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REMARKS ON LYAPUNOV–TYPE INEQUALITIES

FOR (p,q)–LAPLACE EQUATIONS

HIROYUKI KANEMASU AND MIEKO TANAKA ∗

(Communicated by C. Amrouche)

Abstract. For the (p,q) -Laplace equation: −Δpu−Δqu = W(x)(α |u|p−2u+ β |u|q−2u) in Ω
under the Dirichlet boundary condition, we provide Lyapunov-type inequalities using the Sobolev
constants or the radius of the maximum inscribed ball. Moreover, we give an existence result for
non-trivial and non-negative solutions, and show the optimality of the inequalities.

1. Introduction

It is known that Lyapunov ([23]) established the classical stability condition for
solutions of the ordinary differential equation u′′+W(x)u = 0. The classical Lyapunov
inequality introduced by Borg ([6]) is known to be a necessary condition

∫ b

a
|W (x)|dx � 4

b−a

for the existence of a non-trivial solution of the problem

u′′ +W(x)u = 0 in (a,b), u(a) = u(b) = 0.

This result is naturally extended to one-dimensional p -Laplace equations ([13], [29],
[36]) and other ordinary problems ([5], [20], [34]). Refer to the books [1] and [30] also.

In [8] (and [9]), Canãda–Montero–Villegas extended the notion of Lyapunov in-
equality to the partial differential equations (Laplace equation) under Neumann (and
Dirichlet) boundary condition. After that, many authors provide Lyapunov-type in-
equalities for p -Laplace equations ([17], [19], [35]). See [1] and [30] for other PDE
problems. In particular, we mention that for the following p -Laplace equations

−Δpu = W (x)|u|p−2u in Ω, u = 0 on ∂Ω, (1.1)
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Edward–Hudson–Leckband ([12]), and de Napoli–Pinasco ([11]) gave Lyapunov-type
inequalities by using Sobolev constant λs,σ (see (1.3)) or the inner radius rΩ of Ω ,
respectively. In more detail, we find the Lyapunov-type inequalities

‖W+‖γ � λp,pγ ′ and ‖W+‖γ � C
rσ

Ω

in [12, Theorem 2.2.] and in [11, Theorem 2.1, 2.4] with σ = p−N if N < p and
σ = p−N/γ if γ > N/p > 1, respectively. Here rΩ is defined as follows:

rΩ := max
x∈Ω

dΩ(x), dΩ(x) := dist (x,∂Ω) = min
y∈∂Ω

|x− y|. (1.2)

The main purpose of this paper is to extend the results on the p -Laplace equation (1.1)
in [12] and [11] to the (p,q)-Laplace equation (L) , and the corresponding results are
seen in Theorem 1 and Theorem 2:{

−Δpu −Δqu = W (x)
(

α|u|p−2u+ β |u|q−2u
)

in Ω,

u = 0 on ∂Ω,
(L)

where Ω is a bounded open set in R
N (N � 1), 1 < q < p < +∞ , α,β ∈R , and Δs with

s∈ {p,q} stands for the standard s-Laplace operator defined as Δsu = div(|∇u|s−2∇u) .
Moreover, W ∈ Lγ(Ω) (γ ∈ [1,∞]) is a weight function admitted to change sign.

DEFINITION 1. We say that u ∈W 1,p
0 (Ω) is a solution of (L) if it holds:

∫
Ω

(|∇u|p−2∇u+ |∇u|q−2∇u
)

∇vdx =
∫

Ω
W (α|u|p−2u+ β |u|q−2u)vdx

for all v ∈W 1,p
0 (Ω) .

The most difficulty is to show the optimality of our inequalities. It needs the results
on eigenvalue problems for (p,q)-Laplacian, and so we modify the existence result in
[26] (see Theorem 7).

The equation (L) is constructed from the nonlinear eigenvalue problems for p -
Laplacian and q -Laplacian with weight W . We say that λ ∈ R is the eigenvalue of the
s-Laplacian with weight W if the equation

−Δsu = λ W (x)|u|s−2u in Ω, u = 0 on ∂Ω,

has a non-trivial solution. It is well known that the first (positive) eigenvalue is de-
scribed by minimizing the Rayleigh quotient

∫
Ω |∇u|s dx/

∫
ΩW |u|s dx . Moreover, the

properties of the corresponding first eigenfunction are known (see [10] and (3.1) also).
In viewpoint of the eigenvalue problems for (p,q)-Laplacian, for example, we study
eigenvalue two parameters (α,β ) such that (L) has a non-trivial solution, the second
author has studied (p,q)-Laplace equation (L) with Motreanu ([26]) and Bobkov ([3]).
Recently, many authors have studied (p,q)-Laplace eigenvalue problems including
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Fučik–type spectrum, which is the generalization from the eigenvalue (see [15], [24],
[31], [33]).

