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REGULARITY FOR NON–UNIFORMLY ELLIPTIC DOUBLE

OBSTACLE PROBLEMS WITH FRACTIONAL MAXIMAL OPERATORS

GIA KHANH TRAN ∗ AND TAN DAT KHUU

(Communicated by L. Kong)

Abstract. This paper aims to establish a global estimate for solutions to non-uniformly elliptic
double obstacle problems in Lorentz and Orlicz-Sobolev spaces. In this study, we build upon the
technique introduced M by Tran and Nguyen in their paper [28]. This technique relies on the
concept of the good− inequality proposed by Mingione and the definition of the distribution
function by Grafakos. We make use of certain familiar assumptions about non-smooth domains.
Additionally, we employ function spaces, inequalities, and several lemmas to support our proof.

1. Introduction

Our aim in this paper is to establish a global estimate for solutions to non-uniformly
elliptic obstacle problems. We consider the following equation

−div
(
|u|p−2u+ |u|q−2u

)
= −div

(
|F|p−2F+ |F|q−2F

)
in , (1.1)

where  ⊂ R
n is an open bounded domain with n � 2; F : → R

n is a vector field,
and the growth exponents p,q satisfy 1 < p � q < n . In the remainder of this paper,
we shall define function H as the following

H ( ) := | |p + | |q.
Problem (1.1) is closely related to the problem of finding the minimum of the energy
function

K � u �→
ˆ


(
|u|p + |u|q

)
−
〈
|F|p−2F+ |F|q−2F,u

〉
dx, (1.2)

with

K :=
{

u ∈W 1,H
0 () : 1 � u � 2 a.e

}
,
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where 1,2 ∈W 1,H () are two constraint functions satisfying 1 � 2 a.e.  and
1 � 0 � 2 on  .

This research paper is based on the two-phase (p,q)-Laplacian problem, which
has been studied and achieved many results [10, 16, 29, 32]. In addition, the (p,q)-
Laplace equation problem has many applications in life. In physics, the equation is
applied to composite materials-synthetic materials formed by mixing two or more dif-
ferent compounds that often have superior properties compared to the original materi-
als. Fiber-reinforced plastic is widely used in our daily lives. Its common applications
include making rocket engine casings, aircraft casings, auto components, construction
materials, water pipes, etc. [2, 3, 22].

The obstacle problems are interesting and useful in a variety of scientific and en-
gineering domains, including biology, computer science, mechanics, economics, engi-
neering, etc. Referring back to Stefan’s seminal work [23], this problem can be framed
as an obstruction problem. Stefan researched heat transmission in a homogeneous
medium experiencing phase transition, usually ice melting in water or water passing to
ice. Numerous applications of this problem can be found in areas including interacting
particle systems, mathematical finance, Hele-Shaw flow, fluid filtration (Dam problem),
phase transitions (Stefan problem), elasticity, optimal stopping, etc. For further details
and applications of obstacle-type problems, we refer the reader to [8,17,21]. There have
been several notable works in the derivation of regularity theory for both equations and
obstacle problems involving (p,q)-Laplacian. We refer the reader to [10, 16, 29, 32]
and the references therein for more contributions to these problems.

In this study, we continue to exploit the idea of using so-called “good- ” with
fractional maximal operators M by Tran and Nguyen in [24–26, 31, 32] to obtain a
global regularity estimate for solutions to the double-obstacle problem corresponding
to (1.1) in Lorentz spaces. Our proof in this paper not only deals with the problems
involving (p,q)-Laplacian but also with a more general class of non-uniformly elliptic
problems. In the results of this paper, we not only solve the (p,q)-Laplace problem but
also extend the solution to a class of problems with a more general form as follows

−divA
(
x,u

)
= −divB

(
x,F
)

in . (1.3)

We can summarize the above problem with two constraints 1,2 as follows
Find a solution u that satisfies

−divA
(
x,u

)
� −divB

(
x,F
)

a.e. in K. (1.4)

