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ENTIRE SOLUTIONS FOR SEVERAL SYSTEMS

OF NONLINEAR DIFFERENTIAL EQUATIONS
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Abstract. In this paper, by using the Nevanlinna theory and the Hadamard factorization theory of
meromorphic functions, we obtain the existence and the forms of the finite order transcendental
entire solutions of several systems of nonlinear differential equations.

1. Introduction

In 1637, Fermat stated the conjecture (which is known as Fermat’s last theorem)
that the equation xm + ym = 1 cannot have positive rational solutions if m > 2. Since
then, the equation has been a subject of intense and often heated discussions. In 1995,
Wiles [23, 24] confirmed the profound conjecture. However, several research directions
derived from this conjecture are still a popular issue of concern to many mathematicians
today, and one of these issues is discussing the solutions of Fermat-type functional and
differential equations (see e.g. [11] and [14]).

In this paper, we mainly concern the existence and expression forms of entire solu-
tions of the Fermat-type differential equations which are clearly related to the functional
equations

f m(z)+gn(z) = 1 (z ∈ C, m,n ∈ N+). (1.1)

The entire solutions of equation (1.1) were completely analyzed by Montel [17], Cartan
[2], Iyer [12] and Gross [7, 8]. For the convenience of the reader, one can list the related
results as follows:

THEOREM 1. The solutions f (z) and g(z) for equation (1.1) are characterized
as follows:

(1) If m = n = 2 , then the entire solutions are f (z) = cos(h(z)) and g(z) =
sin(h(z)) , where h(z) is any entire function, and the meromorphic solutions are f (z) =
1−2(z)
1+2(z)

and g(z) =
2(z)

1+2(z)
, where (z) is any meromorphic function.
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(2) If
1
m

+
1
n

< 1 , then the entire solutions f (z) and g(z) must be both constant.

(3) If m = n = 3 , then the meromorphic solutions are f (z) =
√

3+′(h(z))
2
√

3(h(z))

and g(z) =
(

√
3−′(h(z)))

2
√

3(h(z))
, where h(z) is any entire function, 3 = 1 and (z) is

denoted as the Weierstrass -function that satisfies ′2(z) = 43(z)−1 under appro-
priate periods.

(4) If m = n � 4 , then the meromorphic solutions f (z) and g(z) must be both
constant.

In recent years, replying on the rapid development of Nevanlinna theory in mero-
morphic function with one and several variables, there were lots of references focusing
on the solutions of the Fermat-type equations in the case the function f (z) has a special
relationship with g(z) .

In 2004, Yang and Li [25] considered the differential equations

f 2(z)+L2( f (z)) = a(z), (1.2)

where L( f (z)) =
n


k=0
bk(z) f (k)(z) (n ∈ N+) is a linear differential polynomial in f (z) ,

and a(z),b0(z),b1(z), · · · ,bn−1(z) are polynomials and bn(z) is a nonzero constant.
Precisely, they obtained the following result.

THEOREM 2. ([25]) If a(z) �≡ 0 , then the transcendental meromorphic solution of
the equation (1.2) must have the form

f (z) =
P(z)eR(z) +Q(z)e−R(z)

2
,

where P(z),Q(z),R(z) are polynomials, and P(z)Q(z) = a(z) . If furthermore all bk(z)
(k = 0,1, · · · ,n−1) are constants, then degP(z)+degQ(z) � n−1 . Moreover, R(z) =
 is a nonzero constant which satisfies the following equations

n


k=0

bk(z) k = −i,
n


k= j

bk(z)
(

k
j

)
 k− j = 0, j = 1,2, · · · , p,

and
n


k=0

bk(z)(− )k = i,
n


k= j

bk(z)
(

k
j

)
(− )k− j = 0, j = 1,2, · · · ,q,

where p and q are the degree of P(z) and Q(z) .

It is easily seen from Theorem 2 that the equation f 2(z) + f ′2(z) = 1 has only

transcendental entire solutions with the form f (z) =
A
2

eBz +
1
2A

e−Bz , where A,B are
nonzero constants.
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Saleeby [21] made some elementary observations on right factors of meromorphic
function to describe complex analytic solutions to the quadratic trinomial functional
equation f 2(z)+2 f (z)g(z)+g2(z) = 1, 2 �= 1 and obtained a result associate with
the partial differential equations u2

x(x,y)+2ux(x,y)uy(x,y)+u2
y(x,y) = 1. Later, Liu

and Yang [15] studied the existence and form of solutions of the following quadratic
trinomial differential equation

f 2(z)+2 f (z) f ′(z)+ f ′2(z) = 1, (1.3)

and proved

THEOREM 3. ([15]) If  ∈ C and 2 �= 0,1 , then equation (1.3) has no tran-
scendental meromorphic solutions.

In 2019, Han and Lü [9] considered the equation (1.1) when g(z) = f ′(z) and 1 is
replaced by ez+ (, ∈ C) and showed

THEOREM 4. ([9]) The meromorphic solutions of equation

f 2(z)+ f ′2(z) = ez+

must be entire functions. Either  = 0 and the general solutions of equation are f (z) =

e

2 sin(z+b) , or f (z) = de

z+
2 . Here b,d ∈ C and d2(4+2) = 4 .

More generally, Luo, Xu and Hu [16] investigated the quadratic trinomial func-
tional equations

f 2(z)+2 f (z) f ′(z)+ f ′2(z) = eh(z), (1.4)

and proved

THEOREM 5. ([16]) Let  ∈C and 2 �= 0,1 , h(z) is a nonconstant polynomial,
and f (z) is a transcendental entire solution of finite order for equation (1.4). Then h(z)
must be of the form h(z) = az+b, where a and b are constants.

