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CONTINUOUS DEPENDENCE OF SOLUTIONS FOR A VISCOELASTIC
PSEUDO-PARABOLIC EQUATION OF CARRIER TYPE

NGUYEN HUU NHAN, HO THAI LYEN, LE THI PHUONG NGOC
AND NGUYEN THANH LONG*

(Communicated by I. Vel¢i¢)

Abstract. This paper explores an initial boundary value problem for a viscoelastic nonlinear
pseudo-parabolic equation of Carrier type. The existence and uniqueness of solutions are es-
tablished by the linear approximation and the Faedo-Galerkin method. Under appropriately suf-
ficient conditions, the continuous dependence of solutions on the relaxation functions, and the
nonlinear components in the problem are also studied.

1. Introduction

In this paper, we consider the following initial boundary value problem for a class
of nonlinear viscoelastic pseudo-parabolic equation

U — %% (M(XJ, Hu(t)ll(z))xux) + ou(t)Auy — /Otg(t — 5)Au(s)ds (1.1)
=f(otuu), 1 <x<R 0<t<T,

u(l,r)=u(R,1) =0, (1.2)

u(x,0) = dig(x), (1.3)

where R > 1 is a given constant and u, o, f, g, fdp are given functions, the lin-
1

ear operator A is defined by Au = —(uy, + —uy), and the integral quantity Hu(t)||(2) =
X

[E xu? (x,1)dx is known as Carrier term.

It is well known that pseudo-parabolic equations have arisen in sciences such as
hydrodynamics, thermodynamics, filtration theory, and are used for describing a variety
of important physical processes such as the unidirectional propagation of nonlinear,
dispersive, long waves [5], the aggregation of population [22], the unsteady property
of second-grade or third-grade fluid flows [1], [2], [14] and so on. In this context, the
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pseudo-parabolic equation (1.1) is inspired by the mathematical model in the work of
Hayat et.al. [13] describing unsteady flows of second-grade fluid in a circular cylinder

J 1
wy = (V—i—aE) (wrr—i-;w,)—Nw, O<r<a, t>0,

wla,t) =W, t>0, (1.4)

w(r,0) =0, 0<r<a,

where w(r,1) stands for the velocity along the z-axis, Vv is the kinematic viscosity, o is
the material parameter, N is the imposed magnetic field, W is the constant velocity at
r =a and a is the radius of the cylinder. Later, some extending investigations of (1.4)
have been mentioned in literature. For example, in [19], the authors proved some results
of the local existence and exponential decay of solutions for the following viscoelastic
pseudo-parabolic problem

 — (u(t) + a(t)%> Au+ /0 ot — )Au(s)ds

=f(xtu), 1<x<R, 0<t<T, (1.5)
uy(1,2) — Cu(l,t) = u(R,1) =0,
u(x,0) = dip(x),

where R > 1, { > 0 are given constants, u(r), o(t), f, g, iip are given functions and
u = u(x,) is unknown function. After that, the results shown in [19] have been ex-
tended by Ngoc et.al. in [17] and [18], in which they have proved the global existence,
uniqueness, finite time blow-up, and general decay of solutions for the problem (1.5).
Further, we introduce several other results of the problem (1.5) related to the long-time
behavior of solutions for the pseudo-parabolic equations with “ (1, T) -periodic” condi-
tion and “(N + 1) -points condition in time” respectively shown in [20] and [21].

Studying pseudo-parabolic equations in multi-dimensional cases, some results such
as stability, global existence, and finite time blow-up for the following viscoelastic
pseudo-parabolic equations

u,—kAu,—Au—|—/(:g(t—T)Au(r)drzf(u), (1.6)

have been considered. The potential well method is one of the favorite methods com-
monly applied to studying the equation (1.6). For example, under considering the equa-
tion (1.6) with f(u) = |u|’~*u and by using the Galerkin method and an improved po-
tential well method depending on time 7, Sun et.al. [24] proved the global existence and
the finite time blow-up of solutions with low initial energy level J(up) < d (depth of po-
tential well). Moreover, the authors also obtained the upper bounds for the blow-up time
of solutions at arbitrary energy level by Levine’s concavity method. When the source
f(u) of the equation (1.6) is variable-exponent type, precisely f(u) = |u|” (=2 Mes-
saoudi and Talahmeh [16] derived an estimate of the blow-up time of solutions with
initial data at arbitrary energy levels. In addition, we also refer to other recent results of
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local/global existence, decay, and blow-up of solutions for the pseudo-parabolic equa-
tions related to (1.6), see [60], [7], [8], [26]-[29].

In the above works, the authors have essentially paid attention to results of lo-
cal/global existence, uniqueness, blow-up property, and large-time behavior of solu-
tions, however, there have been few studies of continuous dependence of solutions on
data mentioned. After the earlier works of Douglis [9] and Fritz [10], the topic of con-
tinuous dependence of solutions for partial differential equations on data has received
much attention. Indeed, Giir and Giile¢ [1 1] proved the continuous dependence of so-
lutions on the parameters o and f3 to the initial boundary value problem for a strongly
damped nonlinear wave equation

u,,—Au+[3|u,\2u,=aAu,, xeQ, t>0,
u(x,0) = up(x), u(x,0) =u;(x), x€Q, (1.7)
u=0,x€dQ, t>0.

In another work, Benilan and Crandall [4] considered the continuous dependence
of solutions for the following Cauchy problem on nonlinearities

{ u—AP(u) =0, in R* xR*,

(1.8)
u(x,0) =up(x), xeR".

The authors defined the continuous dependence on data of solutions in the sense
[[m (t) = oo ()] 11 gy — O, @S P — @eo, With ¢, instead of ¢,

where ¢, : R — R are continuous and nondecreasing functions, ¢,,(0) =0, and u,,
are solutions of (1.8). Also, the readers can refer to some similar results recently shown
in [3], [12], [25], in which the continuous dependence of solutions under the effects of
small perturbations of parameters has been considered.

