parameter of order [9].

2. Mathematical formulation of the problem

Let T > 0 be a fixed time moment and let Dr = Q,, x {0 <7 < T} denotes a
closed bounded region in space, where Oy, = {(x,y): 0 <x <1, 0 <y<1}. We

further suppose that f(x7y7t)a g(x7y7t)a (P(X,y), W('xay)7 Pi(t)’ and hi(t) (l = 1’2) are
given functions of x,y € [0,1] and 7 € [0,T]. Consider the two-dimensional inverse
boundary-value problem of identifying an unknown triple of functions u(x,y,?),a(t),
and b(r) for the equation

”tt(x7y7f) + Azu(x7y7t) + ﬁA“(X,YJ)

= a(t)u(x,y,t) +b(t>g(xayat> +f(xayat) ()C,y,t) € DTa (1)
with the nonlocal initial conditions

xy7 /Pl Xy7 dl+(p(x7y)7
2)
0 (x.3,0) = / pa0u(x.y.)dt +w(xy), 0<xy < 1
0
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the boundary conditions

”x(O,}’J) = u(layat) = MXXX(O7y7t) = um(lvyat> = 07
0

0 0<t<T, @3
, 0<x<1,0<e<T, (4

u(x,0,1) = uy(x,1,1) = ttyy(x,0,1) = uyyy(x,1,1) =

and the overdetermination conditions

u(0,1,1) =M (1), 01 <T, (%)
and
11
[ [utyniady=nste), 0 <<, (©)
00
where 8 > 0 is known fixed number and A = a < o+ ;yz

DEFINITION 1. The triple {u(x,y,?),a(t),b(t)} defined in Dr is said to be a
classical solution of the problem (1)—(6), if the functions u(x,y,#) € C>>*(Dr) and
a(r),b(r) € C[0,T] satisfies the relations (1)—(6) in classical (usual) sense, where

éz(D_T> = {u(x’y’t) : u(x’y’t> S Cz(D_T)’uxxxx(x7y7 ) Uyyyy (X Vs ) S C(D_T)}

In order to investigate the problem (1)—(6), first we consider the following auxil-
iary problem

y”(f) =a(t)y(r), 0<1

/Pl n)de, y'(

where p;(t),pa(t),a(t) € C[0,T] are given functlons, and y = y(¢) is desired function.
Moreover, by the solution of the problem (7), (8), we mean a function y(¢) belonging
to C2[0,T] and satisfying the conditions (7), (8) in the usual sense.

The following lemma is valid. But we omit the proof of the following lemma to
avoid a lengthy digression (see Lemma 1 in [17]).

T, )

®)

\'ﬂ A

LEMMA 1. Assume that a(t), p1(t), p2(t) € C[0,T], ||a(t)||cjo ) = const, and the
condition

T
(1Ol + 170+ 5R) 7 <1

hold. Then the problem (7), (8) has a unique trivial solution.

Now along with the inverse boundary-value problem (1)—(6), we consider the fol-
lowing auxiliary inverse boundary-value problem: It is required to determine a triple
{u(x,y,1),a(t),b(t)} of functions u(x,y,t) € C*(Dr), and a(t),b(t) € C[0,T] from re-
lations (1)—(3), and

h/l/(t) +uxxxx(07 lvt) +ZMXXW(07 lvt) +”yyyy(07 l7t> +B(uxx(07 lvt) +uw(07 lvt))

— a(t)hy (1) + b(1)g(0, 1,1) + £(0,1,), 0< 1 < T, &)
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1
—l—/umc Vst /uyyv(x 0,1)dx
0
1 1

—2u,,(1,0,1)+ B /ux(l7y7t)dy—/uy(x707t)dx

0 0

1 1 1 1
— a0 +b(0) [ [gteyndudy+ [ [ feryadsay 0<i<T. (10
00 00

THEOREM 1. Supposethat (x,y), y(x,y) € C(Qy)), f(x,3,1), g(x, ) €C(Dr),
11
(0),4a(0) € COT], 10) = () | esdsdy ~ ha(0g(0. 1) 0, 0 <1 < T,

and the compatibility conditions

T T
0(0.1) = (0) = [ pi(m(1)dr,y(0.1) = 1(0) = [ paO)i(r, (A1)
0 0

1 1 T
/ / 0 (x,y)dxdy = h (0) — / pr(Oha()d,
O1 01 OT (12)
[ [ wisndsay=m0) - [ p20moar,
0 0 0

holds. Then the following assertions are valid:

i) each classical solution {u(x,y,t),a(t),b(t)} of the problem (1)—(6) is a solution
of problem (1)—(4), (9), (10), as well;

ii) each solution {u(x,y,t),a(t),b(t)} of the problem (1)—(4), (9), (10) is a classical
solution of problem (1)—(6), if