NOTATIONS. Throughout the paper, ‖ ·‖r stands for the standard Lebesgue norm
of Lr(Ω) for r ∈ [1,∞] . We set s∗ := ∞ (if N � s), s∗ := sN/(N − s) (if N > s), and
γ ′ stands for Hölder conjugate of γ ∈ [1,∞] , namely, γ ′ := 1 if γ = ∞ , γ ′ := γ/(γ −1)
if γ ∈ (1,∞) and γ ′ := ∞ if γ = 1. As usual, we consider 1/0 and 1/∞ to be +∞ and
0, respectively.

Here, we define λs,σ by

λs,σ := inf

{‖∇u‖s
s

‖u‖s
σ

: u ∈W 1,s
0 (Ω)\ {0}

}
> 0 (1.3)

for s∈ (1,∞) , and σ ∈ [1,∞] if N < s , σ ∈ [1,∞) if N = s and σ ∈ [1,s∗] if N > s . It is
obvious that λ−s

s,σ is the Sobolev constant of the embedding from W 1,s
0 (Ω) into Lσ (Ω) .

In case 1 � σ < s∗ , thanks to the compactness of the embedding W 1,s
0 (Ω) ↪→ Lσ (Ω) ,

λs,σ is attained by a non-negative function. In particular, it is easily seen that the
minimizer u � 0 of λs,σ (σ ∈ (1,s∗)) is a non-trivial and non-negative solution of
the following equation with λ = λs,σ :

−Δsu = λ‖u‖s−σ
σ |u|σ−2u in Ω, u = 0 on ∂Ω. (1.4)

That is, in case σ = s , λs,s is the first eigenvalue of s-Laplacian and the minimizer
is the corresponding eigenfunction. Moreover, when Ω is additionally supposed to
be connected, that is, a bounded domain, the first non-local eigenvalue λs,σ is simple
provided σ � s and the corresponding first eigenfunction is positive (or negative) in Ω
for σ ∈ (1,s∗) (see [16] and [38] for the non-local eigenvalue problem and [18] in case
N = 1).

REMARK 1. Due to the standard Moser’s iteration methods, any solution of (L)
and (1.4) is bounded. In addition, under C1,κ -regularity of Ω (κ ∈ (0,1)), any (weak)
solution belongs to C1,μ

0 (Ω) for some μ ∈ (0,1) . This regularity result follows from
[21, Theorem 1] (see [22, p. 320]). Moreover, we recall that if Ω is connected, that
is, a bounded domain (without the regularity of Ω), then any non-negative minimizer
of λs,σ is positive in Ω . This is proved by Harnack inequality or maximum principle
(see [32]). Finally, we remark that the positivity (and boundary point condition) of
non-negative and non-trivial C1(Ω)-solutions for (L) follows from the strong maximum
principle (refer to [32] and [27]) provided αW and βW are bounded from below, under
C2 -regularity of Ω .

1.1. Main results on Lyapunov-type inequalities

To state main results corresponding to the sign of (α,β ) , we set

Wα ,β := W± if ±α ·β � 0 and Wα ,β := W if α ·β < 0,

respectively, where W± := max{±W,0} .
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THEOREM 1. Let γ ∈ [1,∞] if N < q and N/q � γ ∈ (1,∞] if N � q. If (L) has
a non-trivial solution, then

‖Wα ,β‖γ � min

{ λp,σp

|α| ,
λq,σq

|β |
}

,
(

σs := sγ ′ for s ∈ {p,q}) (1.5)

holds, where λs,σ is defined in (1.3). In particular, the equal sign above is not valid
provided 1 < γ < ∞ .

In case γ = ∞ , assuming an additional condition of (i) ∼ (iii) as in Proposition 1,
we can see that the equal sign in (1.5) does not hold.

PROPOSITION 1. Let γ = ∞ . Assume that one of the following conditions:

(i) α ·β � 0 ;

(ii) λp,p/|α| �= λq,q/|β |;
(iii) Ω is class of C1,κ (for some κ ∈ (0,1)) if N � 2 .

If (L) has a non-trivial solution, then the equal sign in (1.5) is not valid, namely,

‖Wα ,β‖∞ > min

{
λp,p

|α| ,
λq,q

|β |
}

holds.

Here, we remark that we do not consider Lyapunov-type inequality using rΩ in
case N ∈ {p,q} because we can not expect to get it for general sets Ω due to Osser-
man’s results ([28]) in case p = N = 2.

The following result is proved for the case N > s as in the argument in the proof
of Theorem 2.4. in [11]. We provide the same result for the case N < s . Since λs,s∗ is
independent of Ω , we do not consider the case σ = s∗ and s � N for the general open
set Ω . See Remark 2 for convex sets and case N = s . It is shown in [7, Proposition
6.1] that we can not get an estimate of λs,σ as in (1.6) in sublinear case σ < s .

PROPOSITION 2. Let s ∈ (1,∞)\{N} , σ ∈ [s,∞] if N < s and σ ∈ [s,s∗) if N >
s. In addition, we assume that Ω is a Lipschitz bounded domain if N � s. Then there
exists a positive constant C depending only on N , s, σ , Hs such that

λs,σ � Cr−s+N(1−s/σ)
Ω , (1.6)

where λs,σ is defined in (1.3), and Hs is the constant as in Theorem 6 (Hardy inequal-
ity).