Inspired by the works mentioned above, in this paper, we provide a new contri-
bution to the continuous dependence of solutions on data for pseudo-parabolic equa-
tions. More precisely, it is related to the relaxation functions g, ¢, and the nonlinear
components (, f of the problem (1.1)—(1.3). This result is presented in Section 3
(see Theorem 3.1), and summarized as follows. Suppose that u = u(f,u,c,g) and
uj =u(fj,1;,0;,8;) are the solutions of the problem (1.1)—(1.3) respectively depend-
ing on the datum (f,u,ct,g) and (fj, u;,@j,g;) sastified

0157l 30 s~ bl
+||ocj—a’|cl([oj*])+||gj—gHH1(O7T*) — 0, as j— oo,

where 7% is a fixed positive constant. Then u; strongly converges to u in Wi(T) as
J — oo. Our paper is organized as follows. Section 2 presents some preliminaries and
results of the existence and uniqueness of the problem (1.1)—(1.3) proved by the linear
approximation and the Faedo-Galerkin method. In Section 3, we show the continuous
dependence of solutions for the problem (1.1)—(1.3) on the relaxation functions g(z),
o(t), and the nonlinear terms u, f. Finally, in Section 4, we summarize the obtained
main results of our paper, and propose some potential studies in the future.
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2. Existence and uniqueness

Throughout this paper, we set Q = (I,R) and use L?> = L*>(Q) to denote the
Lebesgue space with the inner product defined by (u,v) = [{fu(x)v(x)dx, L*-norm

of a function u € L? is denoted by ||u|| = \/(u,u). We use H" = H™(Q) to denote the
_ 1/2

Sobolev spaces with the norm ||ul|m = (Z}”:O HD’uH2> :

Moreover, we also introduce three weighted scalar products

R
(u,v) :/ xu(x)v(x)dx, u,v € L2, (2.1)
1
(u,v); = (u,v) + (ux,vx), u,v € H',
<M,V>2 = <u,v> + <MXan> + <uxx;Vxx>, u,ve Hz,

then L?>, H', H? are the Hilbert spaces with respect to the above scalar products. We

denote [|ullg = /{u,u), uwe L?; |lully = /(.}y, ue HY; |lully = \/{u,u),, ue H?.
Put
Hy={veH":v(1)=v(R)=0}. (2.2)

The symmetric bilinear form «a(-,-) is defined by
a(u,w) = (uy,vy), forall u,ve H(}. (2.3)
Then, we have the following lemmas.

LEMMA 2.1. The imbeddings H' — C°(Q) is compact and

IVllco) < oA/ IVIIG+ llvillg, forall veH', 2.4)

where

R R 2
ﬁiﬂ+ H(ﬁﬁﬁ)' (2.5)

LEMMA 2.2. The imbeddings H} — C°(Q) is compact and
(@) Vo < VR—=Tlvllg, forall ve H},

y V2R(R -1 (2.6)
) oy < ZEEZD ) foran ve .

Yo =

LEMMA 2.3. The symmetric bilinear form a(-,-) is continuous on Hé X Hé and
coercive on H&.
Moreover, we also have

(@) la(u,v)[ < fluxlolIvello

(i) a(v,v) > vl @7

forall u, ve H(}.
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LEMMA 2.4. There exists the Hilbert orthonormal base {w;} of L? consisting of
the eigenfunctions w; corresponding to the eigenvalue A; such that

O<A <A< <A <A <oey lim Ay = oo,
jmtoe (2.8)
a(wj,v)=Aj(w;,v) forall vGH&J:l,Z,---.

Furthermore, the sequence {w;/\/A;} is also the Hilbert orthonormal base of H&
with respect to the scalar product a(-,-).
On the other hand, we have w; satisfying the following boundary value problem

1 10 )
Aw;j = — (wjxx—F;wjx) =—;$(ijx)=/ljwj, in (L,R),

wj(1) =w;(R) =0, w;€C”([l,R]).

(2.9)

The proof of Lemma 2.4 can be found in [[23], p. 87, Theorem 7.7], with H = [?
and a(-,-) as defined by (2.3).

LEMMA 2.5. The operator A :Hé —H = (Hé)/ in (2.9) is uniquely defined by
Lax-Milgram’s lemma, i.e.,

a(u,v) = (Au,v), forall u,veH_. (2.10)
REMARK 2.1. The sequence {w i/\/ /l,%—/lf} is also the Hilbert orthonormal
base of H?> N H{ with respect to the scalar product (u,v) — a(u,v) + (Au,Av).

1/2
2 2
LEMMA 2.6. On H>NH{, the two norms u ||uHH2ﬁH(; = (||uXHO + ||AuHO>

1/2
and u— |jul|y = (HuxH(z) + Huxx||(2)> are equivalent. More specifically, there exists a

positive constant a such that

vl < g < V3l Vi € N, @)
Proof. u€ H*NH}, we have
2 R 2 R 1y
||AuH0:/ X |Au(x)] dxz/ x(uxx+—ux> dx
1 1 x
1

R 1 1 ’
— A (Xujzcx‘quxxux_'— ;ui) dx = ||Mxx||(2) +2<uxx7 ;ux> + H;Mx

0
. 1 . 1

(i) For 0 < &€ < 1, choose k > p and set ky :mm{l—s,k—g},wehave
1

€

1 1
2<uxxy_ux> g ZHuxxH() — Uy
X X

2 2
<€ fJunllo + = llullo
0
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4 > ol + 2o 1) > ol ol & el
= (1- &) el — 3
We deduce that
(ko4 1) (Il + 14013 > -+ 1wl
> a3+ (1~ €) el — 5 ol
= (1)l (k- ) Il

2 2 2
> ki (Jleall§ sl ) = e 13-

Thus .
2 2 2 1 2 a2
HquzmHé = [|uxllg + [|Aullg > 1 ully = ai |lully-
(i1) We have
2 2 o
Al < -+ sl |+
X o X o
2 1P 2 2
< 2+ 2| | <20l + 20l
0
Therefore
2 2 2 2 2
||”||H2QH(; = [Juxllp + [[Aully < 2 [Juel§ + 3 [Juxl|5