T
<T||p2(t)C[O,T] e llco, + 5 ||a( )”C[O,T]) <l (13)

Proof. Let {u(x,y,t),a(t),b(t)} be any classical solution to problem (1)—(6). Tak-
ing into account the condition %,(¢) € C?[0,T] (i = 1,2), and differentiating twice both
sides of (5) and (6) with respect to ¢ gives

u(0,1,8) = R (1), u(0,1,¢) =h(t), 0<t <T, (14)

11 11
[ [wtsynasay =m0, [ [uitxynasdy=wye), 0<e <. (15)
00 00
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Now, from equation (1), we find:
2
dt —aH

Ftyyyy (0,1,1) + B (0,1,2) 4y (0, 1,1))
=a(t)u(0,1,1)+b(t)g(0,1,1) + £(0,1,1), 0 <t < T. (16)

From (16), taking into account (5) and (14), we conclude that the relation (9) is
fulfilled.
Further, integrating Eq. (1) with respect to x and y over the interval [0, 1] gives

1(0,1,7) 4 thexr (0, 1,1) + 2u00,(0, 1,7)

11 1

d2

—2//uxy, dxdy+/ Uee (1,3,1) — 4 (0, ,1) )dy
00

+

2(ury(1,1,2) —uyy(1,0 t) Uy (0,1,1) + 11,,(0,0,2))

1
/uyvy X, 1,1) — ttyyy(x,0,1))dx
0

1
+B/(Mx(LyJ)—Mx(07y7t))dy+ﬁ/(uy(x7l7t)—uy(x707t))dx
0 0

11 11
—alt) [ [utwya)dxdy-+b0) [ [ oty
00 00

1
—|—//f(x,y,t)dxdy, 0<t<T
00

By allowing the last relation and taking into account (3), (4), we obtain:

1

11
d2
d?//u(x,y,t)dxdy+/umx(LyJ)dy—/uyyy(x707t))dx
00 0 0

1

1
_2uxy(1,0,t)-l—ﬁ/ux(l,y,t)dy—ﬁ/uy(x707t)dx
0

0
11 11
//u X, y,1)dxdy+ b(t //g(x,y,t)dxdy
00 00
11
+//fxy, Ydxdy, 0 <t <T. (17)
00

Hence, from (17), taking into account (6) and (15), we arrive at (10).
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Now suppose that the triple {u(x,y,t),a(t),b(¢)} is a solution to the problem (1)—
4), (9), (10). Then from (9) and (16), we get

2

dz( (Oalat) hl(t)):a(t)(u(oal’t)_hl(t))a0<I<T~ (18)

Using (2) and the compatibility condition (11), we have
4(0,1,0)~ 1y (0) - Ome( )(w(0, 1,6) — Iy (1)) ds
= 0.1.0) = [ (00, 1.0~ (1(0) [ 161 (1) )
T
=<p<o,1>—( O fpiomon ):o,
(07170) ( ) g‘p2( )( (0717t)_h1(t))dt
=u,(0,1,0) — fpz(t)u((), L,t)dr — (h’l(o) —Oprz(t)hl(t)dt>
T
=w<o,1>—( (O~ (i) ):o.

19)

Since, by Lemma I, problem (18), (19) has only a trivial solution, so from u(0, 1,7) —
hi(t) =0 (0<r < T), we obtain that the condition (2.5) is satisfied.
Now, from (10) and (17) we find:

/1/1u(x,y,t)dxdy—h2(t)
00

11
=af(t) u(x,y,t)dxdy—hz(t)> ,0<r<T. (20)
/]

By using the initial conditions (2) and the compatibility conditions (12), we may

write
11 11
//uxy, Ydxdy — hy(0 / (//uxy, Ydxdy — hz())d
00 00

11 T L

-/ (u(x,y,O)— / p1<z>u<x,y,r>d>dxdy— ( 120 )
0 0 0 0

:/l/l(p(x7y)dxdy— h2(0) — )