In particular, if N < s and σ = ∞ , then we can take C = M−s
s in (1.6), where

Ms = Ms(s,N) is the constant as in Morrey inequality (see Theorem 5).
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REMARK 2. Although Hs depends on the capacity of R
N \Ω in general, it is

known that the constant Hs can be taken independent of Ω for convex domains (refer
to [25] and [2, Chapter 3]). In particular, for an open bounded “convex” set Ω , (1.6) is
shown together with N = s in [7, Corollary 5.1. and Proposition 6.3.].

According to Theorem 1 and Proposition 2, the following two results are proved.
These results correspond to those in [11, Theorem 2.1 and Theorem 2.4] for the p-
Laplace equation. Since we can not apply Proposition 2 to the case s = N for the
general domain Ω , we have to assume N �∈ {p,q} .

THEOREM 2. Let γ = 1 and N < q. If (L) has a non-trivial solution, then there
exists a positive constant C such that

‖Wα ,β‖1 � C

max
{
|α|rp−N

Ω , |β |rq−N
Ω

} ,

where C depends only on N , p and q.

THEOREM 3. Let N �∈ {p,q} , and γ ∈ [1,∞] if N < q and N/q < γ ∈ (1,∞] if
N > q. Assume that Ω is a Lipschitz bounded domain if N � q. If (L) has a non-trivial
solution, then there exists a positive constant C such that

‖Wα ,β‖γ � C

max
{
|α|rp−N/γ

Ω , |β |rq−N/γ
Ω

} ,

where C depends only on N , p, q , γ , and Hardy constants Hp and Hq (as in Theo-
rem 6).

For convex sets, applying the results in [7, Corollary 5.1. and Proposition 6.3.]
instead of Proposition 2 (refer to Remark 2), we get the following result including the
cases N = p and N = q .

THEOREM 4. Assume that Ω is an open bounded convex set. Let γ ∈ [1,∞] if
N < q and N/q < γ ∈ (1,∞] if N � q. If (L) has a non-trivial solution, then there
exists a positive constant C such that

‖Wα ,β‖γ � C

max
{
|α|rp−N/γ

Ω , |β |rq−N/γ
Ω

} ,

where C depends only on N , p, q and γ .
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1.2. Results on the optimality

First, we show the optimality of (1.5) except the case γ = 1.

PROPOSITION 3. Let N/q < γ ∈ (1,∞] . Assume that

min

{ λp,σp

|α| ,
λq,σq

|β |
}

< max

{ λp,σp

|α| ,
λq,σq

|β |
}

(σs := sγ ′). (1.7)

Then, for any ε > 0 there exists W ∈ L∞(Ω) satisfying

‖Wα ,β‖γ < min

{ λp,σp

|α| ,
λq,σq

|β |
}

+ ε

such that (L) has a non-trivial and non-negative solution.

Finally, in case that Ω is a ball, we prove that the powers ρs := s−N/γ of rΩ in
Theorem 4 are optimal. The same arguments for the p -Laplace equation are done in
[11, Proposition 2.7.].

PROPOSITION 4. Assume that Ω = BR , that is, Ω is the open ball of radius R > 0
centered at the origin. Let N/q < γ ∈ [1,∞] and 1 � γ < N/(N − 1) if N � 2 . For
any C > 0 and ε > 0 satisfying ε < min{1,ρp,ρq, p− q} , where ρs := s−N/γ , the
following assertions hold:

(i) If α �= 0 and β ∈ R , then for any sufficiently large R 	 1 there exists W ∈
Lγ (BR) satisfying

‖Wα ,β‖γ <
C

|α|Rρp−ε =
C

max{|α|Rρp−ε , |β |Rρq−ε }

such that (L) has at least one non-trivial (and non-negative) solution.

(ii) If β �= 0 and α ∈ R , then for any sufficiently small 0 < R 
 1 there exists
W ∈ Lγ (BR) satisfying

‖Wα ,β‖γ <
C

|β |Rρq+ε =
C

max{|α|Rρp+ε , |β |Rρq+ε }

such that (L) has at least one non-trivial (and non-negative) solution.

The structure of the paper is as follows. In section 2, we prove Lyapunov-type
inequalities: Theorem 1, Proposition 1 and Proposition 2. In section 3, we provide the
proofs of Proposition 3 and Proposition 4. In Appendix, we give a sketch of the proof
for the existence theorem stated in section 3.
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2. Proofs for Lyapunov-type inequalities

First, we reall Morrey inequality and Hardy inequality. See [14] or [2, Theorem
3.2.1] for details.

THEOREM 5. Let N < s < ∞ . Then there exists a positive constant Ms depending
only on s and N such that any u ∈W 1,s

0 (Ω) satisfies

|u(x)−u(y)|� Ms ‖∇u‖s |x− y|1−N/s

for all x,y ∈ Ω .