2 2 2
< 3 (Jlecly + el = 3l
Lemma 2.6 is proved. [
The notation ||-||y is the norm in the Banach space X, and X’ is the dual space

of X. We denote by LP(0,T;X), 1 < p < o for the Banach space of functions u :
(0,7) — X measurable, such that

T 1/p
el Lo o.rx) = (/0 ||”(f)§df> <o for 1< p <o,

and
””HL“(O,T;X) = esssup [u(?)[[y for p=co.
0<t<T
. , du du
Denote u(r)(x) = ulx,1), u(t) =u'(t) = (1) = —-(t), ux(t) = 5-(1), unlr) =
2%u

W(t)'
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. = 0
With f € CK(Qx [0,T*] xR?), f= f(x,t,y1,2), we put D f = 8x’ Dyf = 8_{’
P
D2+,-f:a—j:7 i=12and Df =D{"---DP*f, a=(ou,,0u)€Z, |a| = o+

4oy <k, DOf=DO0) f—
For a fixed constant 7* > 0, we make the following assumptions:

(H) g€ H*NHY;

(H2) gEHl(O,T*);

(H3) acCY[0,T*]), a(t) > ot > Oforallz € [0,T];

(Hy) peC*(Qx[0,T*]xRy), u(x,1,2) > e >0, ¥(x,1,v) € Qx [0,T*] x Ry ;
(Hs) feC' (Qx[0,T*] xR?), f(x,£,0,v) =0, V(x,z,v) € {1,R} x [0,T*] x R.

DEFINITION 2.7. A weak solution of (1.1)—(1.3) is a function u € C([0, T]; H* N
H}) suchthat ' € L(0,T; H>*NH ), and u satisfies the following variational problem

(' (1), w) +a(t)a(u (t),w) + (ulu] ()ux(t), ws)
= Jog(t —s)a(u(s),w)ds+ (f[ul(t),w), Yw € Hy,ae.,t€(0,T),
u(x,0) = dip(x),

(2.12)
where
w1 (1) = (et (1) [6) = e >0, (2.13)
Flud(xt) = f (et u(x,1), ux(x,1)).
Foreach T € (0,T*], let Wr
Wr = {veC((0,T;H*NHy):V € L"(0,T;H* NHy)} , (2.14)
be the Banach space with the associated norm
VIl = max { Vlleqo. ey ||"/||L°°(0,T;H2mH01)} : (2.15)
Also, we consider the Banach space W, (T) (see Lions [15])
Wi (T) = {veC(0,T];Hy) : v € L* (0,T;Hy) }, (2.16)
with the norm defined by
”VHWI(T) = H"”c([()j];H(;) + ||V/HL2(O,T;H(§) . (2.17)
For M > 0, we put
B(M,T) = {v eWr : vlly, < M} (2.18)
and
Ku()=fllcion =X 1D fllcwy (2.19)
veZi, lvI<1
Ru() = ltleay = % ID7Rl ey

YeZ3, lyI<2
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lotller o, = Nltlleo ) + ’|a/’|C([O,T*])’

where
||f||C(QM) = SuP{‘f(xyta}’h)’Z” : (x7taylay2) S QM}7
HHHC(QM) = Sup{|.u(x7tvz)| : (x»t7z) € QM}?
lollcqor = sup la(r)],
0<t<T*
with

Qu = [1,R] x [0,T*] x [—\/R— 1M, VR — IM} X [=vM, M|,
Qu = [1,R] x [0,T*] x [0, M?].

We use the successive approximation method with the first approximation uy =0.
Suppose that

Up_1 € B(M,T), (2.20)
we find wu,, € B(M,T), m > 1 to be the solution of the following problem
(U5, (1), w) + au(t)a (1, (£), W) + @ (85 (1), )

= Jog(t —s)a(un(s),w) ds + (Fu(t), w),

2.21)
forall we H}, ae., t€(0,T),

um(O) = llg,

where

R
am (t;u,w) = (U ()1t wy) = /1 Xl (2, )1t () wi (x)dx, Yu,w € H, (2.22)

o 5s1) = it 00) = p (1, a1 (1)
En(xat) = f[umfl](xvt) = f(xJ,um,l(x,t)7Vum,1(x,t)) .
Then we have the following theorem.

THEOREM 2.8. Assume that ily, g, o, W, f satisfy (Hy)—(Hs), respectively,
then there exist the constants M > 0 and T > 0 such that the problem (2.21)—~(2.22)
admits u, € BIM,T).

Proof. (i) Faedo-Galerkin approximations. Consider the basis {w;} for L? as
in Lemma 2.5, we search for a finite-dimensional approximate solution of the problem
(2.21)—(2.22) having the following form

usy (1) = 5 el 0w, (2.23)
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where c,(fj)-, j=1,---,k are determined by the following linear ordinary differential

equations
(il (6),w) + oy (6),w7) + a0 (1), w5)
— it —s)a(ul) (s),w))ds+ (Fu (1), w;), 1<j<k (2.24)

) (0) = gy,
in which
in whic o w ) N .
MOk—Zj L0 wj— ¥ strongly in H” N Hy. (2.25)

Using the contraction mapping principle, it is not difficult to prove the existence

of the approximate solution uﬁ,’f ) (¢) of (2.24)in [0,T].