The nonlinear operators A ,B : ×R
n → R

n are Carathéodory vector functions that
satisfy the existence condition 0 <  � L is such that⎧⎨

⎩
|A (x, )|+ |B(x, )|+ |A (x, )|| | � L

(
| |p−1 + | |q−1

)
,


(
| |p−2 + | |q−2

)
| |2 �

〈
A (x, ) ,

〉
,

(1.5)

for all x ∈  ,  ∈ R
n \ {0} ,  ∈ R

n . Here,  represents the partial derivative with
respect to the variable  and 〈·, ·〉 is the usual inner product. It is easy to see that the
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divergent operator on the left side of equation (1.1) is a specific case of the nonlinear
operator A when A ( )= | |p−2+ | |q−2 . Furthermore, from the condition (1.5)2 ,
for 1 < p < q , we get

〈
A (x, )−A (x,), −

〉
� ̃

((
| |2 + | |2

) p−2
2 +

(
| |2 + | |2

) q−2
2

)
| − |2,

where ̃ is a positive constant depends on n, p,q,and  . And for the case 2 � p < q ,
it is reduced as follows:〈

A (x, )−A (x,), −
〉

� ̃
(| − |p + | − |q).

The operator B : ×R
n → R

n is the Carathéodory vector function defined

|B(x, )| � L
(| |p−1 + | |q−1), ∀x ∈,  ∈ R

n. (1.6)

Let us now turn to describing the two-obstacle functions 1 and 2 ∈W 1,H ()
such that 1 � 2 and 1 � 0 � 2 on  (we shall discuss the details of Orlicz
spaces LH () and Orlicz-Sobolev spaces W 1,H () in Section 2.1 below).

We say that u ∈ K is a weak solution to the double-obstacle problem (1.4) if the
following variational inequality

ˆ


A
(
x,u

) · (v−u
)
dx �

ˆ


B
(
x,F
) · (v−u

)
dx, (1.7)

holds for all v∈K , where F :→R
n is a vector-valued measurable function such that

H (F) ∈ L1() .
For shortness of notation, we denote the word input to represent the given data

of the problem that the generic constant C may depend on. More precisely, we shall
briefly use that word for the set of

input =
{

n, p,q,,,L,‖H (F)‖L1(),‖H (1)‖L1(),‖H (2)‖L1()

}
.

There have been a lot of regularity results concerning the (p,q)-Laplace equations
or more general problems. We address the interested reader to [6, 11–13, 27, 32] for
gradient estimates of solutions to non-uniformly quasilinear elliptic equations governed
by two or multi-phase. In this work, we simply study the regularity of double-phase
problems under a two-obstacle constraint. Specifically, our results are preserved in
terms of fractional maximal operators M . As far as we know, regularity results via
fractional maximal operators were first mentioned in [9, 18, 19], and later established
by Tran and Nguyen in [26–28, 30], etc. Due to the meaning of regularity theory via
the use of M discussed in their studies, our main results also follow the same lines as
them.

This is how the current paper is organized. The formulation of non-uniformly
elliptic problems with two obstacles is given in the current Section 1 and summary.
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The introduction to this problem, such as a historical review of the development of
the relative problem, presents the primary findings, some annotations, and hypotheses
on the obstacle problem. In Section 2, we provide a list of notation and some function
spaces, especially necessary background information on fractional maximal distribution
for use in main proofs. Section 3 is dedicated to some technical lemmas to prove our
main theorems. The statements of Theorem 1 and Theorem 2 are devoted in Section 4,
and these are two important theorems and also possible future research topics of this
paper. In the last section, we discussed proofs of main theorems.

2. Preliminaries

In this section, we are going to collect some notation, properties and initial def-
initions for later use, and some necessary background on function spaces that will be
mentioned in the rest of this paper.

2.1. Notation

Firstly, domain  ⊂ R
n , n � 2, is assumed to be an open-bounded domain.