00
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11 11
//u, x,y,0)dxdy — h5(0) / //u x,y,1)dxdy —hy(t) | dt
00 00
11 T T

= [ [ { w0~ [ patoyuteynrdn | asdy— | 10) = [ prloho(e)a
00 0 0

11 T
— [ [weeyasdy— (160~ [ pr(ema(e)ar | =o. @1
00 0

Since, by virtue of Lemma 1, problem (20), (21) has only a trivial solution, then

11
//u x,y,0)dxdy —hy(t) =0, 0<r < T,
00

i.e., the condition (6) is satisfied. [

3. Classical solvability of inverse boundary-value problem

We seek the first component of classical solution of the problem (1)—(4), (9), (10)
in the form

u(x,y,t) Z Z Uje (1) COS Ax sin Yy, (22)
n=1k=1

where - .
Ay = 5(2]{— 1), ta= E(Zn— 1), kn=12,...

i

11
U (1) = 4//u(x7y7t)COS/lk)csiny,,ydxa’y7 kn=1,2,....
00

Applying the method of separation of variables to determine the desired coeffi-
cients uy ,(¢) (k,n=1,2,...) of the function u(x,y,7) from (1), (2), we obtain:

(1) + (A + 9 = BOAZ + 1)t n (1)

= Fa(tiu,a,b), kn=1,2,...; 0<1 <T, (23)

T
Uk n (O) = fpl (t)”k,n (t)dt + Ok,
G (24)
U, (0) = (j)‘p2(t)uk’n(t)dt+ Vin, kn=1,2,...,

where

Fk,n(t;uaaab) :fk,n(t) ( )ukn( )"’b( )gk,n(t)7 kn=1,2,...
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11
Sen(t) :4//f(x,y,t)coskkxsinynydxdy, kn=1,2,...,
00

11
Sin(t) = 4//g(x7y7t)COS/lk)csiny,,ydxa’y7 kn=1,2,...,
00

11
:4// X,y)cos Agxsiny,ydxdy, k,n=1,2,.
00

Yin =4 v (x,y) cos Agxsin y,ydxdy, kn=1,2,....

o _
o—__

Assume that 0 < < Z-. Then solving the problem (23), (24) gives

wen(t) = | Gent / L0 tgn(t)dt | cos Bt

1 .
+ﬁk Wi n +/p2(t)uk7,, (t)dt | sin Byt
N 0

3 /Fkn'cuab)smﬁkn(t—r)dr kn=12,....0<t<T,
k,n

where

W= A 2R - BOZ ).

Substituting the expression of u ,(¢) (k,n=1,2,...) into (22), we find

o

uryn =Y Y

(pk7n+/p1(t)uk7n(t)dt 08 B ut
k=1n=

—_

1
ﬁk,n

Wien + / P2t ug,(t)dt | sin By

B /Fk Tiu,a,b) sin B, (1 — T)dT p cos Akxsinyyy.
k.n

(25)

(26)
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Now from (9) and (10), taking into account (22), respectively, we get:

a(t)h () +b(1)8(0,1,1) = hy(t) = £(0, 1,1)

o 27
+ 3 S (1 QAR 4 B uea(t), 0< 1 < T, @7)
k=1k=1
11 11
a(t)hy(t) +b(t //gxy, Ydxdy = h( //fxy, )dxdy
00 00
ooy B
+ 3 S (=D 2hpn + 7 Juea(1), 0< 1 < T. (28)
k=1n=1 AkYn
Let us suppose that
11
0 [ [etnndudy—iag0,1,0 £0,0<1 <7 @9)
00
Then from (27) and (28), we find:
11
alt) = [h(e)]” {(h 7(0.1.0) [ [ stxynydxdy
00
11
- (h’z’(t) —//g(x,y,t)dxdy) 2(0,1,1)
00
. 11 0,11
) 7t
ZZ "H//gxy, Ydxdy — (—1 )k+1g
k=1n=1 )Lk}/n
00
x(2 kYn+ﬁkn)”kn()}7O<t<T, (30)

11
(1) = [h(z)}l{ (h;’(r) -/ f(x,y,zmxdy)m(t) — (1) = 0. L.)ha(e)
0

0
© W [y )
55(c

(2 k%,+ﬁkn)ukn()},0<t<T. (31)

The following expressions for the second and third components of the solution
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{u(x,3,1),a(t),b(t)} to problem (1)~(4), (9), (10)

