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POSITIVE SOLUTIONS FOR A RIEMANN–LIOUVILLE

FRACTIONAL SYSTEM WITH  –LAPLACIAN OPERATORS

WANXIN ZHANG AND CHENGBO ZHAI ∗

(Communicated by A. Debbouche)

Abstract. This paper studies the existence and uniqueness of positive solutions for Riemann-
Liouville fractional differential equations with  -Laplacian operators and coupled nonlocal
boundary conditions involving the Riemann-Stieltjes integrals. By means of an interesting fixed
point theorem, some new sufficient conditions guaranteeing the existence and uniqueness of
positive solutions are presented, and the unique positive solution can be the limit of a sequence
constructed for any given initial point in a special set. To demonstrate the conclusion, a good
example is given.

1. Introduction

This article investigates a system of Riemann-Liouville fractional differential equa-
tions with 1 -Laplacian and 2 -Laplacian operators, which are governed by coupled
nonlocal boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1
0+(1(D

1
0+u(t)))+ f (t,v(t)) = 0, t ∈ (0,1),

D2
0+(2(D

2
0+v(t)))+g(t,u(t)) = 0, t ∈ (0,1),

u(i1)(0) = 0, D1
0+u(0) = 0, D0

0+u(1) =
n

j=1

∫ 1
0 D

 j
0+v()dH j(),

v(i2)(0) = 0, D0
0+v(1) =

m

j=1

∫ 1
0 D

 j
0+u()dK j(),

(1.1)

i1 = 0, . . . , p−2; i2 = 0, . . . ,q−2; D2
0+v(0) = 0, where 1,2 ∈ (0,1] , 1 ∈ (p−1, p] ,

2 ∈ (q− 1,q] , p,q � 3, p,q,n,m ∈ N,  j, j ∈ R for all j = 0,1, . . . ,n, and j =
0,1, . . . ,m, 0 � 1 < 2 < · · · < n � 0 < 2−1, 0 � 1, 0 � 1 < 2 < · · · < m �
0 < 1 − 1, 0 � 1, the functions f ,g : [0,1]×R+ → R+, 1,2 > 1, i( ) =
| |i−2 , −1

i
= i , i =

i
i−1 , i = 1,2. The integrals in the nonlocal boundary con-

ditions are Riemann-Stieltjes integrals with H j , j = 1, . . . ,n and K j , j = 1, . . . ,m are
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functions of bounded variation, and Dk
0+ denotes the Riemann-Liouville derivative of

order k , here k = 1,1,2,2;  j ; j = 0,1, . . . ,n;  j ; j = 0,1, . . .m . As we know,
fractional differential equation has a history of more than 300 years, and fractional cal-
culus was favored by many scholars, see [1,3,5,6,9,11,12,18,20,24,29,31–36,38,40]
for instance.

In [30], Yang and Zhu discussed a nonlinear fractional system with p -Laplacian
operators:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

D1
0+(p1(D

1
0+u(t)))+ f (t,u(t),v(t)) = 0, 0 < t < 1,

D2
0+(p2(D

2
0+v(t)))+ g(t,u(t),v(t)) = 0, 0 < t < 1,

u(0) = u(1) = u
′
(0) = u

′
(1) = 0, D1

0+u(0) = 0, D1
0+u(1) = b1D

1
0+u(1),

v(0) = v(1) = v
′
(0) = v

′
(1) = 0, D2

0+v(0) = 0, D2
0+v(1) = b2D

2
0+v(2),

(1.2)

where i ∈ (1,2] , i ∈ (3,4] , Di
0+ and Di

0+ are the Riemann-Liouville derivatives, i ∈
(0,1) , bi ∈ (0,(1−i)/(pi−1)

i ) , i = 1,2, and f , g∈C([0,1]× [0,+)× [0,+), [0,+))
and  and  are two positive parameters. They got the existence and uniqueness of
positive solutions with respect to two parameters. It is well-known that the differential
equation with p -Laplacian operator is mainly derived from the non-Newtonian fluid
theory and the turbulence theory of porous medium gas, and then it has been widely
used in many fields, can also see [2, 4, 7, 8, 10, 13–17, 19, 21, 23, 25–28, 39, 41].

In [37], Zhai and Wang studied a class of Hadamard fractional differential equa-
tions with integral conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

HDpu(t)+ f (t,v(t)) = a, 1 < p � 2, t ∈ (1,e),
HDqv(t)+g(t,u(t)) = b, 1 < q � 2, t ∈ (1,e),

u(1) = 0,HDp−1u(e) =
m

i=1

i
HIi v(),

v(1) = 0,HDq−1v(e) =
n

j=1

 j
HI j u( ),

(1.3)

where HD is Hadamard fractional derivative,HI is Hadamard fractional integral, f ,g ∈
C([1,e)× (−,+) , (−,+)) , a,b are constants, i, j > 0, i = 1, . . . ,m , j =
1, . . . ,n;  , > 0. The authors got the existence and uniqueness of solutions easily by
a fixed-point method.