Throughout the paper, we use the symbol C to denote a generic positive constant. The
value of C will not necessarily be the same at each occurrence, depending only on the
dimension and some constants appearing in the statements. Moreover, the dependence
of C on some given parameters will be emphasized between parentheses. Next, we let
L n(E) stand for the Lebesgue measure of a measurable set E in R

n . In addition, we
will write diam() for the diameter of  , that is defined as

diam() = sup
1,2∈

|1− 2|.

In what follows, we shall denote the integral average of a function h ∈ L1
loc(R

n) over
the measurable subset E of R

n as
 

E
h(x)dx =

1
L n(E)

ˆ
E

h(x)dx.

Finally, the open n -dimensional Euclidean ball in R
n of radius  > 0 and center 

will be denoted by B( ) , that is the set {z ∈ R
n : |z−  | < } . We also denote here

( ) = B( )∩ , which is considered as the “surface ball” when the center  lies
on  .

2.2. Some function spaces

Although the emphasis of the paper is not on the existence of solutions but rather
on their regularity, we must determine the spaces where the solutions exist. Orlicz-
Sobolev (O-S) spaces that we shall denote W 1,H () from now on. For more details,
the interesting reader may see Harjulehto and Hästö [15].
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DEFINITION 1. (Orlicz spaces) The Orlicz space, denoted LH () , is the set of
all measurable functions f :→ R such that

ˆ


H (| f |)dx < +, (2.1)

where, LH () is the Banach space corresponding to the following norm

‖ f‖LH () = inf

{
 > 0 :

ˆ


H

( | f |


)
dx � 1

}
. (2.2)

DEFINITION 2. (Orlicz-Sobolev spaces) Orlicz-Sobolev spaces, often denoted by
W 1,H () , is the set of all measurable functions f ∈ LH () such that its distributional
gradient vector  f belongs to LH (,Rn) . On W 1,H () , the corresponding norm is
defined by

‖ f‖W 1,H () = ‖ f‖LH () +‖ f‖LH (,Rn). (2.3)

The space W 1,H
0 () is the closure of C

0 () in W 1,H () .

We will recall the definition of Lorentz spaces. The definition of Lorentz spaces
has been mentioned in [12, 14]. Lorentz spaces play a important role in our study.

DEFINITION 3. (Lorentz spaces) The Lorentz space, often denoted by Ls,t()
with 0 < s <  and 0 < t �  , is defined as the set of all measurable function f on 
such that the following quantity for 0 < t <

‖ f‖Ls,t() :=
[ˆ 

0
 tL n({y ∈ : | f (y)| > }) t

s
d


] 1
t

<,

and when t =  it satisfies

‖ f‖Ls,t() := sup
>0

L n({y ∈ : | f (y)| > }) 1
s < .

It is worthy to remark that when t =  , the Lorentz spaces are then known as the
Marcinkiewicz spaces. Moreover, it is worth remarking that when s = t , the Lorentz
spaces Ls,s() are nothing but Lebesgue spaces Ls() . In particular, it is well known
that for some 0 < r � s � t �  , it holds that

Lt() ⊂ Ls,r() ⊂ Ls() ⊂ Ls,t() ⊂ Lr().

Now we turn to the definition of the fractional maximum function in the spirit
of [12]. This is a very important tool to prove our result in the next section.
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DEFINITION 4. (Fractional maximal functions and their cut-off versions) Let 0 �
 � n . The fractional maximal function M of a locally integrable function f : Rn →R

is defined by

M f (x) = sup
>0


 

B (x)
| f (y)|dy, x ∈ R

n, (2.4)

when  = 0, it coincides with the Hardy-Littlewood maximal function, M0 f = M f ,
defined by

M f (x) = sup
>0

 
B (x)

| f (y)|dy, x ∈ R
n,

for any given locally integrable function f in R
n . On the other hand, in order to

prove the main results in this paper, It is necessary to define the cut-off versions of
these maximal operators. Let  > 0 and  should be belong to [0,n] . We define two
additional cut-off versions of M f in (2.4) as follows:

M
 f (x) = sup

0<<


 
B (x)

f (y)dy,

and

T
 f (x) = sup

�


 
B (x)

f (y)dy.