(i) Priori estimates. Next, the following priori estimates show the boundness of

the approximate solution u (1).
Put

O N e

e
o)

+2/0[ “uﬁ,ﬁ‘)(s)HO+ uff;?(@”im@)(
From (2.24) and (2.26), we obtain

35 () < 50) = ||/ |+ |[v/m 04| 227)
—l—/otds/leu,;(x,s) ('uﬁ,’,ﬁ@(x,s)'z—k 'Au,(,lf)(x,s)|2) dx
s (Je o)
+2 /0 et —s) [a(ult) (), 88 () + (Aull) (), i) (1) + A4alY (1)) | i
—2/t dr/rg/(r—s) a(uﬁ,’f)(s),u,(,f)(r)) + (Auﬁf)(s),Auﬁ,]f)(r))] ds
—|—2/ um +Au,(n)( )>ds+2/0t <xum(s)u£,]3(s)7Au£,]f)(s)>ds
(5 [xum <r>u£,’;2 O] A0+ (B o) ik 0)

= H\/ Hm(o)ﬁomHz + H\/ Um(O)AlZOk“(2)+2§:1I./'a

where A, = min{l, W, .} and
2 t
H2NH]} * /0

520 [y + )

(k)

ti’ ()

2

ds. (2.28)
H2NH]

i) (s)\

) (z)‘
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We shall estimate the right-hand side terms of (2.32) as follows.

— Estimate of I, + I,. First, we have

< Ky (1) (142 [l () llg [l -1 () [ ) (229)
< Ku(p) (1 —|—2M2) = Uy

Then, I; + I, is estimated as follows

|y, (x,1)

ot s [ © a2 au® (x5
1—|-12—/0 ds/1 Xy, (x,8) ’umx(x,s)’ —|—‘Aum (x,s)‘ dx (2.30)

~250) ([t + a0 ) s
< i +2100)) [ ( u5,’:,2<s>H2+ o)) as

.uM+2|g / Sm

— Estimate of I3, Iy, Is. Using Cauchy-Schwarz inequality and the inequality

1 A L
2ab < Ba* + Ebz, forall a, b€ R, with 8 = a and the estimation

vllo < [vello Vv € Hy,

V2R(R—1)
2
then I, Iy, I5 are estimated as follows
r
=2 /0 glt—s) [a(uﬁ,i‘) (s),u (1)) + (AP (), Au® (1) +Au,<,f>(t)>} ds (231

<2 [ et =91 [, 2] + a0 o -+ s o] s

<2 [Ig-9)

+ a0 (@ + i’ @), )] s
<2 st V50 VS 0+ 0vaVS) 0] as
=2(1++2) /Ot 15— )1V SY (95 (1)as

Q) 1 2 " k)
<8BSy 0+ 5 (1+V2) Ll | Sn' ()ds

o], o]

t r
L=-2[ar / §r—) [allf) (), ) (7)) + Auld (5), 4ull) ()] s

<2 [lar {1 =9 [, [k ]+ ] s J s
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t r -~ —
< 2/ dr/ |g'(r—s)| \/ SE,I:) (s)V S,(:) (r)ds
0 0
/ T (k)
<2FT*||gHLzW / Sy (s)ds

Is —2/ Fon(s) iy (5) + Auf} (s) )
o nwo(\\w ol o] o
<2Ku() [ <7m(f “D ) + |]Au£5><s>H0> ds
< 2K (f) <1+%> A VY (s)as

2
< TKL ()R (1—!—@) —|—/0[ 5,(,];) (s)ds

T
= TR (R + [ ) (s)ds.

V2R(R—1)
3 .
—- Estimate of Ig. In order to estimate Is, we need to the following estimate

where R=1+

| U (2, 8) | = | Dy [t 1] (2, 1) | < Rig ().
Then

Is=2 /0 [ <xum(s)u£,’2 (s),Aul (s)> ds (2.32)
ul sl
(k)

< 2RKM / S s)ds.

t
< 2RRy () / i
0

— Estimate of 1.

L= <% [xum(t)ug,l,ig(t)} Aud (z)> (2.33)

Lol

2
7x [n @]

<H; [xum() " }

<p HAugf)(f)

+3 )3

<58 0+ % |2 o] |

0
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2

as follows.
0

2 eyt

We will estimate the term

2 [etna50)] = pant0)5 [0 0)] +tte) [0
= gt (Al (1) + pe(0) P ()]
hence

2
% [t (0)uf520)| = —xatn () A1 () = xut 1) Au) (1) (2.34)

1) [lfd )]+ () [ ()]

On the other hand, using the following equalities

1) = plit1) i) = 1 (1, a1 (0115
(1) = Dpt 1] (x,1) = Dt (st a1 (0]
Wy (,2) = Dophut—1](x,2) + 2D3 4 [t 1] (,7) (-1 (£) 15,1 (2))5
Uy (x,) = D1 Dy [ty 1] (%, 1) -+ 2Dy D3 14y —1] (X, 2) (1t 1( )ty (1)),
we obtain
|t (2,1)| < Kag (W), | Moma (x,2) | < Kna (1)
|y, (x,1) | < Ra (1) (14 2M7) = iy,
|ty (5,0)] < Kaa () (142M7) = pigy.
Therefore
H - [0l )] (2.35)
me i i H a0

wlt) [und©)] | +Hu )]
< R () [t ()| -+ Rusi s )|+ Rasiy sl 0| + RRuuta0) a0

< (i, ko], o] o]

0

< (o o o+ o)

< 2Rujy\/ 54 (0).
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It follows that

2
H— (1 )uffﬁ(t)] (2.36)
d k) ?
<
X Ha [x,um mx +/ a x,um mx(s):| ds o
02 (0 ’
<
<2 - w0 +2( [ | 155 [rumtonsio] | as)
a 2 t (92 (k) 2
< ~ *
<2 E [x 2t (0)doky] —|—2T / 535 [xum(s)umx (s)} Ods
<2 i[ (0)diok.] +8TR2 /S
< x XUm (V) Uox
Finally, by using (2.33) and (2.36), the term /7 is estimated as follows.
4 (k) &)
h={= [xum(z)umx(t)} A (1) (2.37)
9 (k)
H xum( Jutm (1 } Ho
(k) (k) ’
< 7 =
<Bla 0]} + g | 55 [mmtonsio] |
o 29 P8
< =
<85 0+ 5 | 5 b0y | + 57 i 5
— Estimate of I3. Using Cauchy-Schwarz inequality, we get that
_ (k) b 2 s
I = (Fn 1), A (1)) < g5 1 Fn O3 +BS,, (1) (2.38)
On the other hand, we have that
1
O)+/ F) (s)ds, (2.39)
0

and
Fp(x,0) = Do f [ty 1] (1) + D3 f [t 1] (x,2 )ity (%,2) ++ Da f [t 1] (x,2) Vg, (x,2).
It leads to

|Fne )] < Kaa (f) [1+ [ty (o) + [V (x,1) ]
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R —1 ! !
Vo + ||t ) ||+ [ Vet (0] (2.40)
[R?—1
S—+2M| =Fy