A trivial verification shows (1.2) and (1.4) can be rewritten as

{ f (z)+ iL( f (z))}{ f (z)− iL( f (z))} = a(z)

and
{ f (z)+1 f ′(z)}{ f (z)+2 f ′(z)} = eg(z),

respectively, where 1,2 are constants satisfy 1 +2 = 2 , 12 = 1. Motivated by
the above observations, it is natural to raise the following question.

QUESTION 1. How to describe the entire solutions for the equation of more gen-
eral form as

(a f (z)+b f ′(z))m(c f (z)+d f ′(z))n = eh(z), (1.5)

where m,n ∈ N+ , a,b,c,d ∈ C are constants and h is a entire function?
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In addition, the investigations of the solutions for systems involving these general
quadratic equations in C will be a novel work. Henceforth, we consider six classes of
different systems of general nonlinear differential equations in C as follows:{

(a f +b f ′)m(cg+dg′)n = eh,

(ag+bg′)m(c f +d f ′)n = eh,
(1.6)

{
(a f +b f ′)m(cg+dg′)n = eh,

(ag+bg′)n(c f +d f ′)m = eh,
(1.7)

{
(a f +bg′)m(c f ′ +dg)n = eh,

(a f ′ +bg)m(c f +dg′)n = eh,
(1.8)

{
(a f +bg′)m(c f ′ +dg)n = eh,

(a f ′ +bg)n(c f +dg′)m = eh,
(1.9)

{
(a f +bg)m(c f ′ +dg′)n = eh,

(a f ′ +bg′)m(c f +dg)n = eh,
(1.10)

and {
(a f +bg)m(c f ′ +dg′)n = eh,

(a f ′ +bg′)n(c f +dg)m = eh.
(1.11)

The above discussions lead us to raise a natural question.

QUESTION 2. What can be said about the existence and forms of the solutions of
the above systems of nonlinear differential equations in C?

This paper focuses on describing transcendental solutions for various systems of
nonlinear differential equations. In fact, we obtain the description of entire solutions of
finite order for the systems (1.6), (1.7), (1.8), (1.9), (1.10) and (1.11), when m,n ∈ N+ ,
a,b,c,d ∈ C−{0} satisfying that ad �= bc and h is a nonconstant entire solutions in
C . Next, we will give our main results and proofs in three sections.

2. Systems of ODEs (1.6) and (1.7)

The following theorems are concerned with the systems (1.6) and (1.7).

THEOREM 6. Let m,n ∈ N+ , a,b,c,d ∈ C−{0} satisfying that ad �= bc and h
be a nonconstant entire solutions in C , then ( f ,g) is the pair of entire solutions of
finite order for system (1.6) in C if and only if the following assertions hold:

(i) ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h(z) =
(

m
a− ceA

deA −b
+n

a− ceB

deB−b

)
z+m(A+C1)+nC2,

f (z) =
deA −b
ad−bc

e
a−ceA

deA−b
z+C1 ,

g(z) =
deB −b
ad−bc

e
a−ceB

deB−b
z+C2 ,
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where A,B,C1,C2 are constants satisfying that (m−n)
(

a− ceA

deA −b
− a− ceB

deB −b

)
= 0 and

(m−n)(C1−C2) = m(B−A);
(ii) ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h(z) =
(

n
a− ceB

deB −b
−m

c
d

)
z+mC1 +nC3,

f (z) =
de−

c
d z+C1 −be−

a
b z+C2

ad−bc
,

g(z) =
deB −b
ad−bc

e
a−ceB

deB−b
z+C3 ,

where B,C1,C2,C3 are constants satisfying that n
a
b
−m

c
d

+(n−m)
a− ceB

deB−b
= 0 and

m(C1−C3)+n(C3−C2) = mB;
(iii) ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h(z) =
(

m
a− ceA

deA −b
−n

a
b

)
z+m(A+C3)+nC2,

f (z) =
deA −b
ad−bc

e
a−ceA

deA−b
z+C3 ,

g(z) =
de−

c
d z+C1 −be−

a
b z+C2

ad−bc
,

where A,C1,C2,C3 are constants satisfying that m
c
d
− n

a
b

+(m− n)
a− ceA

deA−b
= 0 and

m(C1−C3)+n(C3−C2) = mA;
(iv) ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h(z) = −
(
m

c
d

+n
a
b

)
z+mC1 +nC4,

f (z) =
de−

c
d z+C1 −be−

a
b z+C2

ad−bc
,

g(z) =
de−

c
d z+C3 −be−

a
b z+C4

ad−bc
,

where C1,C2,C3,C4 are constants satisfying that m(C1−C3)+n(C4−C2) = 0 .

THEOREM 7. Let m,n ∈ N+ , a,b,c,d ∈ C−{0} satisfying that ad �= bc and h
be a nonconstant entire solutions in C , then ( f ,g) is the pair of entire solutions of
finite order for system (1.7) in C if and only if the following assertions hold:

(i) ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h(z) =
(

m
a− ceA

deA −b
+n

a− ceB

deB−b

)
z+m(A+C1)+nC2,

f (z) =
deA −b
ad−bc

e
a−ceA

deA−b
z+C1 ,

g(z) =
deB −b
ad−bc

e
a−ceB

deB−b
z+C2 ,

where A,B,C1,C2 are constants satisfying that mA = nB;
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(ii) m = n and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h(z) = −m
( c

d
+

a
b

)
z+m(C1 +C4),

f (z) =
de−

c
d z+C1 −be−

a
b z+C2

ad−bc
,

g(z) =
de−

c
d z+C3 −be−

a
b z+C4

ad−bc
,

where C1,C2,C3,C4 are constants satisfying that C1−C2−C3 +C4 = 0 .