We remark that if  = 0 then M
 f = Mr f and T

 f = Tr f for all f ∈ L1
loc(R

n) .

Based on definition 3, we will state the significant lemma for our proof in this
paper.

LEMMA 1. (The boundedness property of M ) Let f ∈ Ls
(
R

n
)

with s � 1 and
 ∈ [0,n/s

)
. There exists C = C

(
n,,s

)
> 0 such that for any  > 0 there holds

L n({x ∈ R
n : M f (x) > })� C

(
1
 s

ˆ
Rn

| f (y)|sdy

) n
n−s

.

This Lemma has been proved in the paper [27, Lemma 2.8] by Tran, Nguyen.

3. Preparatory lemmas

Next, let us state some preliminary technical lemmas that will be applied to our
main proofs in Section 5.

LEMMA 2. (Covering Lemma) Let  be a bounded domain of R
n such that

 ∈C1,+
. Let 0 <  < 1 , r > 0 .
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(i) Suppose that two measurable subsets of V ⊂W of  satisfy

L n(V ) � L n(Br).

(ii) Assume moreover that for every x ∈  , if L n(V ∩Br(x)) > L n(Br(x)) then
∩Br(x) ⊂W . Then there exists a positive constant C = C(n) > 0 such that

L n(V ) � CL n(W ).

We will only state Lemma 2 for convenience. You can see the paper [27] for
further details description of this Covering Lemma.

Continuously, we will show the Lemma 3 which has been stated and proved in the
paper of Tran, Nguyen, and Pham [32, Lemma 2.9].

LEMMA 3. Let u ∈ K be a weak solution of (1.4) with F ∈ LH () and two
constraint functions 1,2 ∈ W 1,H () satisfies 1 � 2 almost everywhere in 
and 1 � 0 � 2 almost everywhere on  . Then, for each  ∈ and r > 0 , we can
find v ∈W 1,H (2r( )) such that

 
2r( )

H (u−v)dx � 
 
2r( )

H (u)dx

+C−K
 
2r( )

H (F)+H (1)+H (2)dx,
(3.1)

for each  ∈ (0,1) , for some K > 0 , C = C(input) > 0 , 2r( ) = B2r( )∩ . More
than that,

ˆ


H (u)dx � C
ˆ


H (F)+H (1)+H (2)dx. (3.2)

On the other hand, for every  > 1 there exists a constant 0 = 0(input) > 0 such that

( 
r( )

[
H (v)

]
dx

) 1


� C
 
2r( )

H (v)dx, (3.3)

where C = C(input,) > 0 .

4. Statement of main results

In this section, we will infer main result via two theorems. We start stating and
proving Theorem 1 (good- inequality), is proved by Lemma 3 and some tool in sec-
tion 2. Based for Theorem 1, we use quasi-norm ‖·‖Ls,t() in Lorentz’s definition 3 to
implies Theorem 2. And our expectations for regularity result, will be given a good
picture of regularity in Lorentz spaces.
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THEOREM 1. Let u ∈ K be a weak solution to problem (1.7) and the boundary
 is of class C1,+

for some + ∈ [,1] ,  ∈ (0,1] . Then, for every a∈ (0,1) , there
exists 0 = 0(input) > 0 such that the following inequality

L n({M [H (u)] > −a
})

� CL n({M [H (u)] � 
})

+L n({M [H (F)+H (1)+H (2)] � b
})

,

(4.1)

holds for all  ∈ (0,0) and  > 0 . Here the constants b = b(,a, input) and C =
C(a,b, input).