THEOREM 6. Let s ∈ (1,∞) . Assume that Ω be a Lipschitz bounded domain if
N � s. Then, there exists a positive constant Hs such that

∫
Ω

( |u|
dΩ(x)

)s

dx � Hs

∫
Ω
|∇u|s dx

for any u ∈W 1,s
0 (Ω) .

Let us start to prove Lyapunov-type inequality.

Proof of Theorem 1. Let u be a non-trivial solution of (L). Taking u as a test
function, we have

‖∇u‖p
p +‖∇u‖q

q = α
∫

Ω
W |u|p dx+ β

∫
Ω

W |u|q dx � ‖Wα ,β‖γ

(
|α|‖u‖p

σp + |β |‖u‖q
σq

)
(2.1)

by Hölder inequality. This leads to Lyapunov-type inequality as follows:

‖Wα ,β‖γ � ‖∇u‖p
p +‖∇u‖q

q

|α|‖u‖p
σp + |β |‖u‖q

σq

� min

{
‖∇u‖p

p

|α|‖u‖p
σp

,
‖∇u‖q

q

|β |‖u‖q
σq

}

� min

{ λp,σp

|α| ,
λq,σq

|β |
}

. (2.2)

Finally, we prove that Lyapunov-type inequality (1.5) is strict in case 1 < γ < ∞ by
contradiction. So, if the equality in (1.5) holds, then all equal signs in (2.1) and (2.2)
hold. We easily see that the equality of (2.1) is impossible in the case α · β < 0.
Moreover, if either α or β is zero, then the second inequality in (2.2) is strict. Let
α,β > 0. Then, the equality of (2.1) implies that W � 0 a.e. in Ω , and the equal-
ity condition of Hölder inequality guarantees that (W/‖W‖γ)γ = (|u|/‖u‖σp)

σp and
(W/‖W‖γ)γ = (|u|/‖u‖σq)

σq a.e. in Ω . Since σp > σq , this gives that u is constant,
that is, u = 0. This is a contradiction. In case α,β < 0, we can get a contradiction in
the same way. The proof is complete. �
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Proof of Proposition 1. By contradiction, we suppose that the equality in (1.5),
that is,

‖Wα ,β‖∞ = min

{
λp,p

|α| ,
λq,q

|β |
}

holds for some weight function W ∈ L∞(Ω) . Then, for some non-trivial solution u of
(L) with such W , all equal sign holds in (2.1) and (2.2). Note that σp = p and σq = q
since we are considering the case γ = ∞ . The second equality in (2.2) shows that
α ·β �= 0. Moreover, combining with the last equality in (2.2), we see that λp,p/|α| =
λq,q/|β | , and u is a minimizer of both λp,p and λq,q . The first assertion is impossible
provided the case (ii).

Next, let us consider case α ·β < 0. The equality in (2.1) means that

0 =
∫

Ω
(|α|‖W‖∞ −αW )|u|p dx =

∫
Ω
(|β |‖W‖∞ −βW)|u|q dx. (2.3)

If α > 0 > β , then (2.3) is equivalent to 0 < α‖W‖∞ = αW and 0 < (−β )‖W‖∞ = βW
a.e. in {x ∈ Ω : u(x) �= 0} =: [u �= 0] . Hence ‖W‖∞ = W = −W a.e. in [u �= 0] , and
so W = 0 a.e. in [u �= 0] . This means that

‖∇u‖p
p +‖∇u‖q

q = α
∫

[u=0]
W |u|p dx+ β

∫
[u=0]

W |u|q dx = 0,

whence this contradicts to u �= 0. Similarly, the case α < 0 < β is impossible.
Finally, let us consider the case (iii). Recalling that u is the minimizer of both

λp,p and λq,q , we may assume that u � 0 in Ω by considering |u| if necessary. Since
minimizers are solutions of corresponding eigenvalue equation, u is a non-trivial and
non-negative solution of

−Δsu = λs,s|u|s−2u in Ω, u = 0 on ∂Ω

for s ∈ {p,q} . Under the regularity of Ω as in (iii), it is known that u ∈C1,θ (Ω) (see
Remark 1). Take a component Ω′ of Ω such that u �= 0. Hence, u > 0 in Ω′ , that is,
u is a positive solution of

−Δsu = λs,s|u|s−2u in Ω′, u = 0 on ∂Ω′

for s ∈ {p,q} . Recall that only the first eigenfunction of s-Laplacian (s ∈ (1,∞)) has a
constant sign in Ω′ . Thus, λs,s = λs,s(Ω′) and u is the first eigenfunction corresponding
to both λp,p(Ω′) and λq,q(Ω′) . On the other hand, it is shown in [3, Proposition 13.]
(note that the proof requires that positive eigenfunctions have a maximum point in Ω′ )
that the first eigenfunctions of p -Laplacian and q -Laplacian are linearly independent.
So, we have a contradiction.