In [22], the authors used the Guo-Krasnosel’skii fixed point theorem to discuss the
existence of a positive solution to the equations⎧⎨⎩D1

0+(1(D
1
0+x(t)))+ f (t,x(t),y(t)) = 0, t ∈ (0,1),

D2
0+(2(D

2
0+y(t)))+ g(t,x(t),y(t)) = 0, t ∈ (0,1),

(1.4)
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with the coupled nonlocal boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x( j)(0) = 0, j = 0, . . . ,n−2; D1
0+x(0) = 0,

D0
0+x(1) =

p

i=1

∫ 1
0 Di

0+y(t)dHi(t),

y( j)(0) = 0, j = 0, . . . ,m−2; D2
0+y(0) = 0,

D0
0+y(1) =

q

i=1

∫ 1
0 Di

0+x(t)dKi(t),

(1.5)

where 1,2 ∈ (0,1] , 1 ∈ (n−1,n] , 2 ∈ (m−1,m] , n,m � 3, n,m, p,q∈ N , i,i ∈
R for all i= 0,1, . . . , p , 0� 1 < 2 < · · ·< p � 0 < 2−1, 0 � 1, and i = 0,1, . . . ,q,
0 � 1 < 2 < · · · < q � 0 < 1 − 1, 0 � 1, 1,2 > 1,  , > 0, the functions
f ,g ∈C([0,1]×R+×R+,R+), the integrals from (1.5) are Riemann-Stieltjes integrals
with Hi , (i = 1, . . . , p) and Ki , (i = 1, . . . ,q) are functions of bounded variation, and
Dk

0+ denotes the Riemann-Liouville derivative of order k (for k = 1,1,2,2,i for
i = 0,1, . . . , p ; i for i = 0,1, . . . ,q ). However, the uniqueness has not been considered.
So we discuss the similar system (1.1) in a new way by modifying it appropriately.
Motivated by [22,30,37], we take an interesting approach to deal with the system (1.1),
and we intend to establish the existence and uniqueness of solutions for the system (1.1).
Moreover, it is easy to see that the boundary conditions in (1.1) are more complex than
ones in (1.2).

2. Preliminaries and previous results

We present here some definitions and related properties of Riemann-Liouville frac-
tional derivatives and integrals. Some auxiliary results which will be used to prove our
main results are also listed.

DEFINITION 2.1. ([18]) For a continuous function f : (0,+)→ (−,+), the
Riemann-Liouville fractional integral of order  > 0 of is given by

I0+ f (t) =
1

()

∫ t

0
(t− s)−1 f (s)ds,

provided the right-hand side is pointwise defined on (0,+) .

DEFINITION 2.2. ([18]) For a continuous function f : (0,+)→ (−,+), the
Riemann-Liouville fractional derivative of order  > 0 of is given by

D
0+ f (t) =

1
(n−)

(
d
dt

)n ∫ t

0
(t− s)n−−1 f (s)ds,

where n = [] + 1, [] denotes the integer part of the number , provided that the
righthand side is pointwise defined on (0,+).

For h̃, k̃ ∈C[0,1], we study the system of fractional differential equations⎧⎨⎩D1
0+(1(D

1
0+u(t)))+ h̃(t) = 0, t ∈ (0,1),

D2
0+(2(D

2
0+v(t)))+ k̃(t) = 0, t ∈ (0,1),

(2.1)
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under the coupled boundary conditions⎧⎪⎪⎨⎪⎪⎩
u(i1)(0) = 0, D1

0+u(0) = 0, D0
0+u(1) =

n

j=1

∫ 1
0 D

 j
0+v()dH j(),

v(i2)(0) = 0, D2
0+v(0) = 0, D0

0+v(1) =
m

j=1

∫ 1
0 D

 j
0+u()dK j(),

(2.2)

with i1 = 0, . . . , p−2; i2 = 0, . . . ,q−2. Let

1 =
n


i=1

(2)
(2 −i)

∫ 1

0
2−i−1dHi(),

2 =
m


i=1

(1)
(1 −i)

∫ 1

0
1−i−1dKi(),

=
(1)(2)

(1 −0)(2 −0)
−12.