THEOREM 2. Under the assumptions of Theorem 1, let N ,T : → R
+ be two

maps defined by

N := H (u) and T := H (F)+H (1)+H (2). (4.2)

Then, for every s∈ (0,) and 0 < t � , there exists a constant 0 = 0(s, t, input) > 0
such that the following estimate

‖MN ‖Ls,t() � C‖MT ‖Ls,t(). (4.3)

Here, the constant C = C(s,t, input) .

5. Proof of main theorems

5.1. Proof of Theorem 1

Proof. For each  > 0 and  > 0 small enough, let us set

V =
{
M [H (u)] > −a

}∩{M [H (F)+H (1)+H (2)] � b
}
,

and

W =
{
M [H (u)] > 

}
,

where a,b are two constants that will be chosen later. Moreover, we shall write

N := H (u) and T := H (F)+H (1)+H (2).

It is clear to see that

V =
{
MN > −a

}∩{MT � b
}

and W =
{
MN > 

}
.

Firstly, by Covering Lemma 2, we need to check that V satisfies (i) . Indeed, if V = /0 ,
then it is obviously true in case L n(V ) � L n(Br(x)) , for all  > 0 is small enough
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and  > 0. Without loss of generality, assume that V = /0 , then there exists x1 ∈ 
such that MT (x1) � b . It gives


 

B (x1)
T (x) � b , ∀ > 0. (5.1)

Based on the boundedness of M in Lemma 1, we get

L n(V) � L n({MN (x) > −a
})

�
(

C
−a

ˆ


N (x)dx

) n
n−

. (5.2)

Using estimate (3.2) in to (5.2), we obtain that

L n(V) �
(

C
−a

ˆ


T (x)dx

) n
n−

. (5.3)

Furthermore, taking D = diam() , choose B = BD(x1) such that ⊂ B . We deduce

L n(V) �
(

C
−a

ˆ


T (x)dx

) n
n−

�
(

C
−a

ˆ
B
T (x)dx

) n
n−

. (5.4)

There exists x1 ∈  such that substituting MT (x1) � b into the evaluation (5.1),
that allows us to write

ˆ
B
T (x)dx � C

[
L n()

]1− 
n MT (x1). (5.5)

Combining (5.4) and (5.5), we have

L n(V) � C(a+b) n
n− L n().

We choose the parameter b so that b > 1. There exists  > 0 small enough to satisfy

L n(V) � C(a+b) n
n−
(

D
r

)n

L n(Br(x0)) < L n(Br),

for all  ∈ (0,0) , and we complete the proof of (i) .
Next, we present the steps of proving (ii) by contradiction: for every x ∈  , if

L n(V ∩ Br(x)) � L n(Br(x)) then Br(x)∩ ⊂ W . Let us assume that L n(V ∩
Br(x)) = /0 . Then, there exist x2 and x3 such that x2 ∈ ∩ Br(x)∩Wc and x3 ∈
V ∩Br(x) . Therefore,

MN (x2) �  and MT (x3) � b . (5.6)

In the first step, we will show that

L n(V ∩Br(x)
)

� L n({MN (x) > −a
}∩Br(x)

)
.
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Indeed, from Definition 4, it allows us to write

Mr
N (x) = sup

r>>0


 
B (x)

N (x)dx,

and

Tr
N (x) = sup

�r


 
B (x)

N (x)dx.

Then, we can conclude

MN (x) = max
{
Mr

N (x);Tr
N (x)

}
.

On the other hand, for all y ∈ , we have

L n(V ∩Br(x)) � L n({y ∈ Br(x) : Mr
N (y) > −a

})
+L n({y ∈ Br(x) : Tr

N (y) > −a
})

.
(5.7)

At this moment, for every y ∈ Br(x) , as  � r we get z ∈ B(y) , it is easy to check that
z ∈ B3(x2) and B(y) ⊂ B3(x2) . From this, we shall write

Tr
N (y) = sup

�r


 
B (x)

N (z)dz

= sup
�r


L n
(
B3(x2)

)
L n
(
B(y)

) 1

L n
(
B3(x2)

) ˆ
B (y)

N (z)dz

� sup
�r


L n
(
B3(x2)

)
L n
(
B(y)

)  
B3 (y)

N (z)dz

� 3−
(3)n

n MN (x2) = 3n−MN (x2).