REMARK 1. We can answer Question 1 by taking g = f in (1.6) or (1.7).

REMARK 2. If set g = f , m = n = 1 and c =
1
a

, d =
1
b

,  =
1
2

(
a
b

+
b
a

)
in

(1.6) or (1.7), we then deduce equation (1.4). So both Theorem 2.1 and Theorem 2.2
include Theorem 1.5.

The following lemmas play the key roles in proving our results.

LEMMA 1. ([19, 22]) If f is an entire function in Cn satisfying that its counting
function of zeros n(r, f ) is of finite order and f (0) �= 0 , then there exist a canonical
function g in C

n and a function h in C
n such that f = geh . For the special case

n = 1 , g is the canonical product of Weierstrass.

LEMMA 2. ([18]) If f and g are entire functions and f (g) is an entire function
of finite order, then there are only two possible cases: either

(1) The internal function g is a polynomial and the external function f is of finite
order; or else

(2) The internal function g is not a polynomial but a function of finite order, and
the external function f is of zero order.

LEMMA 3. ([10]) Suppose that a0,a1, · · · ,an (n � 1) are meromorphic functions
in Cm and b0,b1, · · · ,bn are entire functions in Cm such that bi − b j are not con-

stants for 0 � i < j � n. If
n


k=0
akebk ≡ 0 and T (r,ak) = o(T (r)) (k = 0,1, · · · ,n) as

r → + outside of a possible exceptional set of finite linear measure, where T (r) =
min

0�i< j�n
T (r,ebi−b j ) , then ak ≡ 0 (k = 0,1, · · · ,n) .

Proof of Theorems 6 and 7. The sufficiency is obvious, and we only give proof
of the necessity.

We consider the more general system of equations:{
(a f +b f ′)m(cg+dg′)n = eh,

(ag+bg′)s(c f +d f ′)t = eh,
(2.1)

where m,n,s, t ∈N+ , a,b,c,d ∈C−{0} satisfying that ad �= bc and h is a nonconstant
entire solutions in C . The system of ODEs (2.1) includes the systems (1.6) and (1.7)
as special cases.
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Let ( f ,g) be a pair of transcendental entire solutions of system (2.1). It is easy to
see from (2.1) that a f +b f ′ , cg+dg′ , ag+bg′ , c f +d f ′ have no any zero and pole.
Thus, by Lemmas 1 and 2, there exist four polynomials 1,2,1,2 in C such that

a f +b f ′ = e1 , cg+dg′ = e1 ,

ag+bg′ = e2 , c f +d f ′ = e2 .

This immediately leads to

m1 +n1 = s2 + t2 = h. (2.2)

Noting that ad �= bc , and solving the above systems, we obtain

f =
de1 −be2

ad−bc
, (2.3)

f ′ =
ae2 − ce1

ad−bc
, (2.4)

g =
de2 −be1

ad−bc
, (2.5)

g′ =
ae1 − ce2

ad−bc
. (2.6)

By taking the derivative of both sides of (2.3) and (2.5) and combining (2.4) and (2.6),
we get

(c+d ′
1)e

1 = (a+b ′
2)e

2 , (2.7)

(c+d ′
2)e

2 = (a+b ′
1)e

1 . (2.8)

Now, four cases are discussed below.

Case 1. Both 1 −2 and 2 −1 are constants.
Suppose 1 −2 = A , 2 −1 = B , then  ′

1 =  ′
2 ,  ′

2 =  ′
1 , therefore (2.7) and

(2.8) become

(deA −b) ′
1 = a− ceA, (2.9)

(deB −b) ′
2 = a− ceB. (2.10)

If deA−b = 0, we have a−ceA = 0 by (2.9). And we then obtain ad = bc , which
is a contradiction with the assumption. Therefore, deA − b �= 0. Similarly, we have
deB −b �= 0 from (2.10). Thus, it follows from (2.9) and (2.10) that

 ′
1 =  ′

2 =
a− ceA

deA −b
,  ′

2 =  ′
1 =

a− ceB

deB −b
.

Hence

2(z) =
a− ceA

deA −b
z+C1,1(z) =

a− ceA

deA −b
z+C1 +A,

1(z) =
a− ceB

deB −b
z+C2,2(z) =

a− ceB

deB −b
z+C2 +B,

(2.11)
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where C1,C2 are constants. Thus, it yields from (2.2) that

h(z) =
(

m
a− ceA

deA −b
+n

a− ceB

deB−b

)
z+m(A+C1)+nC2

=
(

s
a− ceB

deB −b
+ t

a− ceA

deA −b

)
z+ s(B+C2)+ tC1,

which implies that

(m− t)
a− ceA

deA−b
+(n− s)

a− ceB

deB−b
= 0,

(m− t)C1 +(n− s)C2 = sB−mA.

Substituting (2.11) into (2.3) and (2.5), we have

f (z) =
de1(z)−be2(z)

ad−bc
=

deA −b
ad−bc

e
a−ceA

deA−b
z+C1 ,

g(z) =
de2(z)−be1(z)

ad−bc
=

deB−b
ad−bc

e
a−ceB

deB−b
z+C2 .