LEMMA 2.1. ( [10, 22]) If  �= 0 , then the unique solution (u,v) ∈ (C[0,1])2 of
(2.1) , (2.2) is given by⎧⎪⎪⎨⎪⎪⎩

u(t) =
∫ 1

0
G1(t, )1(I

1
0+h̃( ))d +

∫ 1

0
G2(t, )2(I

2
0+k̃( ))d ,

v(t) =
∫ 1

0
G3(t, )1(I

1
0+h̃( ))d +

∫ 1

0
G4(t, )2(I

2
0+k̃( ))d ,

(2.3)

t ∈ [0,1], where

G1(t, ) = g1(t, )+
t1−11


(

m


j=1

∫ 1

0
g1 j(, )dK j()),

G2(t, ) =
t1−1(2)
(2−0)

n


j=1

∫ 1

0
g2 j(, )dH j(),

G3(t, ) =
t2−1(1)
(1−0)

m


j=1

∫ 1

0
g1 j(, )dK j(),

G4(t, ) = g2(t, )+
t2−12


(

n


j=1

∫ 1

0
g2 j(, )dH j())

for all (t, ) ∈ [0,1]× [0,1] and

g1(t, ) =
1

(1)

{
t1−1(1−  )1−0−1− (t−  )1−1, 0 �  � t � 1,

t1−1(1−  )1−0−1, 0 � t �  � 1,

g1 j(, ) =
1

(1− j)

{
1− j−1(1−  )1−0−1− (−  )1− j−1, 0 �  �  � 1,

1− j−1(1−  )1−0−1, 0 �  �  � 1,
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g2(t, ) =
1

(2)

{
t2−1(1−  )2−0−1− (t−  )2−1, 0 �  � t � 1,

t2−1(1−  )2−0−1, 0 � t �  � 1,

g2 j(, ) =
1

(2− j)

{
2− j−1(1−  )2−0−1− (−  )2− j−1, 0 �  �  � 1,

2− j−1(1−  )2−0−1, 0 �  �  � 1,

for all j = 1, . . . ,m and j = 1, . . . ,n.

LEMMA 2.2. ([10,22]) Suppose that > 0 , H j ( j = 1, . . . ,n) , K j ( j = 1, . . . ,m)
are nondecreasing functions. The functions Gi (i = 1, . . . ,4) have the following prop-
erties:

(1) Gi : [0,1]× [0,1]→ R+ (i = 1, . . . ,4) are continuous functions;
(2) G1(t, ) � J1( ) for all (t, ) ∈ [0,1]× [0,1], where

J1( ) = h1( )+
1



( m


j=1

∫ 1

0
g1 j(, )dK j()

)
, ∀ ∈ [0,1]

h1( ) =
1

(1)
(1−  )1−0−1(1− (1−  )0), ∀ ∈ [0,1];

(3) G1(t, ) � t1−1J1( ) for all (t, ) ∈ [0,1]× [0,1];
(4) G2(t, ) � J2( ) for all (t, ) ∈ [0,1]× [0,1], where

J2( ) =
(2)

(2 −0)

n


j=1

∫ 1

0
g2 j(, )dH j(), ∀ ∈ [0,1];

(5) G2(t, ) = t1−1J2( ) for all (t, ) ∈ [0,1]× [0,1];
(6) G3(t, ) � J3( ) for all (t, ) ∈ [0,1]× [0,1], where

J3( ) =
(1)

(1−0)

m


j=1

∫ 1

0
g1 j(, )dK j(), ∀ ∈ [0,1];

(7) G3(t, ) = t2−1J3( ) for all (t, ) ∈ [0,1]× [0,1];
(8) G4(t, ) � J4( ) for all (t, ) ∈ [0,1]× [0,1],where

J4( ) = h2( )+
2



( n


j=1

∫ 1

0
g2 j(, )dH j()

)
, ∀ ∈ [0,1]

h2( ) =
1

(2)
(1−  )2−0−1(1− (1−  )0), ∀ ∈ [0,1];

(9) G4(t, ) � t2−1J4( ) for all (t, ) ∈ [0,1]× [0,1].

Now, in order to reach the main conclusion, we give some concepts, notations and
conclusions in abstract spaces.

Let (E,‖ · ‖) be a real Banach space which is partially ordered by a cone P ⊂ E.
An operator A : E → E is increasing, if x � y implies Ax � Ay . For any x,y ∈ E , the
notation x∼ y means that there exist  > 0 and  > 0 such that x � y � x. It shows
that ∼ is an equivalence relation. Given h >  (i.e., h �  and h �=  ), we denote Ph

by the set Ph = {x ∈ E | x ∼ h} , Ph ⊂ P. For h1,h2 ∈ P with h1,h2 �=  . Suppose
h = (h1,h2), then h ∈ P := P×P. If P is normal, then P = P×P is normal.
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LEMMA 2.3. ( [34]) For h1,h2 ∈ P with h1,h2 �=  , let h = (h1,h2), then Ph =
Ph1 ×Ph2.