So, it concludes that Tr
N (y) � 3n−MN (x2) , for all y ∈ Br(x) , meanwhile

MN (x2) �  , so we have

Tr
N (y) � 3n− , ∀y ∈ Br(x).

Then, for all  > 0 such that −a > 3n− or  < 3−(n−)/a , we can see that{
y ∈ Br(x) : Tr

N (y) > −a
}

= /0.

For y ∈ Br(x) and z ∈ Br(y) , it is clear to observe that z ∈ B2r(x) . So Br(y) ⊂ B2r(x) .
We may obtain

Mr
N (y) = sup

0<<r


 
B (y)

N (z)dz

= sup
0<<r


 

B (y)
B2r(x)N (z)dz

= Mr

[
B2r(x)N (z)

]
(y).
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All in all, we get that

L n(V ∩Br(x)) � L n({y ∈ Br(x) : Mr

[
B2r(x)N (y)

]
> −a

})
, (5.8)

with every  ∈ (0,1) .
In the next step, we use comparison inequality and reverse Hölder in Lemma 3 to

prove

L n(V ∩Br(x)
)

� L n(Br(x)
)
. (5.9)

We now divide into two cases when x belongs to the interior domain, i.e., B4r(x) �  ,
and otherwise when x is closed to the boundary  , i.e., B4r(x)∩  = /0 . In the
first case, B4r(x) �  , let us consider v the unique solution of the following reference
problem: {−divA (x,v) = 0 in B4r(x),

v = u on B4r(x).
(5.10)

Applying Lemma 3, for every  > 1, there exists a positive constant C such that the
following inequality holds:

( 
B2r(x)

[
H (v)

]
dx

) 1


� C

( 
B4r(x)

H (v)dx

)
. (5.11)

On the other hand, a comparison estimate between u and v over B4r(x) can find by
(3.1) in Lemma 3 for every 1 ∈ (0,1) , there exists K > 0 such that:

 
B4r(x)

H (u−v)dx

� 1−a
1

 
B4r(x)

H (u)dx

+C
−(1−a)max

{
0, 2−p

p−1

}
1

 
B4r(x)

H (F)+H (1)+H (2)dx

� 1−a
1

 
B4r(x)

N (z)dz+C1−K
1

 
B4r(x)

T (z)dz,

(5.12)

where K = 1+max
{
0,(1−a)(2− p)/(p−1)

}
. Moreover, as x2 ∈ Br(x) so B4r(x) ⊂

B5r(x2) , from z ∈ B4r(x) we have that d(z− x2) � d(z− x)+d(x− x2) < 5r . Thus,

 
B4r(x)

N (z)dz =
L n
(
B5r(x2)

)
L n
(
B4r(x)

) 1

L n
(
B5r(x2)

) ˆ
B4r(x)

N (z)dz

�
(

5
4

)n  
B5r(x2)

N (z)dz

�
(

5
4

)n

(5r)−MN (x2) � Cr− .



262 G. K. TRAN AND T. D. KHUU

Similarly, x3 ∈ Br(x) so B4r(x) ⊂ B5r(x2) and we get
 

B4r(x)
T (z)dz =

L n
(
B5r(x3)

)
L n
(
B4r(x)

) 1

L n
(
B5r(x3)

) ˆ
B4r(x)

T (z)dz

�
(

5
4

)n  
B5r(x3)

T (z)dz

�
(

5
4

)n

(5r)−MN (x3) � Cr−b .

All in all, we shall get 
B4r(x)

H (u−v)dx � 1−a
1

 
B4r(x)

N (z)dz+C1−K
1

 
B4r(x)

T (z)dz

� C
(
1−a
1 + 1−K

1 b
)
r− .