1

1
a(t) = [h(1)]” {(h” £(0,1,1) //g(x,y,t)dxdy
00

11
- | [ rennsay | s(0.1.0)
00

11
O 0,1,z
£33 [t [ [ty - (S8R ) @iz 2,
k=1n=1 00 Y
T
X[ (pk,n—I—/pl(t)ukJ,(t)dt o8 Pt
0
1 .
+B l[/k7n+/p2(t)uk,n(t)dt sin By
k.n o
t
Y / Fk,n(r;mmb)smﬁk,n@—r)dr] } (32)
7" O

11
b() = [h(e)] " { (hf;(r) -// f(x,y,mdxdy) @)
0 0

—(m(1) = £(0,1,1) (1)
Sy (1) \
+kZ“§1<(—1)k+1 /llkyn —(~1) +1h2(t))( A7+ BR)

X [ (Pk,n+/p1(t)uk7n(t)dt oS8 Py ut

+Bzin Vin & / pa()uyn(t)dt | sin Byt
ﬁkn /Fk" Tiu,a,b)sin By, (t — 7)dt }’ (33)

respectively, were obtained by substituting (25) into (30) and (31).
Thus the solution of problem (1)—(4), (9), (10) was reduced to the solution of
systems (26), (32), (33) with respect to unknown functions u(x,y,#),a(t), and b(r).
The following lemma plays an important role in studying the uniqueness of the
solution to problem (1)—(4), (9), (10).
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LEMMA 2. If {u(x,y,t),a(t),b(t)} is any solution to problem (1)—(4), (9), (10),
then the functions

11
U (1) = 4//u(x7y7t)COS/lk)csiny,,ydxa’y7 kn=1,2,...
0

0
satisfy the system (25) on an interval [0,T].

Proof. Let {u(x,y,t),a(t),b(t)} be any solution of the problem (1)—(4), (9), (10).
Then multiplying both sides of the Eq. (1) by the special functions 4cosAgxsiny,y
(k,n =1,2,...), integrating with respect to x and y over the interval [0,1], and using
the relations

11
4//u,,(x,y,t)coslkxsinynydxdy
00
2 11
=2 4//u(x,y,t)coslkxsinynydxdy :ugn(t), kkn=12,...,
00
11
4 / / Uy (x,y,1) cOS Agx sin yy, ydxdy
00
11
= —/lk2 4//u(x7y7t)coslkxsiny,,ydxdy = —A,?ukﬁn(t) kn=1,2,...,
00
11
4 / / Uyy (x,,1) cOs Agxsin ¥, ydxdy
00
11
—y? 4//u(x,y,t)cos)thsiny,,ydxdy = —y,fukm(t), kkn=1,2,...,
00

1

1
4//umy(x,y,t)coskkxsinynydxdy
00

11
= kzy,f 4//u(x,y,t)coslkxsin)/,,ydxdy :/lkz)/fukﬂ(t),k,n:l,Z,...,
00

11
4 / / Upxx (X, Y, 1) COS Agxsin Y, ydxdy
00

11
=\ 4//u(x7y7t)coslkxsiny,,ydxdy :/l,fukﬁn(t), kkn=1,2,...,
00
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11
4//uyyyy(x,y,t)coslkxsinynydxdy
00

=y 4//u(x7y7t)coslkxsiny,,ydxdy = y,fuk’,,(t), kn=12,...,

we obtain that the Equation (23) is satisfied.

In like manner, it follows from (2) that condition (24) is also satisfied.

Thus, the system of functions u ,(¢) (k,n=1,2,...) is a solution of problem (23),
(24). Hence it follows directly that the functions uy ,(¢) (k,n=1,2,...) also satisfy the
system (25) on [0,7]. O

11
Obviously, if u,(t) =4 [ [u(x,y,r)cos Akxsiny,ydxdy (k,n=1,2,...) is a solu-
00

tion to system (25), then the triple {u(x,y,7),a(t),b(t)} of functions
u(x,y,1) 2 2 () cos Agxsin .,

a(t), and b(r) is also a solution to system (26), (32), (33).
It follows from the Lemma 2 that

COROLLARY 1. Assume that the system (26), (32), (33) has a unique solution.
Then the problem (1)—(4), (9), (10) has at most one solution, i.e., if the problem (1)—(4),
(9), (10) has a solution, then it is unique.