LEMMA 2.4. ([35]) Let E be a real Banach space and P be normal in E, h >  ,
and A : P → P be an increasing operator, satisfying:

(i) there is h0 ∈ Ph such that Ah0 ∈ Ph;
(ii) for any x ∈ P and t ∈ (0,1), there exists (t) ∈ (t,1) such that A(tx) �

(t)Ax.
Then:
(1) the operator equation Ax = x has a unique solution x∗ in Ph;
(2) take any initial value x0 ∈ Ph and construct successively a sequence xn =

Axn−1, n = 1,2, . . . , we have xn → x∗ as n → .

3. Main results

For convenience, let E = C[0,1], then E is a Banach space with the norm ‖u‖ =
max{|u(t)| : t ∈ [0,1]}. We will consider (1.1) in E ×E. For (u,v) ∈ E ×E, let

‖(u,v)‖ = max{‖u‖,‖v‖},
then (E×E,‖(·, ·)‖) is a Banach space. Let P = {(u,v)∈E×E : u(t)� 0, v(t)� 0, t ∈
[0,1]} , P = {x ∈ E : x(t) � 0, t ∈ [0,1]}, then the cone P ⊂ E ×E and P = P×P is
normal, and the space E ×E has a partial order:

(u1,v1) � (u2,v2) ⇐⇒ u1(t) � u2(t), v1(t) � v2(t), t ∈ [0,1].

From Lemma 2.1, we can obtain

LEMMA 3.1. If f (t,x),g(t,x) are continuous, then (u,v) ∈ E×E is a solution of
(1.1) if and only if (u,v) ∈ E ×E is a solution of the following equations:{

u(t) =
∫ 1
0 G1(t, )1(I

1
0+ f ( ,v( )))d+

∫ 1
0 G2(t, )2(I

2
0+g( ,u( )))d , t ∈ [0,1],

v(t) =
∫ 1
0 G3(t, )1(I

1
0+ f ( ,v( )))d+

∫ 1
0 G4(t, )2(I

2
0+g( ,u( )))d , t ∈ [0,1].

Let 1,2 ∈ (0,1] , 1 ∈ (p−1, p] , 2 ∈ (q−1,q] , p,q∈N , p,q � 3 , h1(t)= t1−1 ,
h2(t) = t2−1 , t ∈ [0,1]. Assume that

(H1) f ,g ∈C([0,1]× [0,+), [0,+)) and f (t,0) �≡ 0 , g(t,0) �≡ 0 , t ∈ [0,1];
(H2) f ,g are increasing with respect to the second variable, i.e., f (t,v1) �

f (t,v2) , g(t,u1) � g(t,u2) for t ∈ [0,1] , 0 � v1 � v2 , 0 � u1 � u2;
(H3) there exist ( ) >  1/(i−1), for any  ∈ (0,1), such that

f (t,x) � ( ) f (t,x), g(t,x) � ( )g(t,x), ∀t ∈ [0,1], x ∈ [0,+).

We consider three operators A1,A2 : P → E and T : P → E ×E defined by

A1u(t) =
∫ 1

0
G1(t, )1(I

1
0+ f ( ,v( )))d

+
∫ 1

0
G2(t, )2(I

2
0+g( ,u( )))d , t ∈ [0,1],
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A2v(t) =
∫ 1

0
G3(t, )1(I

1
0+ f ( ,v( )))d

+
∫ 1

0
G4(t, )2(I

2
0+g( ,u( )))d , t ∈ [0,1],

T (u,v)(t) = (A1u(t),A2v(t)).

LEMMA 3.2. Assume that (H1) and (H2) hold. Then T : P → P is increasing
(i.e.A1 : P → P, A2 : P → P are increasing).

Proof. By Lemma 2.2 (1) and (H1) , we can easily get A1 : P → P , A2 : P → P,
and thus T : P → P.