At this stage, we choose 1−a
1 ∈ (0,1) such that 1−a

1 = 1−K
1 b then 1 = b/(K−a) to

get  
B4r(x)

H
(
u−v

)
dx � C

b
K−a r− .

In the same manner as the above argument, it yields 
B4r(x)

H (u)dx � Cr− .

Thanks to (5.11) one has( 
B2r(x)

[
H (v)

]
dx

) 1


� C

( 
B4r(x)

H (v)dx

)
. (5.13)

On the other hand, it is easy to obtain

|v|p = |(u−v)−u|p � 2p−1(|u−v|p + |u|p),
and

|v|q � 2q−1(|u−v|q + |u|q).
Therefore, 

B4r(x)
H (v)dx � C

( 
B4r(x)

H (u−v)dx+
 

B4r(x)
H (u)dx

)

� C
(
C

b
K−a r− + r−

)
< C

(
1+ 

b
K−a

)
r−

< C1r
− .

(5.14)
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Combining (5.14) with (5.13), it gets

( 
B2r(x)

[
H (v)

]
dx

) 1


� Cr− .

At this point, we also write

|u|p = |(v−u)−v|p � 2p−1(|v−u|p + |v|p),

and

|u|q = |(v−u)−v|q � 2q−1(|v−u|q + |v|q).

Hence,

Mr

[
B2r(x)H (u)

]
� CMr


[
B2r(x)H (u−v)

]
+CMr


[
B2r(x)H (v)

]
,

and the estimate (5.8) can be rewritten as

L n(V ∩Br(x)) � CL n
({

Mr

[
B2r(x)H (u−v)

]
> −a

})
+CL n

({
Mr


[
B2r(x)H (v)

]
> −a

})
.

(5.15)

Applying the boundedness property of M in Definition 4 with s = 1 and s = 1/ , we
get:

L n(V ∩Br(x))

�
(

C
−a

ˆ
B2r(x)

H (u−v)dx

) n
n−

+

(
C(

−a
)
ˆ

B2r(x)

[
H (v)

]
dx

) n
n−

�
(

Crn

−a

 
B4r(x)

H (u−v)dx

) n
n−

+

(
Crn(
−a

)
 

B2r(x)

[
H (v)

]
dx

) n
n−

.

(5.16)

It is easy to check that B4r(x) ⊂ B5r(x2)∩B5r(x3) and it follows from (5.6) that

 
B4r(x)

H (u)dx �
(

5
4

)n 
B5r(x2)

H (u)dx � Cr−M
[
H (u)

]
(x2) � Cr− .

(5.17)

Similarly, thanks to (5.12), it holds that
 

B4r(x)
H (u−v)dx � C1−a

1

 
B4r(x)

N (z)dz+C1−K
1

 
B4r(x)

T (z)dz

� C1−a
1 r−MN (x2)+C1−K

1 r−MT (x3),
(5.18)
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which implies from (5.6) that 
B4r(x)

H (u−v)dx � C
(
1−a
1 + 1−K

1 b
)
r− � C

b
K−a r− . (5.19)

where 1 ∈ (0,1) satisfying 1 = b/(K−a) .
On the other hand, we use reverse Hölder in Lemma 3

 
B2r(x)

[
H (v)

]
dx � C

( 
B4r(x)

H (v)dx

)

� C

( 
B4r(x)

H (u)+H (u−v)dx

)
.

(5.20)

Substitution (5.17) and (5.19) into (5.20), it gives
 

B2r(x)

[
H (v)

]
dx � C

(
1+ 

b
K−a

)
r−  � Cr−  ,

Thus, we deduce that

L n(V ∩Br(x)
)

�
(

Crn

−a
C

b
K−a r−

) n
n−

+

(
Crn(
−a

)Cr− 

) n
n−

� Crn
[

(
a+ b

K−a

)(
n

n−
)
+ 

an
n−

]
.