Let us consider the functional space BS.T that is introduced in the study of [11],
where B;T denotes a set of all functions of the form

u(x,y,t) i i (1) cos Agxsiny,y,

considered in D7. Moreover, the functions uy ,(t) (k,n =1,2,...) contained in last
sum are continuously differentiable on [0,7] and

1
2Y 2
< oo,
clo,T]

= (M VAP

Let E5 denote the space consisting of the topological product B2 7 X C[0,T] x
Cl0,T], Wthh is the norm of the element z = {u,a,b} defined by the formula

Uk.n (l)

53 (u
n=1k=1

where

Izll g = Nl y,0)llgs, + lla®)llco,r + 10 llcpo.7) -
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It is clear that the spaces B; r and E% are Banach spaces.
Let us now consider the operator

D (u,a,b) = {®(u,a,b), D, (u,a,b),®s(u,a,b)},

in the space E3, where
@y (u,a,b) = ii(x,y,t) = 2 2 (1) cos Agxsiny,y,
@y (u,a,b) = a(r), s (u,a,b) = b(r),

and the functions i ,(t) (k=1,2,...), a(t), and b(t) are equal to the right-hand sides
of (23), (30), and (31), respectively.

It is easy to see that

on <AV R+ 10) =2 + A0+ ViA+ 7

Taking into account this relation, we obtain

n=1k=1

{2 ; (nulin Hﬁk7"(t)||c[()j])2}
< @@ S, (2401 ) Vex (i 5 (x,?yn}wk,mz)
n=1k=1 n=1k=
2
h y5 }(pkn|> )

1
oo 2
2 )LkYn|llfkn| )

—

L
2

DM s
Mg

+\/§<i§‘, (Ax¥y | @a]) ) + 23(

n=1k=1 n

1

(At [Wia]) ) V23 (i L }wk,n|)2>2

n=1k=1

I
—_

1

DM s
Mg

+2v/23

EMS

—_
=~

k

Il
-

=1

+2v/23

Mg

)

n=

._
~
Il

1

23
(

1
o oo 2
+V23T (1)l cio.ry + 1220l cpo 1) (22(ué,n||uk,n<r>}|qm>2>

n=1k=

—

1

2 T
(x,§|fk7n(r>}>2dr) + / )
! 0

n=1k

=

Mg
Ms

(ALTn | fin(2)|)?dT
n=1k

Too
2T | [3
0

1

r . % '
+ ( > Zukyﬂfk,n(r)!)zdf) |/
) 0

n=1k=1

(YS ’fk,n(r) |)2dT>

1

Ms
T

n
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L
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L
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A'k’)/n |gkn )zdr)
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T oo
0 n=1k
T % T o o 2
(/ )Lk}/n |fkn dT) + (/Z 2 (%3 |fk7n(7)})2dr) )
0 0 1k=1
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HMS
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0 "=lk=l1

00

11
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1
o oo 2
3 2
+2 2 Z (Yn |Wk7n’)
n=1k=1
1

+nwm>mﬂ+mncmq<i %MWANMMﬁ>
T T
2\/7 ((/ 2 )Lk |fkn 2df) (/ 2 2 (Akz)/n }fk,n(T)Dsz)
o ! o n=lk=1
T i T 1
3 2
+ (!n ¥ )Lk}/n |fkn ) (0/ glkgl(’)/n |fk,n(7)}) dT)

+T [la(®)lcpo.) (i 2(“1?,;1|‘”k=n(t)HC[o,T])2>

+2VT ||b(t) ®)llcio,7] ((/ii (A2 | gkn(T)]) dr)

o bl %
+022%mm( ) U]ZWMWWWO
0 n=1k=1 0 k=1

e

We impose the following conditions on the data of problem (1)—(4), (9), (10):

M8
o HMS

w-
Il
-

Ms
M8

I
—_

D=

1
2

HMz

C1) (P(x,_Y),(Px(x,_Y),(Pxx(x,_Y),(Py(x,_)’),(ny(x,_Y),(Pyy(x,_Y),
(Pxxx(xa)’)7(Pxxy(x7Y)a(ny)’(xa}’)yfpyyy(xy)’)7 B
(Pxxxx(X,_Y),(Pxxxy(x,})),(Pxxyy(x,_Y),(nyyy(x,Y),(Pyyyy(x y) (Qxy)’
Prvery (5,), Oryyyy (X, 5); P (6, 7)5 Pyyyyy (X,9) € Lo (Qxy) s
(px(07y):(P(lvy):(pxx(lvy):q)xxx(Qy) (pxxxx(l y):
@ (x,0) = @y(x,1) = @y (x,0) = Pyyy (x, 1) = Pyyyy(x,0) =