Next, we need to prove that two operators A1,A2 are increasing. For ui,vi ∈E , i =
1,2 with u1 � u2 , v1 � v2, then u1(t) � u2(t) , v1(t) � v2(t), for all t ∈ [0,1]. Noting
that Ii0+ (i = 1,2) are increasing in R+ by the definition of the Riemann-Liouville
fractional integral. If 0 � 1 � 2, then 1(1) � 1(2) and 2(1) � 2(2).
Thus, i , (i = 1,2) are increasing in R+. By (H2) , we get

A1u1(t) =
∫ 1

0
G1(t, )1(I

1
0+ f ( ,v1( )))d +

∫ 1

0
G2(t, )2(I

2
0+g( ,u1( )))d

�
∫ 1

0
G1(t, )1(I

1
0+ f ( ,v2( )))d +

∫ 1

0
G2(t, )2(I

2
0+g( ,u2( )))d

= A1u2(t),

A2v1(t) =
∫ 1

0
G3(t, )1(I

1
0+ f ( ,v1( )))d +

∫ 1

0
G4(t, )2(I

2
0+g( ,u1( )))d

�
∫ 1

0
G3(t, )1(I

1
0+ f ( ,v2( )))d +

∫ 1

0
G4(t, )2(I

2
0+g( ,u2( )))d

= A2v2(t).

In conclusion, A1,A2 are increasing. Therefore, T : P → P is increasing. �

LEMMA 3.3. Assume that (H2) , (H3) hold. Then for any (u,v) ∈ P and  ∈
(0,1),

T ( (u,v)) � ( )T (u,v),

where ( ) = min{i(( ))} , i = 1,2.

Proof. For any (u,v) ∈ P and  ∈ (0,1), we get

T ( (u,v)) = (A1(u),A2(v)).

We next consider A1(u) and A2(v) respectively. For  ∈ (0,1), according to (H3) ,
we have

( ) = min{(( ))1−1,(( ))2−1} > min{( 1/(1−1))1−1,( 1/(2−1))2−1} =  .
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Further, for  ∈ (0,1) and u,v ∈ E, by (H3) , we obtain

A1(u)(t)

=
∫ 1

0
G1(t, )1(I

1
0+ f ( ,v( )))d +

∫ 1

0
G2(t, )2(I

2
0+g( ,u( )))d

�
∫ 1

0
G1(t, )1(I

1
0+( ) f ( ,v( )))d

+
∫ 1

0
G2(t, )2(I

2
0+( )g( ,u( )))d

= 1(( ))
∫ 1

0
G1(t, )1(I

1
0+ f ( ,v( )))d

+2(( ))
∫ 1

0
G2(t, )2(I

2
0+g( ,u( )))d

� ( )
(∫ 1

0
G1(t, )1(I

1
0+ f ( ,v( )))d +

∫ 1

0
G2(t, )2(I

2
0+g( ,u( )))d

)
= ( )A1u(t),

A2(v)(t)

=
∫ 1

0
G3(t, )1(I

1
0+ f ( ,v( )))d +

∫ 1

0
G4(t, )2(I

2
0+g( ,u( )))d

�
∫ 1

0
G3(t, )1(I

1
0+( ) f ( ,v( )))d

+
∫ 1

0
G4(t, )2(I

2
0+( )g( ,u( )))d

= 1(( ))
∫ 1

0
G3(t, )1(I

1
0+ f ( ,v( )))d

+2(( ))
∫ 1

0
G4(t, )2(I

2
0+g( ,u( )))d

� ( )
(∫ 1

0
G3(t, )1(I

1
0+ f ( ,v( )))d +

∫ 1

0
G4(t, )2(I

2
0+g( ,u( )))d

)
= ( )A2v(t).

So we have

T ( (u,v))(t) � (( )A1u(t),( )A2v(t)) =( )(A1u(t),A2v(t)) =( )T (u,v)(t).

That is T ( (u,v)) � ( )T (u,v) for  ∈ (0,1) , (u,v) ∈ P. �

LEMMA 3.4. Assume that (H1) and (H2) hold. Then there exists h ∈ Ph such
that Th ∈ Ph.

Proof. Set h = (h1,h2), where h1(t) = t1−1 , h2(t) = t2−1, for all t ∈ [0,1]. By
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(H1) , (H2) , Lemma 2.2 and the Definitions of A1,A2, we obtain

A1h1(t) =
∫ 1

0
G1(t, )1(I

1
0+ f ( ,h2( )))d +

∫ 1

0
G2(t, )2(I

2
0+g( ,h1( )))d

�
∫ 1

0
t1−1J1( )1(I

1
0+ f ( ,2−1))d

+
∫ 1

0
t1−1J2( )2(I

2
0+g( ,1−1))d

�
∫ 1

0
t1−1J1( )1(I

1
0+ f ( ,0))d +

∫ 1

0
t1−1J2( )2(I

2
0+g( ,0))d

=
(∫ 1

0
J1( )1(I

1
0+ f ( ,0))d +

∫ 1

0
J2( )2(I

2
0+g( ,0))d

)
h1(t),

A1h1(t) =
∫ 1

0
G1(t, )1(I

1
0+ f ( ,h2( )))d +

∫ 1

0
G2(t, )2(I

2
0+g( ,h1( )))d

�
∫ 1

0

(
1

(1)
t1−1(1−  )1−0−1 +

t1−11



m


j=1

∫ 1

0
g1 j(, )dK j()