Then, from (2.39)—(2.40), we have

and

||Fr:1(t)||0 < Ku(f)

< Ku(f)

1
[Em (o < 1| Fm (0)||o+/O (| En(9)][gds < [1f (-0, dt0, doxllg + T Fyy- (2.41)
Since (2.38), it follows from (2.41) that
1 —(k
Iy = <Fm (0.4 0)) < 75 1En )13+ BS, 0 (2.42)

(”f( 0 uOv”OxHO—i_TFM) +ﬁSm ( )

ml~ml~

[Hf( 0,0, 3+ 72 (Fip?] + B3, (1)

A .. o
Choosing f§ = ra and combining (2.30)—(2.32), (2.37), and (2.42), it implies
from (2.27) that

_ _ r _
S (1)< S+ Tdi (M) + () [ 5, (5)ds (2.43)
0

where

Somi = 33 17010101+ 5 (| /A + | OB )

a 2

e E [ (0) k]

12
o) = - (KiOR -+ 51 (5)?)

+

b

0

2 N
(M) = - (1 + 151+ 218(0)] + 2VT7 gl o)+ 2RRu (1))

96
/12 (1—!—\/_) Hg”él(o,r*) AzTRz(.“M)2~
(2.44)

Thanking the convergence shown in (2.25), there exists a constant M > 0 inde-
pendent of k and m such that

- 1
Somk < §M2, forall m, k€ N. (2.45)
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By choosing M as above, we can choose T € (0,7*] such that

(%M2 +Td, (M)) exp (Tdy(M)) < M, (2.46)
and
kr = 2+/Tni(M)exp (T (M)) <1, (2.47)
where
12 4.
m(M) = 55 [MRG (1) +4K5(f)] (2.48)

1T, 6
m(M) = o= | iy +218(0)] + 2= llgl ) +2VT Nl o.7+) | -

Applying Gronwall’s lemma, we deduce from (2.43), (2.45), and (2.46) that

5

(1) < MPexp (~Tda(M)) exp (1da(M)) < M?, (2.49)
forall r € [0,T], for all m and k. Therefore, we have
ulf) € B(M,T), forall m and k€ N. (2.50)

Due to (2.50), there exists a subsequence of {u,(,ic )}, still denoted by {u,(,ic )} such
that

ud in  L=(0,T;H>*NH}) weakly*,

il in  L=(0,T;H*>NH}) weakly*, 2.50)
) = in  L*(0,T;H>NH}) weakly,

Un € B(M,T).

Taking to the limitations in (2.24) and (2.25), we have that u,, satisfies (2.21) and
(2.22)in L*(0,T). Theorem 2.8 is proved. [

By Theorem 2.8, the local existence and uniqueness of solutions for the problem
(1.1)—(1.3) are proved and shown in Theorem 2.9 below.

THEOREM 2.9. Suppose that (H))—(Hs) are satisfied. Then, the recurrent se-
quence {un} defined by (2.20)~(2.22) strongly converges to u in W\(T), and u €

B(M,T) is the unique weak solution of the problem (1.1)—(1.3).
Moreover, the following estimate is valid

([tm = ully, 7y < Crk7, forall meN, (2.52)

where kr € (0,1) is defined as in (2.47) and Cr is a constant depending only on T, i,
g o, W, fandkr.

Proof. First, we prove the local existence of (1.1)—(1.3). It is necessary to prove
that {u,} (in Theorem 2.8) is a Cauchy sequence in W; (T). Let vy = thyr1 — Upm.
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Then v,, satisfies the variational proplem

i (0),w) +a(t)a (v, (8),w) + @t (5 0m(8), W) + (o1 (1) — pon ()] s (), W)
= Jog(t —s)a(vm(s),w)ds+ (Fuy1(t) = Fnlt),w),
forall we H}, ae., t €(0,T),

vm(0) =0,
(2.53)
where
1) = el 1)) = (1, a1 (013 (2.54)
Fu(x,t) = flum—1](x,2) = f (,t,um—1(x,2), Vi1 (x,2)) .
Taking w = v},,(¢) in (2.53); and then integrating in 7, we get
> ' ko 2 ! 2
A (1) < /0 ds/1 Xy i1 (%, 8) Vi (%, 8)dx — 2g(0)/0 Vi (5)]|o ds (2.55)

—|—2/Otg(t—s)(vmx(s)mm(t))ds—2/(:dr/org/(r—s)(vm(s)mm(r))ds
[ B (9= B9 0 5) V)
2 [ B 5) = Fa0) () ds

=Zi+-+Zs,
where A, = min{l, u., o} and
Zu®) = a1+ [ (IO + o) . 256
Next, we have to estimate the integrals on the right-hand side of (2.55).