Case 2. 2 −1 is constant and 1 −2 is not constant.
Suppose 2−1 = B , then  ′

2 = ′
1 , and because 1 and 2 are both polynomials,

according to Lemma 3 for (2.9) we can know

c+d ′
1 = 0,a+b ′

2 = 0,

(deB −b) ′
2 = a− ceB.

Similar to the discussion in Case 1, we get

1(z) = − c
d

z+C1, 2(z) = −a
b
z+C2,

1(z) =
a− ceB

deB−b
z+C3, 2(z) =

a− ceB

deB −b
z+C3 +B,

(2.12)

where C1,C2,C3 are constants. Thus, it yields from (2.2) that

h(z) =
(

n
a− ceB

deB −b
−m

c
d

)
z+mC1 +nC3

=
(

s
a− ceB

deB −b
− t

a
b

)
z+ s(B+C3)+ tC2,

which implies that

t
a
b
−m

c
d

+(n− s)
a− ceB

deB−b
= 0,

mC1 − tC2 +(n− s)C3 = sB.
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Substituting (2.12) into (2.3) and (2.5), we have

f (z) =
de1(z) −be2(z)

ad−bc
=

de−
c
d z+C1 −be−

a
b z+C2

ad−bc
,

g(z) =
de2(z)−be1(z)

ad−bc
=

deB−b
ad−bc

e
a−ceB

deB−b
z+C3 .

Case 3. 1 −2 is constant and 2 −1 is not constant.
Suppose 1 −2 = A , similar to the discussion in Case 2, we get

2(z) = − c
d

z+C1, 1(z) = −a
b
z+C2,

2(z) =
a− ceA

deA−b
z+C3, 1(z) =

a− ceA

deA −b
z+C3 +A,

(2.13)

where C1,C2,C3 are constants. Thus, it yields from (2.2) that

h(z) =
(

m
a− ceA

deA −b
−n

a
b

)
z+m(A+C3)+nC2

=
(

t
a− ceA

deA −b
− s

c
d

)
z+ sC1 + tC3,

which implies that

s
c
d
−n

a
b

+(m− t)
a− ceA

deA−b
= 0,

sC1−nC2 +(t−m)C3 = mA.

In view of (2.3), (2.5) and (2.13), we have

f (z) =
de1(z)−be2(z)

ad−bc
=

deA −b
ad−bc

e
a−ceA

deA−b
z+C3 ,

g(z) =
de2(z) −be1(z)

ad−bc
=

de−
c
d z+C1 −be−

a
b z+C2

ad−bc
.

Case 4. Neither 1−2 nor 2 −1 are constants.
Since 1 , 2 , 1 and 2 are both polynomials, according to Lemma 3 for (2.9)

and (2.10) we can obtain

c+d ′
1 = 0, a+b ′

2 = 0, c+d ′
2 = 0, a+b ′

1 = 0.

Thus
1(z) = − c

d
z+C1, 2(z) = −a

b
z+C2,

2(z) = − c
d

z+C3, 1(z) = −a
b
z+C4,

(2.14)
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where C1,C2,C3,C4 are constants. We then have from (2.2) that

h(z) =−
(
m

c
d

+n
a
b

)
z+mC1 +nC4

=−
(
s
c
d

+ t
a
b

)
z+ sC3 + tC2,

which gives that

(m− s)
c
d

+(n− t)
a
b

= 0,

mC1 − tC2− sC3 +nC4 = 0.

Substituting (2.14) into (2.3) and (2.5), we have

f (z) =
de1(z) −be2(z)

ad−bc
=

de−
c
d z+C1 −be−

a
b z+C2

ad−bc
,

g(z) =
de2(z) −be1(z)

ad−bc
=

de−
c
d z+C3 −be−

a
b z+C4

ad−bc
.

The proof above works for the case (s,t) = (m,n) and (s,t) = (n,m) at the same
time. Therefore, this completes the proof of Theorems 6 and 7. �

3. Systems of ODEs (1.8) and (1.9)

The following theorems deal with entire solutions of finite order for systems (1.8)
and (1.9).

THEOREM 8. Let m,n ∈ N+ , a,b,c,d ∈ C−{0} satisfying that ad �= bc and h
be a nonconstant entire solutions in C , then ( f ,g) is the pair of entire solutions of
finite order for system (1.8) in C if and only if the following assertions hold:

(i) ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

h(z) =
(m+n)(ae

m
n A+B− ceA)

aeB− c
z+C,

f (z) =
de

n(A−B)
m+n −be

m(B−A)
m+n + m

n A

ad−bc
e

ae
m
n A+B−ceA

aeB−c
z+ C

m+n ,

g(z) =
ae

m(B−A)
m+n − ce−

mA+nB
m+n

ad−bc
e

ae
m
n A+B−ceA

aeB−c
z+ C

m+n ,

where A,B,C are constants satisfying that c �= aeB ;
(ii) ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

h(z) =
(m+n)(beB−d)
be

m
n A+B −deA

z+C,

f (z) =
de

n(A−B)
m+n −be

m(B−A)
m+n + m

n A

ad−bc
e

beB−d

be
m
n A+B−deA

z+ C
m+n

,

g(z) =
ae

m(B−A)
m+n − ce−

mA+nB
m+n

ad−bc
e

beB−d

be
m
n A+B−deA

z+ C
m+n

,
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where A,B,C are constants satisfying that d �= be
m
n A+B−A ;

(iii) ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h(z) =
(
meA +ne

m
n A

)
z+m(A+C1)+nC2,

f (z) =
deeAz+C1+A −bee

m
n Az+C2+ m

n A

ad−bc
,

g(z) =
aee

m
n Az+C2 − ceeAz+C1

ad−bc
,

where A,C1,C2 are constants satisfying that e2A = e
2m
n A = 1 and e(

m
n −1)A �= 1 .