As a result, we get a contradiction in all cases. The proof has been completed. �
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Proof of Proposition 2. Let u be a minimizer of λs,σ since it is attained by σ < s∗
(if N � s).

Case N > s is shown by the same argument as in the proof of [11, Theorem 2.4].
For readers’ convenience, we give only the sketch. Take τ ∈ (0,1] satisfying σ =
τs+(1− τ)s∗ . Then, by Hölder inequality, Hardy inequality (Theorem 6) and Sobolev
embedding, we get

‖u‖σ
σ

rτs
Ω

�
∫

Ω

|u|τs+(1−τ)s∗

dΩ(x)τs dx �
(∫

Ω

( |u|
dΩ(x)

)s

dx

)τ
‖u‖(1−τ)s∗

s∗

� λ−s∗(1−τ)/s
s,s∗ Hτ

s ‖∇u‖σ
s ,

where dΩ is the distance function from the boundary ∂Ω defined in (1.2). This yields

λs,σ =
‖∇u‖s

s

‖u‖s
σ

� λ s∗(1−τ)/σ
s,s∗ H−sτ/σ

s r−s+N(1−s/σ)
Ω .

Since λs,s∗ depends only on s and N , our assertion is shown.

Case N < s: First, we recall that the argument as in [11, Theorem 2.1.] implies

‖u‖∞ � Ms‖∇u‖s r
1−N/s
Ω , (2.4)

where Ms = Ms(s,N) > 0 is the constant as in Morrey inequality (Theorem 5). In fact,
this is easily shown to apply Morrey inequality with a maximum point x∈ Ω of |u| and
y ∈ ∂Ω such that |x− y|= dist (x,∂Ω)(� rΩ) .

In case σ = ∞ , our assertion follows from (2.4). Now let σ < ∞ and we choose
any t ∈ (σ ,∞) . Then, using (2.4), we have

‖u‖t � ‖u‖∞|Ω|1/t � Ms r
1−N/s
Ω |Ω|1/t ‖∇u‖s, (2.5)

where |Ω| is the Lebesgue measure of Ω . Let (τt =)τ ∈ (0,1) satisfy σ = τs+(1−
τ)t . Then, by (2.5) instead of Sobolev embedding as in the above argument, we get

‖u‖σ
σ

rτs
Ω

� Hτ
s ‖∇u‖τs

s ‖u‖t(1−τ)
t � Hτ

s Mt(1−τ)
s |Ω|1−τrt(1−τ)(1−N/s)

Ω ‖∇u‖σ
s ,

and hence

r−s+t(1−τ)N/σ
Ω H−sτ/σ

s M−t(1−τ)s/σ
s |Ω|−s(1−τ)/σ � ‖∇u‖s

s

‖u‖s
σ

= λs,σ . (2.6)

Letting t → ∞ in (2.6), since

τ =
t−σ
t − s

→ 1, (1− τ)t = σ − sτ → σ − s as t → ∞,

we get

λs,σ � H−s/σ
s M−(σ−s)s/σ

s r−s+N(1−s/σ)
Ω .

The proof is complete. �



10 H. KANEMASU AND M. TANAKA

3. Proofs of the optimality

3.1. Existence result

Here, we consider the following (p,q)-Laplace equation:

{
−Δpu −Δqu = λ

(
Vp|u|p−2u+Vq|u|q−2u

)
in Ω,

u = 0 on ∂Ω,
(P)

where λ ∈ R and Vs ∈ Lγs(Ω) (s ∈ {p,q} ).

To state the existence result, we define the first eigenvalue of s-Laplacian (for
s ∈ (1,∞)) with weight as follows:

λs(V ) := inf

{
‖∇u‖s

s

(
∫

ΩV |u|s dx)1/s
: u ∈W 1,s

0 (Ω)\ {0},
∫

Ω
V |u|s dx > 0

}
(3.1)

for V ∈ Lγ (Ω) satisfying V+ �≡ 0 with γ � N/s (if N > s), γ ∈ (1,∞] (if N = s),
γ ∈ [1,∞] (if N < s). Moreover, we set λs(V ) = +∞ if V � 0 a.e. in Ω . Clearly,
λs(V ) � λs,σ /‖V‖γ holds, where σ = sγ ′ . In case V+ �≡ 0 and γ > N/s (if N � s), it is
well known (see Remark 1 and [10]) that λs(V ) is attained by a non-negative solution
belonging to L∞(Ω)∩C0

loc(Ω) for

−Δsu = λs(V )V (x)|u|s−2u in Ω, u = 0 on ∂Ω.

The following result is already proved in [26] provided that Vp and Vq are bounded.

THEOREM 7. Assume that γs ∈ [1,∞] (if N < s) for s ∈ {p,q} , γp ∈ (N/p,∞] (if
N � p), γq ∈ (1,∞] (if N = q) and γq ∈ [N/q,∞] (if N > q). If λ satisfies

min{λp(Vp),λq(Vq)} < λ < max{λp(Vp),λq(Vq)} (� +∞),

then (P) has at least one non-trivial and non-negative solution u ∈W 1,p
0 (Ω)∩L∞(Ω) .