1
By using the hypotheses (H,), (H), and the inequalitiy 2ab < §a®+ §b27 Va,b e

. A ~ ~ .
R, with 6 = F*’ the terms Zy, ---, Z4 are estimated as follows

/%/xMﬂxsmxs W/z (2.57)
7= =20) [ Ism)3ds <21g0)| [ Zu(5)ds
Z3=2 [ 4= ) om(s)ovmn(1)ds
<2 [ lgtr = 5)| 1vmn(s) o om0y s

<2/()t\g(t—s)|\/2m(s) Z(1)ds
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_ t r_
S(Szm(t)Jrl/ gz(S)dS/ Zn(s)ds
S Jo 0
_ 1 >
<6Zu(t) + 5 el [ Zn(s)ds:
1 r
Zi= =2 [dr [ g/(r=5)mnls)vmn(r))ds
0 0
1 r
<2 d/ "(r— Zm Zm d
[ [[ 1= /2l Zutrras
r
VT e 2 f, Znle)as

In order to estimate Zs, we use the following estimation
|1 (x,1) = tom (7))
(. Jan (O)13) = b (.1, 1 (1) 13|
(

Zs == [ b 15) = ) s 5), Vi) @59
< [ 1) = )= s 9l [ )
<202 Rig (1) [t | [Viels) ot

1o as ' )
< STMRG () vt [y +8 [ [l 5

—

< STMRE () 11y ) +5Z1).

Applying the mean value theorem to the fucntion f, we have
1Em1(8) = En(0)llo < Kna (F) [[[Vm—10)llo + [Vvm—1 (D) llo] = 2Kna (F) [V llw (7 -

Hence, we can estimate Zg as follows

_ t

Z5=2 / (Fns 1 (5) = Fn(s),V,,(5))ds (2.59)

0
!
<K () vty |, [ s

t
< SATRE) Iy + [ [ 0) s

— O~

< SATKy () Vi1 [y ) + 8Zun (1)

=7
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Choosing 6 = %, using (2.57), (2.58) and (2.59), we deduce from (2.55) that

_ r
Zun() < T (M) [yt [, o)+ 22(M) /O Z (5) ds, (2.60)

where 11 (M), n2(M) are defined by (2.48).
Using Gronwall’s lemma, we have

Zn(t) < Ti(M)exp 2T ma(M)) |[vm-1 3, ) - (2.61)

It leads to
Vmllw, 7y <kt [[Vi-tllw, 7y, Vm €N, (2.62)

where kr < 1 is defined as in (2.47), this implies that
l|tmsp = tom |y oy < M n oy, pen. (2.63)
P Wi(T) = 1 —kyp

The above inequality ensures that {u,,} is a Cauchy sequence in Wi (7). Then
there exists u € Wy (T') such that

Uy — u strongly in Wy (T). (2.64)

Note that u,, € B(M,T), then there exists a subsequence {u,,; } of {u,} such that

Uy — U in  L=(0,T;H>NH}) weakly*,
= il in L”(0,T;H’NH}) weakly*, (2.65)
ue B(M,T).

We note that
[E(t) = 1] (0llo < 2Kpa () [[tm—1 = el (7 »
it follows from (2.64) that
Fp— f[u] stronglyin L=(0,T;L?). (2.66)
Similarly
[t (1) — e [u] (1)] < 2M Ry (1) a1 — el 7

it implies that
Um — W[u] stronglyin L*(0,T). (2.67)
Letting m = mj — o0 in (2.21), (2.22) and using (2.64), (2.65)3, (2.66) and (2.67),
we get that there exists u € B(M, T) satisfying (2.12)—(2.13). The proof of the solution

existence is completed.
Finally, we need to prove the uniqueness of solutions.
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Let u;, u € B(M,T) be two weak solutions of the problem (2.11)—(2.12). Then

u = uj — up satisfies the variational problem

w) +a(t)a (W' (1), w) + (i) (ue(t), we) + (L (1), we)

(u'(1),
= [ st =s)atuts) s+ Fa)m), .68
forall we HO, ae., 1€(0,T),
u(0) =0,
where
‘L_L()C,l) :H[ul}(xvt)_H[MZ](xvt)v (2.69)
f,0) = flur)(x,1) = flua] (x,0),
iler) = plu) () = p (et Ja )« e) = f Cet ) )
Taking w = «(¢) and integrating in time from 0 to 7, we get
1 R !
/ ds/ xuf(ms)uf(x,s)dx—Zg(O)/O l|lux(s)||gds (2.70)
2 [ (=) i(s) ()
—2/tdr/rg’(r—s)(ux(s),ux(r»ds
—2/ $)up(s), ul(s) ds—|—2/ u'(s))ds,
where A, = min{l, W, .} and
2.71)

20 =l @R+ [ (I« O[5+ 1)) s

Similarly, the integrals on the right-hand side of (2.70) are computed as follows
(2.72)

Z() < pu o Z (s) ds

where
271, 12
i1 +218(0) |+ 29T |1¢ |2 0.7y + 75 NleliF2c0.7
*

.5M=/1—*
12 V2R(R -1 ?
1)2+/12K2 (f) <1+%>

+2M* K3 (WR(R —
=0 i.e., up=up. The

Therefore, using Gronwall’s lemma, it follows that Z (¢)
uniqueness of solutions is confirmed. Consequently, Theorem 2.9 is proved com-

pletely. O
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3. Continuous dependence

In this section, we consider the continuous dependence of solutions for the prob-
lem (1.1)—(1.3) on the functions f, u, o, g. Let @y EHzﬂH(} and f, u, o, g satisfy
the assumptions (H)—(Hs). By Theorem 2.9, the problem (1.1)—(1.3) admits a unique
weak solution u = u(f,u,o,g) dependingon f, u, a, g.

For each fixed o > 0 and u, > 0, we put

F (O, 1) = {(f 1, 0,8) € CHAX[0,T*] x R2) x C2(Qx [0,T*] xR;)  (3.1)
xCH([0,T*]) x H'(0,T*) :
f(x,2,0,v) =0, ¥(x,t,v) € {1,R} x [0, T*] xR;
W(x,2,2) = i >0, V(x,2,v) € QX [0,T*] x Ry;
aft) > a, >0, Vi €[0,T%]}.

Then we have the following theorem.