THEOREM 9. Let m,n ∈ N+ , a,b,c,d ∈ C−{0} satisfying that ad �= bc and h
be a nonconstant entire solutions in C , then ( f ,g) is the pair of entire solutions of
finite order for system (1.9) in C if and only if the following assertions hold:

(i) ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h(z) =
(
meB +neA

)
z+m(B+C2)+n(A+C1),

f (z) =
deeBz+C2+B −beeAz+C1

ad−bc
,

g(z) =
aeeAz+C1+A − ceeBz+C2

ad−bc
,

where A,B,C1,C2 are constants satisfying that e2A = e2B = 1 , eA+B �= 1 , (m−n)(eA−
eB) = 0 and (m−n)(C1−C2) = mB+nA;

(ii) ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

h(z) =
(m+n)(de

m
n A −b)eB

deA −b
z+C,

f (z) =
de

n(A−B)
m+n −be−

mA+nB
m+n

ad−bc
e

(de
m
n A−b)eB

deA−b
z+ C

m+n ,

g(z) =
ae

m(B−A)
m+n − ce

m(B−A)
m+n + m

n A

ad−bc
e

(de
m
n A−b)eB

deA−b
z+ C

m+n ,

where A,B,C are constants satisfying that deA �= b;
(iii) ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

h(z) =
(m+n)(ceA−a)

(ce
m
n A −a)eB

z+C,

f (z) =
de

n(A−B)
m+n −be−

mA+nB
m+n

ad−bc
e

ceA−a

(ce
m
n A−a)eB

z+ C
m+n

,

g(z) =
ae

m(B−A)
m+n − ce

m(B−A)
m+n + m

n A

ad−bc
e

ceA−a

(ce
m
n A−a)eB

z+ C
m+n

,

where A,B,C are constants satisfying that ce
m
n A �= a.

The proofs of these two theorems are given below.
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Proof of Theorem 8. The sufficiency is obvious, and we only give proof of the
necessity.

Let ( f ,g) be a pair of transcendental entire solutions of system (1.8). It is easy to
see from (1.8) that a f +bg′ , c f ′ +dg , a f ′ +bg , c f +dg′ have no any zero and pole.
Thus, by Lemmas 1 and 2, there exist four polynomials 1,2,1,2 in C such that

a f +bg′ = e1 , c f ′ +dg = e1 ,

a f ′ +bg = e2 , c f +dg′ = e2 .

This immediately leads to

m1 +n1 = m2 +n2 = h. (3.1)

Noting that ad �= bc , and solving the above systems, we obtain

f =
de1 −be2

ad−bc
, (3.2)

f ′ =
de2 −be1

ad−bc
, (3.3)

g =
ae1 − ce2

ad−bc
, (3.4)

g′ =
ae2 − ce1

ad−bc
. (3.5)

By taking the derivative of both sides of (3.2) and (3.4) and combining (3.3) and (3.5),
we can get

d( ′
1e

1 − e2) = b( ′
2e

2 − e1), (3.6)

a( ′
1e

1 − e2) = c( ′
2e

2 − e1). (3.7)

We next consider two different cases in the following.

Case 1. 1 −2 is not constant.
According to (3.1) we know that 2−1 =

m
n

(1 −2) is not a constant either.

Case 1.1. 1−2 is constant.
Suppose 1 −2 = A , then 2 −2 = 2 −1 +A is not a constant, and there is

 ′
2 =  ′

1 , therefore (3.6) and (3.7) become

d ′
1e

1 −b ′
2e

2 = (d−beA)e2 , (3.8)

ce1 −ae2 = (c−aeA) ′
1e

2 . (3.9)

Since a,b,c,d �= 0, according to Lemma 3 for (3.9), 1 −2 must be a constant, set
1 −2 = B , now (3.8) and (3.9) become

(deB −b) ′
2e

2 = (de−A −b)e1 ,

(ceB −a)e2 = (ce−A −a) ′
1e

1 .



Differ. Equ. Appl. 16, No. 4 (2024), 321–341. 333

Since 1−2 is not a constant, using Lemma 3 again we can get

(deB −b) ′
2 = de−A −b = ceB −a = (ce−A−a) ′

1 = 0.

Considering ad �= bc , there must be  ′
1 =  ′

2 = 0, which shows that 1,2,1,2 are all
constants, combining with (3.1), we can get that h is also a constant, which contradict
with the conditions of the Theorem.

Case 1.2. 1−2 is not constant.
Since a,b,c,d �= 0, using Lemma 3 for (3.6) and (3.7), we know that at least one

of 1 −1 , 1 −2 and 2−2 is a constant.

Case 1.2.1. 2 −2 is constant.

Set 2 − 2 = A , then neither 1 − 1 =
m+n

n
(1 − 2) + A nor 1 − 2 =

1 −2 +A are constants, now (3.6) and (3.7) become

d ′
1e

1 +be1 = (deA +b ′
2)e

2 ,

(c ′
2e

A +a)e2 = ce1 +a ′
1e

1 .

Again, we can get b = c = 0 by Lemma 3, which contradict with the conditions of the
Theorem.