In particular, under the additional condition that Ω is a bounded domain with C2

boundary (if N � 2 ), if Vp and Vq are bounded from below a.e. in Ω , then u∈C1,θ (Ω)
(θ ∈ (0,1)) , and it satisfies u > 0 in Ω and ∂u/∂ν < 0 on ∂Ω , where ν denotes the
outer normal vector on ∂Ω .

The proof of Theorem 7 can be done in the same way as in [26, Theorem 1.3.]. So
we give only the sketch of the proof in the Appendix.
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3.2. Proofs of Propositions 3 and 4

For the proof of Proposition 3, we prepare the following calculation.

LEMMA 1. Let s,γ ∈ (1,∞) , c > 0 and γ satisfy γ > N/s if N > s. For the
minimizer ϕ � 0 of λs,σ with σ = sγ ′(< s∗) , we set V := ϕs/(γ−1)(= ϕσ−s) . Then
V ∈ L∞(Ω) , and

‖V‖γ = ‖ϕ‖σ−s
σ and λs(cV ) =

λs(V )
c

=
λs,σ

c‖V‖γ

hold, where λs,σ and λs(V ) are defined in (1.3) and (3.1), respectively.

Proof. The boundedness of V follows from ϕ ∈ L∞(Ω) (see Remark 1). Accord-
ing to simple calculations, we have ‖V‖γ = ‖ϕ‖σ−s

σ by σ/γ = σ − s and

λs(cV ) = inf

{ ‖∇u‖s
s∫

Ω cV |u|s dx
: 0 �= u ∈W 1,s

0 (Ω)
}

=
1
c

inf

{ ‖∇u‖s
s∫

ΩV |u|s dx
: 0 �= u ∈W 1,s

0 (Ω)
}

=
λs(V )

c

� 1
c‖V‖γ

inf

{ ‖∇u‖s
s∫

Ω |u|σ dx
: 0 �= u ∈W 1,s

0 (Ω)
}

=
λs,σ

c‖V‖γ
, (3.2)

where we used
∫

ΩV |u|s dx � ‖V‖γ‖u‖s
σ by Hölder inequality. On the other hand, be-

cause it holds ∫
Ω

V |ϕ |s dx =
∫

Ω
ϕσ dx = ‖ϕ‖s

σ ‖ϕ‖σ−s
σ = ‖ϕ‖s

σ ‖V‖γ ,

by taking the minimizer ϕ of λs,σ as an admissible function, the definition of λs(V )
leads to

λs(V ) � ‖∇ϕ‖s
s∫

ΩV |ϕ |s dx
=

‖∇ϕ‖s
s

‖ϕ‖s
σ ‖V‖γ

=
λs,σ

‖V‖γ
.

Thus the opposite inequality in (3.2) is shown, whence our assertion is complete. �

Proof of Proposition 3. Our assumption (1.7) is divided into the following cases
(i) is (ii):

(i) β �= 0 and
λq,σq

|β | <
λp,σp

|α| (� ∞) (ii) α �= 0 and
λp,σp

|α| <
λq,σq

|β | (� ∞).

(3.3)
Corresponding to case (i) or (ii), we shall set suitable λ and Vs (s∈ {p,q} ) and provide
a non-trivial and non-negative solution of (L) applying Theorem 7.

First, we consider the case γ = ∞ . Then σp = p and σq = q . Define

(i) Vp := sign(β )α, Vq := |β | and (ii) Vp := |α|, Vq := sign(α)β ,
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where sign(t) = t/|t| for t �= 0, and put

λδ := min{λp(Vp),λq(Vq)}+ δ for δ > 0.

Since it holds

λs(±C) � λs(|C|) =
λs,s

|C| for C ∈ R, s ∈ {p,q},

we have

min{λp(Vp),λq(Vq)} = min

{
λp,p

|α| ,
λq,q

|β |
}

< max

{
λp,p

|α| ,
λq,q

|β |
}

� max{λp(Vp),λq(Vq)},
and so λδ < max{λp(Vp),λq(Vq)} for small δ > 0. Therefore, by setting Wδ =
sign(β )λδ in case (i) or Wδ = sign(α)λδ in case (ii) with small δ > 0, Theorem 7
guarantees that our equation (L) (with Wδ ) has a non-trivial solution, whence the proof
is done in case γ = ∞ .