)
×1(I

1
0+ f ( ,1))d

+
∫ 1

0

(
t1−1(2)
(2−0)

n


j=1

∫ 1

0
g2 j(, )dH j()

)
2(I

2
0+g( ,1))d

=
1

(1)
t1−1

∫ 1

0
(1−  )1−0−11(I

1
0+ f ( ,1))d

+
t1−11



∫ 1

0

( m


j=1

∫ 1

0
g1 j(, )dK j()

)
1(I

1
0+ f ( ,1))d

+
t1−1(2)
(2−0)

∫ 1

0

( n


j=1

∫ 1

0
g2 j(, )dH j()

)
2(I

2
0+g( ,1))d

=
[

1
(1)

∫ 1

0
(1−  )1−0−11(I

1
0+ f ( ,1))d

+
1



∫ 1

0

( m


j=1

∫ 1

0
g1 j(, )dK j()

)
1(I

1
0+ f ( ,1))d

+
(2)

(2−0)

∫ 1

0

( n


j=1

∫ 1

0
g2 j(, )dH j()

)
2(I

2
0+g( ,1))d

]
h1(t).

Overall, we have

1
(1)

∫ 1

0
(1−  )1−0−11(I

1
0+ f ( ,1))d

+
1



∫ 1

0

( m


j=1

∫ 1

0
g1 j(, )dK j()

)
1(I

1
0+ f ( ,1))d
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+
(2)

(2−0)

∫ 1

0

( n


j=1

∫ 1

0
g2 j(, )dH j()

)
2(I

2
0+g( ,1))d

�
∫ 1

0
J1( )1(I

1
0+ f ( ,0))d +

∫ 1

0
J2( )2(I

2
0+g( ,0))d

=
1

(1)

∫ 1

0
(1−  )1−0−1(1− (1−  )0)1(I

1
0+ f ( ,0))d

+
1



∫ 1

0

( m


j=1

g1 j(, )dK j()
)
1(I

1
0+ f ( ,0))d

+
(2)

(2−0)

∫ 1

0

( n


j=1

∫ 1

0
g2 j(, )dH j()

)
2(I

2
0+g( ,0))d .

Let us denote

l1 =
∫ 1

0
J1( )1(I

1
0+ f ( ,0))d +

∫ 1

0
J2( )2(I

2
0+g( ,0))d

=
∫ 1

0

(
1

(1)
(1−  )1−0−1(1− (1−  )0)+

1



m


j=1

∫ 1

0
g1 j(, )dK j()

)
×1(I

1
0+ f ( ,0))d

+
∫ 1

0

(
(2)

(2−0)

n


j=1

∫ 1

0
g2 j(, )dH j()

)
2(I

2
0+g( ,0))d

=
1

(1)

∫ 1

0
(1−  )1−0−1(1− (1−  )0)1(I

1
0+ f ( ,0))d

+
1



∫ 1

0

( m


j=1

g1 j(, )dK j()
)
1(I

1
0+ f ( ,0))d

+
(2)

(2−0)

∫ 1

0

( n


j=1

∫ 1

0
g2 j(, )dH j()

)
2(I

2
0+g( ,0))d ,

l2 =
1

(1)

∫ 1

0
(1−  )1−0−11(I

1
0+ f ( ,1)d

+
1



∫ 1

0

( m


j=1

∫ 1

0
g1 j(, )dK j()

)
1(I

1
0+ f ( ,1)d

+
(2)

(2−0)

∫ 1

0

( n


j=1

∫ 1

0
g2 j(, )dH j()

)
2(I

2
0+g( ,1))d .

By (H1) , we have
∫ 1
0 f ( ,0)d > 0,

∫ 1
0 g( ,0)d > 0. By (H2) , we can get f ( ,1) �

f ( ,0), g( ,1)� g( ,0). Thus, l2 � l1 > 0, and thus l1h1(t)�A1h1(t)� l2h1(t). This
shows A1h1 ∈ Ph1 . Similarly, we can also get A2h2 ∈ Ph2 . Consequently, by Lemma
2.3,

Th = (A1h1,A2h2) ∈ Ph1 ×Ph2 = Ph.