//\ //\

0<y
0<x

C2) W(x7y)7l)ljx 7y) V/y(x y) II/ xvy) V/xy(x7y)aq/yy(x7y) 6C(Qxy)9

(x (
Wm(x,y 7nyy(x y) Wxxy(x» )7Wyyy(x»y) € L2(Qxy)’
ve(0,y) = w(l,y) = ¥ie(1,y) =0,0<y < 1,
W('x70) :Wy(xal) Wyv(xa :0,0<X< 1

C3) f(xy)’:t)an(xa}’at);fy(xa}’at):fo(xa}’at);fxy(xy)’:t)afyy(x;)’:t) 6 C(DT)7
fMX(xy)’:t)afxxy(xy)’J)af)qu(xy)’7t)afyyy(xa}’at) € Ly(Dr),
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:(0,3,0) = f(Lyt) = fux(L,y,1) =0,0<y < L,LO<Kr < T,
f(x,0,1) = fi(x,1,1) = fiy(x,0,1) =0,0<x < 1,0<r < T

Cy) g(x,3,1),8x(x,3,1),8y(%,3,1), 8xx (X,3,1), 8xy (X, 1,1), &)y (x,,1) € C(Dr),
gxxx(x7y7t)agxxy(xayat)7gxyy(x7y7 ) gyyy(x Y, )ELZ(DT)
gx(0,y,1) =g(1,y,1) = gu(1,5,1) =0,0<y < 1,0<1 < T,
g(x707t):gy(x717t):gyy(x707t) 00<X<170<I<T'

Cs) 0<B <Z, hi(1),ht) € C2[0,T], and
11
h(t)=hi(t) [ [ g(x,yt)dxdy —h(t)g(0,1,) #0, 0<t < T
00

Then, from (34)—(36), respectively, we obtain

1

- e 3
(| (x, 2 ||35 :{22 “an”kn HCOT]z}

—1k=1
AUT)+ BT la(t) o, .0 g,
+CUT) 60 co.ry + Pr(T) e t) g, 3D

1a0)llego) < As(T) + Ba(T) lalt)lego r ..l
+Co(T) (1) o7+ Da(T) (350 s, (38)

18) [ ¢jo.7 < As(T) + Bs(T) lla(t) o7y [l 3:0) | g5,
G (M) 160 cpo,ry +D3(T) ulx,3:1) gy (39)

where

ALT) = V23| @esare(6.9) |y 0,y) + V23 | ry (2. ) [y 0
+V23 | @uyyy (x,y ||L2(va +V23 || @y (x,y ||L2 (0n)
+2V23 [V (6.0) s 0y +2V23 Wi (09) | 0,
223 [y (2 9) |, 0,y +2V23 [0 () 14 04
+2V23T (|| feex (6,350 1y ) + | fon 32D |
+ || froy (2, 3,1) HLZ(DT) + [y (e 01) HLZ(DT))’

B\(T) = V23T,

CU(T) = 2V23T (|l guec(x,:) 1y ) + [ (62 )
+||gxxy(x,y,t)“L2(DT)+Hgyyy(x7y7t)“L2(DT))7

Dy(T) = \/ﬁT(”Pl(f)”c[o,T] + 120l cjo,71)+
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_IHC[OT

11
(”2’ 0/ 0/ / <X»y»t>dxdy> I (6) = ((0) = 0, 1.0)) (1)

clo,T]

+ (2 i ) (A (0)] 4 20l cgo,7) [ Pecone (e, )l ¢ (@)
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F2VT (| frex (63, |y (o) + oy G2
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HMS

From inequalities (36)—(39), we conclude

laCe,y.0llga2 + 130l + 150 |z
< A(T)+BOT) ) legor e, .0l
+CT) 16(1) o 77+ DUT) e, 3.)ll s (40)

where

),B(T) =By(T)+B(T) +B3(T),

).D(T) = Di(T) + Do(T) + D5(T). 4V

a
=
I
O
S
+
N
=
_|_
Q

=S

So, we can prove the following theorem.
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THEOREM 2. Let the conditions C1)—Cs) and the condition
(A(T)+2)(B(T)(A(T)+2)+C(T)+D(T)) < 1, 42)

be fulfilled. Then, problem (1)—(4), (9), (10) has a unique solution in the ball K =
KR(HZHE; <R=A(T)+2) of the space E3.