Next, let 1 < γ < ∞ . For s ∈ {p,q} we let ϕs � 0 be the minimizer of λs,σs

(σs := sγ ′ ), and set V ∗
s = ϕσs−s

s because our assumption N/q < γ ∈ (1,∞] gives σs < s∗
if N � s . Then it follows from Lemma 1 that

λs(cV ∗
s ) =

λs(V ∗
s )

c
=

λs,σs

c‖V ∗
s ‖γ

for c > 0. (3.4)

Moreover, because
∫

ΩV ∗
t |u|s dx � ‖V ∗

t ‖γ‖u‖s
σs

by Hölder inequality, we have

λs(cV ∗
t ) =

λs(V ∗
t )

c
� λs,σs

c‖V ∗
t ‖γ

for c > 0 (3.5)

if s �= t ∈ {p,q} . Define

(i) Vp := sign(β )αV ∗
q , Vq := |β |V ∗

q and (ii) Vp := |α|V ∗
p , Vq := sign(α)βV ∗

p .

Hereafter, we put s = q or s = p in case (i) or (ii), respectively. We claim that for any
ε > 0 we can take a small δ > 0 satisfying

λδ := min{λp(Vp),λq(Vq)}+ δ < max{λp(Vp),λq(Vq)} (3.6)

and

‖λδV
∗
s ‖γ < min

{ λp,σp

|α| ,
λq,σq

|β |
}

+ ε. (3.7)

If these claims are shown, applying Theorem 7, we can get a non-trivial and non-
negative solution of

−Δpu−Δqu = λδ
(
Vp|u|p−2u+Vq|u|q−2u

)
in Ω, u = 0 on ∂Ω.
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So, the proof is done with W = sign(β )λδV ∗
q in case (i) and W = sign(α)λδV ∗

p in case
(ii).

Now, let us show our claim. We shall consider only the case (i) with β > 0 because
other cases can be shown in the same way. First claim (3.6) follows from (3.4), (3.3)
and (3.5) that

λq(Vq) =
λq,σq

β ‖V ∗
q ‖γ

<
λp,σp

|α|‖V ∗
q ‖γ

� λp(|α|V ∗
q ) � λp(αV ∗

q ) = λp(Vp)(� ∞).

Hence λδ = λq(Vq)+ δ and

‖λδV
∗
q ‖γ =

(
λq,σq

β ‖V ∗
q ‖γ

+ δ

)
‖V ∗

q ‖γ =
λq,σq

β
+ δ‖V ∗

q ‖γ

= min

{ λp,σp

|α| ,
λq,σq

|β |
}

+ δ‖V ∗
q ‖γ .

Thus, (3.7) holds if 0 < δ < ε/‖V ∗
q ‖γ . �

For the proof of Proposition 4, we prepare two simple calculations, which are also
argued in [11, Proposition 2.7.]. The first result is easily shown by the direct calculation.
We omit the proof.

LEMMA 2. Let γ ∈ [1,∞) , δ > 0 and ρ > −N/γ . Set

W∗(x) := χ[0,δ ](|x|) |x|ρ for x ∈ R
N , (3.8)

where χI denotes the characteristic function of an interval I . Then, it holds

‖W∗‖γ = ω1/γ
N (ργ +N)−1/γ δ ρ+N/γ ,

where ωN denotes the surface measure of the unit ball in R
N .

LEMMA 3. Let s∈ (1,∞) , −min{N,s}< ρ � 1−N , and assume that Ω includes
the open ball Bδ centered at the origin with radius δ > 0 . Then λs(W∗) with W∗
defined by (3.8) satisfies

λs(W∗) � δ−s−ρ (s−1)
(

π
s sin(π/s)

)s

.

Proof. By considering the zero extension, we may suppose that W 1,s
0 (Bδ )⊂W1,s

0 (Ω) .
First, we note that we can see W ∈ Lγ (Ω) with min{1,N/s} < γ < N/|ρ | by the
assumption −min{N,s} < ρ(� 0) . Thus,

∫
ΩW∗|u|s ds is well defined for any u ∈
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W 1,s
0 (Ω) . By ρ +N−1 � 0, the simple calculations guarantee that

λs(W∗) = inf

{ ‖∇u‖s
s∫

ΩW∗|u|s dx
: u ∈W 1,s

0 (Ω),
∫

Ω
W∗|u|s dx > 0

}

� inf

{
‖∇u‖s

s∫
Bδ

W∗|u|s dx
: u ∈W 1,s

0 (Bδ ),
∫

Bδ
W∗|u|s dx > 0

}

� inf

{ ∫ δ
0 rN−1|u′|s dt∫ δ

0 rρ+N−1|u|s dt
: u ∈W 1,s(0,δ ), u′(0) = 0 = u(δ )

}

� δN−1

δ ρ+N−1 λs(0,δ ) = δ−s−ρ (s−1)
(

π
s sin(π/s)

)s

,

where λs(0,δ ) = δ−s(s−1)(π/ssin(π/s))s is the first eigenvalue of one dimensional
s-Laplacian in the interval (−δ ,δ ) . �

Now let us prove Proposition 4.

Proof of Proposition 4. Let Ω = BR and ε > 0 and C > 0 been given in Proposi-
tion 4. Here we note that our assumption γ < N/(N−1) if N � 2 gurantees −N/γ <
1−N . So, we set ρ = 0 if N = 1 and γ = ∞ , −N/γ < ρ � 1−N(� 0) otherwise.
Note that −N/γ � −min{N,s} follows from the assumptions N/s < γ and γ � 1. Put
ρs := s−N/γ .