THEOREM 3.1. Let T* > 0 and iip € H? OH(}. Then, there exists a positive con-
stant T such that the solution of the problem (1.1)—(1.3) is stable with the datum f, U,

a, g, Le. if(f,,u,a,g), (f/uu‘ﬁaﬁgj) Eﬁ(a*a“*) such that

Ej= A5/1u>% K _chl(QM) +AS/IH>%H“J' - “HCZ(QM) G2

+HO‘J'_O‘Hcl([o,T*])+Hgi—gHHl(o,T*) —0, as j— oo,

then
uj—u stronglyin Wi (T), as j— oo, (3.3)

where uj = u(fj, j,0;,8;). Moreover, we have the estimation
Huj—uHWI(T) <CrEj, VjeN, (3.4)

where Cr is a positive constant only dependenton T, f, U, o, g, and iy.

Proof. First, we note that if (f,u,ct,g), (fj,1),0,8;) € F (0, ), and the fol-
lowing additional condition is fulfilled

su i — = su DPf;—DP H — 0, as j— oo,
sup [1 = fller o M>%B€ng<1H 1= | o !

(3.5)

L R D'u; — DY N 0, 1 oo,
sup ||~ oy SL;%YEZ%KQH W=Dl e,y — 0. as j—

o — O‘Hcl([o,r*]) +lsi - gHHl(o,T*) — 0,85 j — oo,
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then there exists jo € N (independent of M) such that

1, VM >0,Vj > jo,
2,YM >0,Yj = jo,

10 fill iy < L+ IPPFll gy - VB € 224 1B
HDy.“ch(sz) <L+[Dll o,y Y €23, 1Yl
<

VAN

L (3.6)
HajHCl([Oj*]) L+ [lellcro,re) - Vi 2 Jos

ngHHl(o,T*) <I+lgllgior) i = Jo

By setting the constants Ky (f) and Kj/(u) as in (2.19), and due to (H,)—(Hs),
we deduce from the above estimates that

Ku(f;) <Du(f) = 1+ Ku(f) + 30, Ku(f;), ¥M > 0,Vj €N,
Rar(1t)) < Dar(p) = 14 Kag(u) + 227" R (1), YM > 0,Vj € N,

letillr o) < Pi(e) = 1+ lledllerory + 220 e o7y » Vi €N
||gj’|H1(O,T*) <Da(g) =1+ I8l o) + Zfil Hg.fHHl(o,T*) ,VjeN. )

Therefore, the Faedo-Galerkin approximation sequence {uﬁ,’f )} corresponding to
(fim,00,8) = (fj, 1), ¢,8), j €N also satisfies the priori estimates as in Theorem 2.8
and

ul) € B(M,T), forall m and ke N, (3.8)

where M and T are independent of j. Indeed, in the process, we can choose two posi-
tive constants M and T as in (2.45)—(2.47) with replacing Ky (f), Ky (1), || olci o+ -

Igllzrt 0.7+ Y Paa(f), Daa(m), Di(ex), Da(g), respectively.
Hence, the limitation u; of {uﬁ,]f >} as k — oo and later m — oo is the unique

weak solution of (1.1)—(1.3) corresponding to (f,u, o, g) = (fj,1),0;,8;), j€N, and
satisfying

u; € B(M,T), forall jeN. (3.9)

Moreover, by using the same arguments as in the proof of Theorem 2.9, we can
prove that the limitation u of {u;} as j — oo, is the unique weak solution of (1.1)-

(1.3)and u € B(M,T).

Put
fi(xt) = filuj](x,0) = flu)(x,1), (3.10)
g;(t) =g;(t) —g(t), a;(t) = oy(t) — a(t),
061) = ) (1) — ) (1),
[ (x7t) = ‘LL[M}(X,[),
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then u; = u; — u satisfies the variational problem

(@ (1), w) + o (t)a (@ (1), w) + ([L(t) (1), wx)
= —0j(t)a (' (t),w) — (i ()u (), wx)
+ Jo 8t —s)a(ij(s),w)ds+ [y §;(t —s)a(u(s),w)ds  (3.11)
—|—<fj(t),w>, VweH}, ae., t€(0,T),
uj(x,0)=0.

Taking v = i) () in (3.11); and then integrating in 7, we get

_ t R t
[L*Sj(t)g/o ds/1 x,ﬂ/(x7s)ﬁ§x(x,s)dx—2gj(0)/0 Hﬁjx(s)Héds (3.12)
~2¢,0 /0 (5, 005152 [ 109 @3(5): (0
+2/ gt —s){(ux(s),ux(t))ds

_2/ dr/ & (r— ) ({u(s), () s

—2/ dr/ gj )(ux(s), w0 ju(r))ds — 2/ oj(s (s),ﬁ}x(s»ds

_2/ ‘uj Jujx(s), Jx ds—|—2/ ))ds —Ej 11,
where @, = min{1, o, i, } and

500 = |zl + [ (17 ]G+ 170 s G.13)

We will estimate the terms /; on the right-hand side of (3.12). Because the imbed-
ding H'(0,T*) < C°([0,T*]) is continuous, hence lgllcoqo,r+p) < D= |8l g1 0,7+ for
all g€ H'(0,T).

By the following inequality

()| < Ruapr) (1+-2002)
the terms I; — Ig on the right-hand side of (3.12) are estimated as follows
12 R 13
I :/0 ds xﬂ’(x,s)ﬁ?x(X,S)dX<KM(u) (1+2M2)/0 Hzijx(s)Hf)ds (3.14)

< Ku(w) (1+2M7) A S;(s)ds;

r
gJ'HHl(o,T*)/O §;(s)ds

t
= —2g;(0) /O |@x(s)||>ds < 2Dy
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= =22,0) [ w(s). 75 (s))ds