The proof is completed. �
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THEOREM 3.1. Assume that (H1)–(H3) are satisfied. Then the following con-
clusions hold:

(1) the system (1.1) has a unique solution (u∗,v∗) in Ph, where

h(t) = (h1(t),h2(t)), h1(t) = t1−1, h2(t) = t2−1, t ∈ [0,1];

(2) for a given point (u0,v0) ∈ Ph, construct the following sequences:

un+1(t) =
∫ 1

0
G1(t, )1(I

1
0+ f ( ,vn( )))d +

∫ 1

0
G2(t, )2(I

2
0+g( ,un( )))d ,

vn+1(t) =
∫ 1

0
G3(t, )1(I

1
0+ f ( ,vn( )))d +

∫ 1

0
G4(t, )2(I

2
0+g( ,un( )))d ,

t ∈ [0,1] , n = 0,1,2, · · · , we have un(t) → u∗(t) , vn(t) → v∗(t), as n → .

Proof. By Lemma 3.2, T : P → P is increasing. From Lemma 3.3, we get
T ( (u,v)) � ( )T (u,v) for  ∈ (0,1) , (u,v) ∈ P, where ( ) = min{(( ))1−1,
(( ))2−1} and ( ) >  , for all  ∈ (0,1). Further, by Lemma 3.4, we found
h = (h1,h2) ∈ Ph and Th ∈ Ph. Hence, all the conditions of Lemma 2.4 are satisfied,
which implies: the system (1.1) has a unique solution (u∗,v∗) in Ph, where

h(t) = (h1(t),h2(t)), h1(t) = t1−1, h2(t) = t2−1, t ∈ [0,1];

and for any given point (u0,v0) ∈ Ph, construct the following sequences

un+1(t) =
∫ 1

0
G1(t, )1(I

1
0+ f ( ,vn( )))d +

∫ 1

0
G2(t, )2(I

2
0+g( ,un( )))d ,

vn+1(t) =
∫ 1

0
G3(t, )1(I

1
0+ f ( ,vn( )))d +

∫ 1

0
G4(t, )2(I

2
0+g( ,un( )))d ,

t ∈ [0,1] , n = 0,1,2, · · · , we have un(t) → u∗(t) , vn(t) → v∗(t), as n → . �

4. An example

Considering the following system:⎧⎪⎨⎪⎩
D

1
2
0+( 3

2
(D

5
2
0+u(t)))+ t(v

1
3 + t) = 0, t ∈ (0,1),

D
1
2
0+( 3

2
(D

5
2
0+u(t)))+ t(u

1
3 +3t) = 0, t ∈ (0,1),

(4.1)

subject to the coupled nonlocal boundary conditions⎧⎨⎩ u(0) = u
′
(0) = 0, D

5
2
0+u(0) = 0, D

6
5
0+u(1) =

∫ 1
0 D

2
5
0+v()d +2

∫ 1
0 D

4
5
0+v()d,

v(0) = v
′
(0) = 0, D

5
2
0+v(0) = 0, D

6
5
0+v(1) =

∫ 1
0 D

2
5
0+u()d +3

∫ 1
0 D

4
5
0+u()d

(4.2)
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where 1 = 2 = 1
2 , 1 = 2 = 5

2 , p = q = 3, 1 = 2 = 3
2 , 0 = 0 = 6

5 , 1 = 1 = 2
5 ,

2 = 2 = 4
5 , H1(t) = K1(t) = t , H2(t) = 2t , K2(t) = 3t, and

f (t,v) = t(v
1
3 + t), g(t,u) = t(u

1
3 +3t).

Obviously, f ,g ∈ C([0,1]× [0,+), [0,+)) and f (t,0) = t2 �≡ 0, g(t,0) = 3t2 �≡ 0.

Note that x
1
3 is increasing with respect to the second variable for t ∈ [0,1]. More-

over, set ( ) = 
1
3 ,  ∈ (0,1). Then, ( ) ∈ (0,1),( ) = 

1
3 > 

1
2 = 

1
(1−1) =


1

(2−1) ,

f (t,v) = t[(v)
1
3 + t] = 

1
3 v

1
3 t + t2 � 

1
3 f (t,v) = 

1
3 (v

1
3 t + t2),

g(t,u) = t[(v)
1
3 +3t] = 

1
3 u

1
3 t +3t2 � 

1
3 g(t,u) = 

1
3 (u

1
3 t +3t2),

for any t ∈ [0,1] , u,v ∈ [0,+). Hence, all conditions of Theorem 3.1 are satisfied.
Then, Theorem 3.1 shows that (4.1) and (4.2) has a unique positive solution (u∗,v∗) in

Ph, where h1(t) = t
3
2 , h2(t) = t

3
2 , t ∈ [0,1] and taking any given point (u0,v0) ∈ Ph,

let

un+1(t)=
∫ 1

0
G1(t, ) 3

2
(I

1
2
0+ (vn( )