And here, we choose  such that an/(n−)� 1 and  ∈ (0,1) such that Can/(n−)
<  to get that

L n(V ∩Br(x)) � L n(Br(x)),

which makes the contradiction. Therefore, L n(V ∩Br(x)) > L n(Br(x)) .
We finally concentrate on the second case when x is close to the boundary of

domain  , which means B4r(x)∩  = /0 . In this case, we select x4 ∈ B4r(x)∩ 
such that d(x4,x) < 4r . We denote 6r(x4) = B6r(x4)∩ and consider v as the unique
solution to the following equation:{−divA (x,v) = 0 in 12r(x4),

v = u on 12r(x4).
(5.21)

Because B2r(x) ⊂ B6r(x4) , the estimate in (5.8) can be rewritten as

L n(V ∩Br(x)
)

� L n
({

y ∈ Br(x) : Mr

[
B6r(x4)N (y)

]
> −a

})
,

which yields

L n(V ∩Br(x)) � CL n
({

(Mr

[
B6r(x4)H (u−v)

]
> −a

})
+CL n

({
Mr


[
B6r(x4)H (v)

]
> −a

})
.
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Similarly (5.16), we deduce that

L n(V ∩Br(x)) �
(

Crn

−a

 
B12r(x4)

H (u−v)dx

) n
n−

+

(
Crn(
−a

)
 

B6r(x4)
H (v)dx

) n
n−

. (5.22)

By (3.3) in Lemma 3, we obtain the Reverse Hölder inequality for the boundary case as
follows: ( 

B6r(x4)

[
H (v)

]
dx

) 1


� C

( 
B12r(x4)

H (v)dx

)
.

Application of (3.1) in Lemma 3 enables us to get the following comparison estimate
 

B12r(x4)
H (u−v)dx � 1−a

1

 
B12r(x4)

N (z)dz+C1−K
1

 
B12r(x4)

T (z)dz.

Using these estimates, we proceed similarly as the previous case to show that
 

B12r(x4)
H (u)dx � Cr−M

[
H (u)

]
(x4) � Cr− ,

 
B12r(x4)

H (u−v)dx � C
(
1−a
1 r−MN (x4)+ 1−K

1 r−MT (x4)
)

� C
(
1−a
1 + 1−K

1 b
)
r− � C

b
K−a r− ,

and
 

B6r(x4)

[
H (v)

]
dx � C

( 
B12r(x4)

H (u)+H (u−v)dx

)
� Cr−  .

All in all, we are able to conclude the same result as the previous case by taking into
account these inequalities to (5.22). The proof of Theorem 1 is therefore complete. �

5.2. Proof of Theorem 2

Proof. Firstly, let us consider the case when t ∈ (0,) and s ∈ (0,) . Let us take

a ∈
(

0,min

{
1,

1
s

})
. Based on Theorem 1, there exists 0 > 0 such that

L n({M [H (u)] > −a})
� CL n({M [H (u)] � })

+L n({M
[
H (F)+H (1)+H (2)

]
� b}).
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Let us also denote N ,T : → R
+ two mappings defined as

N := H (u) and T := H (F)+H (1)+H (2).

By changing variables in Lorentz spaces 3, we get that

‖MN ‖t
Ls,t() = −at s

ˆ 

0
 tL

(
{MN > −a}

) t
s d


� C−at+ t
s

ˆ 

0
 tL

(
{MN > }

) t
s d


+C−ats
ˆ 

0
 tL

(
{MT > b}

) t
s d


� Ct
(

1
s−a
)
‖MN ‖t

Ls,t +C−t(a+b)‖MT ‖t
Ls,t().

Since t
(
1/s−a

)
> 0, we can choose  ∈ (0,0

)
satisfying Ct

(
1/s−a

)
� 1/2, which

completes the proof. The same condition can be drawn for the case t =  . �
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