Case 1.2.2. 1 −2 is constant.
Set 1 −2 = A , then 2 −2 = 2−1 +A is not constant, now (3.6) and (3.7)

become

(d ′
1e

A −b ′
2)e

2 = de2 −be1 ,

(ceA −a)e2 = c ′
2e

2 −a ′
1e

1 .

Using Lemma 3 again, we can get b = d = 0, which contradict with the conditions of
the Theorem.

Case 1.2.3. 1 −1 is constant.
Set 1 −1 = A , then 2 −1 = 2−1 +A is not constant, now (3.6) and (3.7)

become

(b+d ′
1e

A)e1 = b ′
2e

2 +de2 ,

(a ′
1 + ceA)e1 = c ′

2e
2 +ae2 .

According to Case 1.2.1, we know that 2 −2 will not be a constant. Using Lemma
3, we can get a = d = 0, which contradict with the conditions of the Theorem.

Case 2. 1 −2 is constant.
Set 1 −2 = A , then there are 2 − 1 =

m
n

A , 2 −2 = 1 −2 +
m
n

A and

 ′
1 =  ′

2 ,  ′
1 =  ′

2 , now (3.6) and (3.7) become

b( ′
1e

m
n A −1)e1 = d( ′

1e
A −1)e2 , (3.10)

a( ′
1− e

m
n A)e1 = c( ′

1 − eA)e2 . (3.11)
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Case 2.1. 1−2 is constant.
Set 1−2 = B , then according to (3.1) it can be concluded that

1 =
h

m+n
+

n(A−B)
m+n

, 2 =
h

m+n
− mA+nB

m+n
,

1 =
h

m+n
+

m(B−A)
m+n

, 2 =
h

m+n
+

m(B−A)
m+n

+
m
n

A.

(3.12)

Substituting these into (3.10) and (3.11), we obtain

(be
m
n A+B −deA)h′ = (m+n)(beB−d),

(aeB − c)h′ = (m+n)(ae
m
n A+B− ceA).

Obviously, be
m
n A+B−deA = 0 and aeB−c = 0 can not hold simultaneously. Otherwise

it will result in ad = bc , contradiction.

Case 2.1.1. aeB − c �= 0.

Now we have h′ =
(m+n)(ae

m
n A+B− ceA)

aeB− c
, thus h(z) =

(m+n)(ae
m
n A+B− ceA)

aeB − c
z

+C , combining with (3.12), (3.2) and (3.4), we can get

f (z) =
de1(z)−be2(z)

ad−bc
=

de
n(A−B)
m+n −be

m(B−A)
m+n + m

n A

ad−bc
e

ae
m
n A+B−ceA

aeB−c
z+ C

m+n ,

g(z) =
ae1(z)− ce2(z)

ad−bc
=

ae
m(B−A)

m+n − ce−
mA+nB
m+n

ad−bc
e

ae
m
n A+B−ceA

aeB−c
z+ C

m+n ,

where A,B,C are constants satisfying that c �= aeB . This is Theorems 8 (i).

Case 2.1.2. be
m
n A+B−deA �= 0.

Now we have h′ =
(m+n)(beB−d)
be

m
n A+B−deA

, thus h(z) =
(m+n)(beB−d)
be

m
n A+B −deA

z+C , com-

bining with (3.12), (3.2) and (3.4), we can get

f (z) =
de1(z) −be2(z)

ad−bc
=

de
n(A−B)
m+n −be

m(B−A)
m+n + m

n A

ad−bc
e

beB−d

be
m
n A+B−deA

z+ C
m+n

,

g(z) =
ae1(z)− ce2(z)

ad−bc
=

ae
m(B−A)

m+n − ce−
mA+nB
m+n

ad−bc
e

beB−d

be
m
n A+B−deA

z+ C
m+n

,

where A,B,C are constants satisfying that d �= be
m
n A+B−A . Thus, we get (ii) in Theo-

rems 8.

Case 2.2. 1−2 is not constant.
According to Lemma 3, we can get

 ′
1 =  ′

2 = eA = e−A,  ′
1 =  ′

2 = e
m
n A = e−

m
n A.
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Considering 1−2 is not constant, there is e2A = e
2m
n A = 1, e(

m
n −1)A �= 1, therefore

2(z) = eAz+C1, 1(z) = eAz+C1 +A

1(z) = e
m
n Az+C2, 2(z) = e

m
n Az+C2 +

m
n

A,

where A,C1,C2 are constants. In view of (3.1), (3.2) and (3.4), we have

h(z) = m1(z)+n1(z) =
(
meA +ne

m
n A

)
z+m(A+C1)+nC2,

f (z) =
de1(z)−be2(z)

ad−bc
=

deeAz+C1+A −bee
m
n Az+C2+ m

n A

ad−bc
,

g(z) =
ae1(z)− ce2(z)

ad−bc
=

aee
m
n Az+C2 − ceeAz+C1

ad−bc
.

Thus, we complete the proof of Theorems 8 (iii). �

The proof of Theorem 9 is roughly the same as the proof of Theorem 8, we also
only give proof of the necessity and will briefly describe the similar parts.

Proof of Theorem 9. Following the same reasoning, we can still get (3.2), (3.4),
(3.6) and (3.7), but (3.1) becomes

m1 +n1 = n2 +m2 = h. (3.13)

Case 1. 1 −2 is not constant.

According to (3.13) we know that 2 −1 =
m
n

(1 −2) is not a constant either.