1
3 + ))d+

∫ 1

0
G2(t, ) 3

2
(I

1
2
0+ (un( )

1
3 +3 ))d ,

vn+1(t)=
∫ 1

0
G3(t, ) 3

2
(I

1
2
0+ (vn( )

1
3 + ))d+

∫ 1

0
G4(t, ) 3

2
(I

1
2
0+ (un( )

1
3 +3 ))d ,

n = 1,2, · · · , then un(t) → u∗(t),vn(t) → v∗(t), as n → , where

1 =
20
17

( 5
2 )

( 17
10)

+
10
21

( 5
2 )

( 21
10 )

, 2 =
30
17

( 5
2 )

( 17
10 )

+
10
21

( 5
2 )

( 21
10 )

,

=
(
( 5

2)
( 13

10 )

)2

−
(

20
17

( 5
2 )

( 17
10)

+
10
21

( 5
2 )

( 21
10)

)(
30
17

( 5
2 )

( 17
10)

+
10
21

( 5
2 )

( 21
10 )

)
,

G1(t, ) = g1(t, )+
t

3
21


(
∫ 1

0
g11(, )d +3

∫ 1

0
g12(, )d),

G2(t, ) =
t

3
2( 5

2 )
( 13

10 )

(∫ 1

0
g21(, )d +2

∫ 1

0
g22(, )d

)
,

G3(t, ) =
t

3
2( 5

2 )
( 13

10 )

(∫ 1

0
g11(, )d +3

∫ 1

0
g12(, )d

)
,

G4(t, ) = g2(t, )+
t

3
21


(
∫ 1

0
g21(, )d +2

∫ 1

0
g22(, )d),
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g1(t, ) =
1

( 5
2)

{
t

3
2 (1−  )

3
10 − (t−  )

3
2 , 0 �  � t � 1,

t
3
2 (1−  )

3
10 , 0 � t �  � 1,

g11(, ) =
1

( 21
10 )

{


11
10 (1−  )

3
10 − (−  )

11
10 , 0 �  �  � 1,


11
10 (1−  )

3
10 , 0 �  �  � 1,

g12(, ) =
1

( 17
10 )

{


7
10 (1−  )

3
10 − (−  )

7
10 , 0 �  �  � 1,


7
10 (1−  )

3
10 , 0 �  �  � 1,

g2(t, ) =
1

( 5
2)

{
t

3
2 (1−  )

3
10 − (t−  )

3
2 , 0 �  � t � 1,

t
3
2 (1−  )

3
10 ,0 � t �  � 1,

g21(, ) =
1

( 21
10 )

{


11
10 (1−  )

3
10 − (−  )

11
10 , 0 �  �  � 1,


11
10 (1−  )

3
10 , 0 �  �  � 1,

g22(, ) =
1

( 17
10 )

{


7
10 (1−  )

3
10 − (−  )

7
10 , 0 �  �  � 1,


7
10 (1−  )

3
10 , 0 �  �  � 1.

And we get

J1( ) = h1( )+
1



(∫ 1

0
g11(, )d +3

∫ 1

0
g12(, )d

)
, ∀ ∈ [0,1],

where h1( ) = 1
( 5

2 )
(1−  )

3
10 (1− (1−  )

6
5 ), ∀ ∈ [0,1],

J2( ) =
( 5

2 )
( 13

10 )

(∫ 1

0
g21(, )d +2

∫ 1

0
g22(, )d

)
, ∀ ∈ [0,1],

J3( ) =
( 5

2 )
( 13

10 )

(∫ 1

0
g11(, )d +3

∫ 1

0
g12(, )d

)
, ∀ ∈ [0,1],

J4( ) = h2( )+
2



(∫ 1

0
g21(, )d +2

∫ 1

0
g22(, )d

)
, ∀ ∈ [0,1],

where h2( ) = 1
( 5

2 )
(1−  )

3
10 (1− (1−  )

6
5 ) , ∀ ∈ [0,1]. �

5. Conclusion

This paper is concerned with (1.1), a system of Riemann-Liouville fractional dif-
ferential equations with  -Laplacian operators, which is coupled by nonlocal boundary
conditions involving the Riemann-Stieltjes integrals. By means of an increasing opera-
tor fixed point theorem, we obtain the local existence and uniqueness of positive solu-
tions to (1.1). This approach very cleverly solves the uniqueness of positive solutions
for differential equations, providing a new way to solve some boundary value problems.
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In addition, we can approximate the unique solution by constructing a convergent iter-
ative sequence. In the end, we give a valid example to illustrate the main result, and the
example also shows that the conditions of Theorem 3.1 are easy to be verified.
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