&illmor / e Ho\/ )ds

<MY D8 g+ [ 5101
=2 [ g0 =)@ (6), T (0)ds
<2 [ lese=9) o )] ods
<8lauly+ 5 [ e=ods [ ao);as
0 0
< 5§j(f)+éT*Dz* gJ'HIZ'{l(O,T*)/Ot Sj(s)ds
%T*Dz*zﬂ /té_’-sds, S > 0;
Is = 2/g s (5), () ds<2/ 7,0 — ) (us(s), (1)) s
<2 g |uux<s>||ouﬁ,-x<z>|\ods
<8l +5 [ &—sds [ o) Rds
SO 180 [ IuslFds

- 1
< 88;(t) + <T*M*D}

< 2D+

<88+

N

15}
STMDY &2 ey 5 > 0
I = —ZAIdV/()rg}(r—S)ij(sLﬁ,-x(r)>ds
<2 ['ar [[gytr— 9] |70 70 s
<2/Otdr/0r|g}(r_s)} m
VT o [ Sio)as
<2Vl / 'S ) < 2T Di(e) [ 50
L= —2/ dr/ &5(r— 5)(u(s), w;x(r))ds

<2/0 dr/o 185(r = )| lwc(s) g || @ (r) || o ds
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<2 [[ )y [ 1209 o) s
<2 /O H»z,»x(r>|\§dr_ v Vdr (/ 18,(r—s)] ||ux(s)||0ds>2]
<2:/0’sz,»x<r>||3d [/a(/; Pas [ty ods)]m

1/

[t 1/2
< [l VTN e [ | ]

<ovrn [ s Ve

1/2

HL20T*
< T*MzHg,»Hi,IOT + [ Si0ar
IS:—Z/ oj(s ), ,x (s))ds
<z||oz,»v|c.([o,m) /0 Jate) |y 7]y s
< [ nlds+ 5 1@ oy [ o) ods

g(SSj(z)jLl

5 V6 > 0.

M ||5‘J'Hcl ([0,T%])

We shall estimate Iy as follows
t t
19:_2/0 <ﬂj(s)ujx(s),17/jx(s)>d5<2/0 Hﬁj(s)ujx(s)Ho||IZ/J-X(S)HOds (3.15)
te, ) 1 t B 2
<5/ Hujx s Hods—I—g/ ‘,uj (s ujx(s)HOds
<85;( /
5

On the other hand, we have

8 K

2,660)| = [a ] e.r) = sl ()|
< o] ey r) = o Crg )|+ [ o) = pa[u] (x,1)|
< - u||c (@) T+ 2MKu () ||,
< sup 15~ e + 20K 1) 2R 0

< sup |~ |+ MRy (1) V2R(R — 1)1/ S(1).
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This leads to
t
J
< /0 (sup||u, Bl e gy, +MRu()VIR(R—1)4/S (s ) luja(s) g s

<2M2/0 l(;upoHuj—Mlcz(gM)) +2M21?f4(u>R(R—1)2Sj(s>] ds
>

2
1 ()uje(s) | ds

2 r
<2MPT” (;;%Huj —ul\cz@m) +4M Ky (WR(R— 1) /0 S;(s)ds
>
Therefore

:—2/ ‘LLJ ij , jx \

— 1
<5Sj(l)+g

(s H (3.16)

2MT (;g%Hw —u||cz(QM)) + MR (R(R ~ 1) 5,@4

_ S5 2 2 , P4 e 2 [T
_5Sj(t)+gM T (;i%HM"_MHCZ(QMJ +5M Ky (WR(R—1) Sj(s)ds.

Note that
r_ _/ T i
110:2/ »s ,u,»s ds<2/ Hfj(s)HOHuj(s)Hods

< 855 5/

On the other hand, the term H f j(s) Ho can be estimated as follows

[F50e0)| = [l ) = flud )
< |fj[uj}(x7t)_f[uj](xvt) [ '}(XJ)_JC[M}(XJ)

< 1 Fleay + Ko (1 +@) o

2

<= Flleggy) + REM(N S5(0).

ho=2 t<f,,»<s>,ﬁ,’,< w5 7

(3.17)

<3S 5/ {Hf, ey + REm(f) S()Tds
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s = [ 1= 112 )+ REE DS 9)] s

, . 2 r
< 8S(0)+ gT 15— oy 3R2KM(f)/O S(s)ds, ¥8 > 0.

Finally, by choosing § = %, it follows from (3.12), (3.14), (3.16), and (3.17) that

_ r_
5,(1) < Dy(M)E2 +2D5(M) / S;(s)ds, (3.18)
X 0
where
2T* 10
Di(M) = b [(1 +D})T*M* + — (2+3M2+M2D2*)} , (3.19)
1 _
Dy(M) = - {2+ (14 2M%) Ry (1) +2 (DT* + \/T*) Dl(g)]
10 . 3
+ Z [T*D%.D3(g) +4R(R — 1)°M*Ky (1) + 2R*K3, (f)] -
Using Gronwall’s lemma, we have
S;(t) < Di(M)Ejexp(2TDy(M)). (3.20)
This derive that
[uj = uHWl(T) = H’ZJ'HWI(T) < 2/ D1 (M) exp(TD2(M))E; (321
= CTEJ', V] eN,
where

Cr =2+/D;(M)exp(TD,(M)).
Theorem 3.1 is proved. [

4. Conclusion

The paper has examined an initial boundary value problem for the viscoelastic
pseudo-parabolic equation of Carrier type. Utilizing the linear approximation, the
Faedo-Galerkin method, and arguments of compactness, we have derived the existence
and uniqueness of solutions for the problem. In addition, under several appropriate
assumptions, we proved that the solution continuously depends on the relaxation func-
tions g, «, and the nonlinear components f in the problem. Also, it appears that there
exist several difficulties in establishing suitable conditions for finding results such as
existence, uniqueness, long-time behavior, and blow-up to the boundary value problem
(1.1)—(1.2) associated with the nonlocal initial condition in time as follows

T
u(x,0) = do(x) + 3 | Bu(x, T) +/0 h(x, 1) (u(r,)) di,
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where f;, T; are constants, with 0 < T} < Th < --- < Ty < T, and h, ® are given
functions. Therefore, these obstacles are still open problems.
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