Case 1.1. 1−2 is constant.
Suppose 1 −2 = A , then 2 −2 = 2 −1 +A is not a constant, and there is

 ′
1 =  ′

2 , therefore (3.6) and (3.7) become

d ′
1e

1 −de2 = b( ′
2− eA)e2 , (3.14)

ce1 − c ′
2e

2 = a(1− ′
1e

A)e2 . (3.15)

Since a,b,c,d �= 0, according to Lemma 3 for (3.15), 1 −2 must be a constant, set
1 −2 = B , now (3.14) and (3.15) become

d( ′
1e

B −1)e2 = b( ′
2− eA)e2 ,

c(eB − ′
2)e

2 = a(1− ′
1e

A)e2 .

Since 2 −2 is not a constant, using Lemma 3 again we can get

d( ′
1e

B −1) = b( ′
2− eA) = c(eB − ′

2) = a(1− ′
1e

A) = 0,

Considering ad �= bc , there must be

 ′
1 = e−B,  ′

2 = eB,  ′
1 = e−A,  ′

2 = eA.
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According to 1−2 = A,1 −2 = B and 1−2 is not constant, we can get

e2A = e2B = 1, eA+B �= 1,

2(z) = eBz+C2, 1(z) = eBz+C2 +B,

2(z) = eAz+C1, 1(z) = eAz+C1 +A,

where A,B,C1,C2 are constants, substituting these into (3.13), (3.2) and (3.4)

h(z) = m1(z)+n1(z) =
(
meB +neA)

z+m(B+C2)+n(A+C1)

= n2(z)+m2(z) =
(
neB +meA)

z+mC1 +nC2,

f (z) =
de1(z)−be2(z)

ad−bc
=

deeBz+C2+B −beeAz+C1

ad−bc
,

g(z) =
ae1(z) − ce2(z)

ad−bc
=

aeeAz+C1+A − ceeBz+C2

ad−bc
,

and there are (m−n)
(
eA − eB

)
= 0 and (m−n)(C1−C2) = mB+nA . This completes

the proof of Theorems 9 (i).

Case 1.2. 1−2 is not constant.
Since a,b,c,d �= 0, using Lemma 3 for (3.6) and (3.7), we know that at least one

of 1 −1 , 1 −2 and 2 −2 is a constant.

Case 1.2.1. 1 −2 is constant.
Set 1 −2 = A , then 2−2 = 2−1 +A is not constant, now (3.6) and (3.7)

become

d( ′
1e

A −1)e2 = b( ′
2e

2 − e1),

a( ′
1e

1 − e2) = c( ′
2 − eA)e2 .

Using Lemma 3 again, we can get a = b = c = d = 0, which contradict with the con-
ditions of the Theorem.

Case 1.2.2. 2 −2 is constant.

Set 2 −2 = A , then 1 −1 =
m+n

m
(2 −1)−A is not constant, now (3.6)

and (3.7) become

d ′
1e

1 +be1 = (deA +b ′
2)e

2 ,

(c ′
2e

A +a)e2 = ce1 +a ′
1e

1 .

Using Lemma 3 again, we can get b = c = 0, which contradict with the conditions of
the Theorem.
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Case 1.2.3. 1 −1 is constant.

Set 1 −1 = A , then 2 −2 =
m+n

n
(1 −2)−A is not constant, now (3.6)

and (3.7) become

(b+d ′
1e

A)e1 = b ′
2e

2 +de2 ,

(a ′
1 + ceA)e1 = c ′

2e
2 +ae2 .

Using Lemma 3 again, we can get a = d = 0, which contradict with the conditions of
the Theorem.

Case 2. 1 −2 is constant.

Set 1 − 2 = A , then there are 2 − 1 =
m
n

A , 2 − 2 = 1 − 2 +
m
n

A and

 ′
1 =  ′

2 ,  ′
2 =  ′

1 , now (3.6) and (3.7) become

(de
m
n A −b)e1 = (deA −b) ′

2e
2 , (3.16)

(a− ce
m
n A) ′

1e
1 = (a− ceA)e2 . (3.17)

Case 2.1. 1−2 is constant.
Set 1−2 = B , then according to (3.13) it can be concluded that

1 =
h

m+n
+

n(A−B)
m+n

, 2 =
h

m+n
+

m(B−A)
m+n

+
m
n

A,

1 =
h

m+n
+

m(B−A)
m+n

, 2 =
h

m+n
− mA+nB

m+n
.

(3.18)

Substituting these into (3.16) and (3.17), we obtain

(deA −b)h′ = (m+n)(de
m
n A −b)eB,

(ce
m
n A −a)eBh′ = (m+n)(ceA−a).

Obviously, deA −b and ce
m
n A −a can not hold simultaneously.

Case 2.1.1. deA −b �= 0.

Now we have h′ =
(m+n)(de

m
n A −b)eB

deA −b
, thus h(z) =

(m+n)(de
m
n A −b)eB

deA −b
z+C ,

combining with (3.18), (3.2) and (3.4), we can get

f (z) =
de1(z)−be2(z)

ad−bc
=

de
n(A−B)
m+n −be−

mA+nB
m+n

ad−bc
e

(de
m
n A−b)eB

deA−b
z+ C

m+n ,

g(z) =
ae1(z)− ce2(z)

ad−bc
=

ae
m(B−A)

m+n − ce
m(B−A)

m+n + m
n A

ad−bc
e

(de
m
n A−b)eB

deA−b
z+ C

m+n ,

where A,B,C are constants satisfying that deA �= b . This is Theorems 9 (ii).
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Case 2.1.2. ce
m
n A −a �= 0.