REMARK 1. Inequality (42) is satisfied for sufficiently small values of 7.

Proof. Let’s consider the operator equation
z=Pg, (43)

in the space E3, where z= {u,a,b}. The components ®;(u,a,b) (i=1,2,3) of opera-
tor ®(u,a,b) defined by the right side of equations (26), (32), (33), respectively. Now,
consider the operator ®(u,a,b) in the ball K = KR(”Z”E; < R=A(T)+2) of the space
E3.

Analogously to (40) we obtain that for any z,z1,z2 € K the following estimates
hold:

1Pzl g5 < A(T) +B(T) lla(t)llcpo,r leele, v,0) 5,

FCD)[[6)lejo,ry +D(T) [JuCx, v, 1)l s,
SA(T) +B(T)(A(T) +2)* + C(T)(A(T) +2)
+D(T)(A(T) +2), (44)

|21 = Dol g5 < B(T)R([lar (1) = a2 (1) cpo,r) + [luer (6, y,7) — w2, 3,) | 5 )

+C(T) 1br(1) = b2() | o,y
AD(T) flur (x,y,1) = w2 (x,3,)ll s - (45)

Then by (42), from estimates (44) and (45) it is clear that the operator @ acts in a
ball K = Kr and satisfy the assertion of the contraction mapping principle. Therefore
the operator @ has a unique fixed point {u,a,b} in the ball K = Kg, which is a unique
solution of equation (43); i.e. {u,a,b} is a unique solution of the system (26), (32),
(33) in the ball K = Ky.

Thus, we obtain that the function u(x,y,7) as an element of the space Bg_T is
continuous and has continuous derivatives uy(x,y,2), the(X,,2), tty(xX,3,1), thry(x,,1),
Uyy (X, 0,1) , Uex (X, 0,8) 5 Uy (X, 3,1) 5 Uy (X, 0,8) 5 Uy (X, 9,8) 5 oo (X, ,8) 5 Uy (2, 9,1)
Wy (X, 0,1) 5 Uyyy (%, 3,), and utyyyy (x,3,7) in Dr.

From the equation (2) it is easy to see that

Wl () + A+ 78 — BOZ +v))un(t) = Feu(tiu,a,b), kin=1,2,..., 0

N
N
H
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L
2

{; Z ‘uk7n ||u;</7n(t)’|C[O7T])2}

1k=1

xayvt)”B;T

+Hfo(x,y,f)+fv(xvy’t)HC[07T]HLz(Q )

+ H ||a(t)(ux(x7y7t) +uy(x7y7t))||c[()77'] LZ(Q )

+ HHb(t) (gx(xvyvt) +gy(x7y7t))“C[0~,T]HLz(Qxy)] .

Thus it follows that u, (x,y,#) is continuous in Dy .

It is not hard to verify that equation (1) and conditions (2)—(4), (9), (10) are sat-
isfied in the usual sense. Thus, the solution of the problem (1)-(4), (9), (10) is a triple
{u(x,y,t),a(t),b(t)}. By virtue of the Lemma 2, it is unique in the ball K = Kz. O

In summary, from Theorem 1 and Theorem 2, straightforward implies the unique
solvability of the original problem (1)—(6).

THEOREM 3. Suppose that all assumptions of Theorem 2, the compatibility con-
ditions (11), (12), and the inequality

T
(T2l + 17 Ollor + 3 AT +2)) T <1,

holds. Then problem (1)—(6) has a unique classical solution in the ball K = KR(HZHE; <
R=A(T)+2) of the space E;.

Conclusion

In this paper, we have studied the classical solvability of the inverse boundary-
value problem for the linearized equation of motion of a homogeneous beam with
pinned ends. To study the solvability of the considered problem, we first performed
a transformation from the original problem to some auxiliary equivalent problem with
trivial boundary conditions. Then, using the Fourier method and contraction mappings
principle, the existence and uniqueness theorem for the auxiliary problem is proved.
Furthermore, based on the equivalence of these problems, we establish an existence
and uniqueness theorem for the classical solution of the original inverse boundary-value
problem.
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