Now we have h′ =
(m+n)(ceA−a)

(ce
m
n A −a)eB

, thus h(z) =
(m+n)(ceA−a)

(ce
m
n A −a)eB

z +C , com-

bining with (3.18), (3.2) and (3.4), we can get

f (z) =
de1(z)−be2(z)

ad−bc
=

de
n(A−B)
m+n −be−

mA+nB
m+n

ad−bc
e

ceA−a

(ce
m
n A−a)eB

z+ C
m+n

,

g(z) =
ae1(z) − ce2(z)

ad−bc
=

ae
m(B−A)

m+n − ce
m(B−A)

m+n + m
n A

ad−bc
e

ceA−a

(ce
m
n A−a)eB

z+ C
m+n

,

where A,B,C are constants satisfying that ce
m
n A �= a . This is Theorems 9 (iii).

Case 2.2. 1−2 is not constant.
According to Lemma 3, we can get

de
m
n A −b = (deA −b) ′

2 = (a− ce
m
n A) ′

1 = a− ceA = 0.

Considering ad �= bc , there must be  ′
1 =  ′

2 = 0, which shows that 1,2,1,2 are all
constants, combining with (3.13), we can get that h is also a constant, which contradict
with the conditions of the Theorem. �

4. Systems of ODEs (1.10) and (1.11)

In this section, we give two theorems about the last two systems (1.10) and (1.11)
and their proofs.

THEOREM 10. Let m,n ∈ N+ , a,b,c,d ∈ C−{0} satisfying that ad �= bc and
h be a nonconstant entire solutions in C , then ( f ,g) is the pair of entire solutions of
finite order for system (1.10) in C if and only if:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h(z) =
(
meA +neB

)
z+mC1 +n(B+C2),

f (z) =
deeAz+C1 −beeBz+C2

ad−bc
,

g(z) =
aeeBz+C2 − ceeAz+C1

ad−bc
,

where A,B,C1,C2 are constants satisfying that mA = nB.

THEOREM 11. Let m,n ∈ N+ , a,b,c,d ∈ C−{0} satisfying that ad �= bc and
h be a nonconstant entire solutions in C , then ( f ,g) is the pair of entire solutions of
finite order for system (1.11) in C if and only if:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h(z) =
(
meA +neB

)
z+mC1 +n(B+C2),

f (z) =
deeAz+C1 −beeBz+C2

ad−bc
,

g(z) =
aeeBz+C2 − ceeAz+C1

ad−bc
,
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where A,B,C1,C2 are constants satisfying that (m−n)
(
eA − eB

)
= 0 and (m−n)(C1−

C2) = n(A−B) .

Proof of Theorems 10 and 11. The sufficiency is obvious, and we only give
proof of the necessity.

We also consider the more general system of equations:{
(a f +bg)m(c f ′ +dg′)n = eh,

(a f ′ +bg′)s(c f +dg)t = eh,
(4.1)

where m,n,s, t ∈N+ , a,b,c,d ∈C−{0} satisfying that ad �= bc and h is a nonconstant
entire solutions in C . The system of ODEs (4.1) includes the systems (1.10) and (1.11)
as special cases.

Let ( f ,g) be a pair of transcendental entire solutions of system (4.1). It is easy
to see from (4.1) that a f +bg,c f ′ +dg′,a f ′ +bg′,c f +dg have no any zero and pole.
Thus, by Lemmas 1 and 2, there exist four polynomials 1,2,1,2 in C such that

a f +bg = e1 , (4.2)

c f ′ +dg′ = e1 , (4.3)

a f ′ +bg′ = e2 , (4.4)

c f +dg = e2 . (4.5)

This immediately leads to

m1 +n1 = s2 + t2 = h. (4.6)

Noting that ad �= bc , and solving the above systems, we obtain

f =
de1 −be2

ad−bc
, (4.7)

f ′ =
de2 −be1

ad−bc
,

g =
ae2 − ce1

ad−bc
, (4.8)

g′ =
ae1 − ce2

ad−bc
.

By taking the derivative of both sides of (4.2) and (4.5) and combining (4.4) and (4.3),
we get

 ′
1 = e2−1 , (4.9)

 ′
2 = e1−2 . (4.10)

If 2 −1 is not constant, then the left side of (4.9) is a polynomial, but the right
side of (4.9) is a transcendental function, which is a contradiction. Thus 2 −1 is a
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constant, set 2 −1 = A . And similarly 1 −2 is also a constant, set 1−2 = B .
So we have

 ′
1 =  ′

2 = eA,  ′
1 =  ′

2 = eB,

therefore
1(z) = eAz+C1, 2(z) = eAz+C1 +A,

2(z) = eBz+C2, 1(z) = eBz+C2 +B,
(4.11)

where C1,C2 are constants. Substituting (4.11) into (4.6), we obtain

h(z) =
(
meA +neB)

z+mC1 +n(B+C2)

=
(
seA + teB)

z+ s(A+C1)+ tC2,

which implies that (m− s)eA + (n− t)eB = 0 and (m− s)C1 + (n− t)C2 = sA− nB ,
then in view of (4.7), (4.9) and (4.11), we have

f (z) =
de1(z) −be2(z)

ad−bc
=

deeAz+C1 −beeBz+C2

ad−bc
,

g(z) =
ae2(z)− ce1(z)

ad−bc
=

aeeBz+C2 − ceeAz+C1

ad−bc
.

The proof above works for the case (s,t) = (m,n) and (s,t) = (n,m) at the same
time. Therefore, this completes the proof of Theorems 10 and 11. �
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