As the same argument in the proof of Proposition 3, applying Theorem 7 to Vp

and Vq (defined later in corresponding to the case), we shall find λ and R such that the
following equation

−Δpu−Δqu = λ
(
Vp|u|p−2u+Vq|u|q−2u

)
in BR, u = 0 on ∂BR, (3.9)

has a non-trivial (and non-negative) solution.

(i) α �= 0 and β ∈ R : First, we assume that γ �= ∞ if N = 1. Since ρp > ρq and
α �= 0, we may assume that |α|Rρp > |β |Rρq for large R 	 1. Take δ = Ra(< R) with
a ∈ (0,1) and R 	 1. By using the function W∗ defined by (3.8), we set

Vp := |α|W∗ and Vq := sign(α)βW∗.

Here, in case Ω = BR , we recall that the constant in (1.6) is independent of R and (1.6)
holds in case N ∈ {p,q} too (see Remark 2). According to Lemma 2, Lemma 3 and
(1.6) with Ω = BR and δ = Ra , as R → ∞ we have

‖W∗‖γ = O
(

Ra(ρ+N/γ)
)

λp(Vp) =
λp(W∗)
|α| � O

(
R−a(p+ρ)

)
=: I

and

λq(Vq) � λq(|β |W∗) �
λq,qγ ′

|β |‖W∗‖γ
� O

(
R−a(ρ+N/γ)−ρq

)
=: II
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where O(Rt) denotes the term such that limR→∞ O(Rt)/Rt > 0. Therefore, to obtain λ
satisying λp(Vp) < λ < λq(Vq) and

‖λW∗‖γ < CR−ρp+ε/|α|, equivalently, 0 < λ < O
(

R−ρp+ε−a(ρ+N/γ)
)

=: III

for large R 	 1, it sufficient to show that I < III < II for large R 	 1, that is, a(p+
ρ) > ρp− ε +a(ρ +N/γ) > a(ρ +N/γ)+ ρq . The last inequality follows from ρp −
ε > ρq . Moreover, the first inequality is obtained by taking a such that 1 > a > 1−
ε/ρp . Consequently, for such large R 	 1, choosing λ above, equation (3.9) has a
non-trivial and non-negative solution. Therefore, our assertion is proved with W :=
sign(α)λW∗ .

Now let us consider the case γ = ∞ and N = 1. Recall that it is known that
λq,q = (q− 1)(π/qsin(π/q))q R−q in case Ω = (−R,R) . Because of ρ = 1−N = 0,
W∗(x) = χ[−δ ,δ ](x) and ‖W∗‖∞ = 1. Take δ = Ra with a ∈ (0,1) , and then we observe
that

λp(|α|W∗) � O
(
R−ap )=: I, λq(|β |W∗) � λq,q

|β |‖W∗‖∞
� O

(
R−q )=: II

and

‖λW∗‖∞ = |λ | < C
|α| R

−p+ε =: III.

Choosing a ∈ (0,1) such that ap > p− ε , we see that I < III < II for large R 	 1
because of ε < ρp−ρq = p−q . Hence, by the same argument above, this case can be
shown.

(ii) β �= 0 and α ∈ R : The proof can be done in the same way as above. So, we
give a sketch of the proof. Since ρp > ρq and β �= 0, we may assume that |α|Rρp <
|β |Rρq for small 0 < R 
 1. Take δ = Rb(< R < 1) with b > 1 and 0 < R 
 1. Set

Vp := sign(β )αW∗ and Vq := |β |W∗.

By taking suitable λ > 0 and small 0 < R 
 1. Theorem 7 guarantees the existence of
a non-trivial (and non-negative) solution of (3.9), whence the proof is done by setting
W := sign(β )λ W∗ . Now let us see the existence of λ . As R → +0, we have

‖W∗‖γ = O
(

Rb(ρ+N/γ)
)

, λq(Vq) � O
(

R−b(q+ρ)
)

=: I

and

λp(Vp) � λp(|α|W∗) �
λp,pγ ′

|α|‖W∗‖γ
� O

(
R−b(ρ+N/γ)−ρp

)
=: II

Moreover, we see that

‖λW∗‖γ <CR−ρq−ε/|β |, equivalently, 0 < λ < O
(

R−ρq−ε−b(ρ+N/γ)
)

=: III. (3.10)

So, if we choose b > 1 such that b< 1+ε/ρq , then I < III < II as R→+0. Therefore,
for such small R 
 1 we can get λ satisying (3.10) and λq(Vq) < λ < λp(Vp) . The
proof has been completed. �



16 H. KANEMASU AND M. TANAKA

4. Appendix: Proof of Theorem 7

Here, we give the sketch of the proof of Theorem 7.
First, we note that λs(Vs) is attained if γs > N/s if N � s . We choose one (non-

negative) minimizer of λs(Vs) and denote it by 0 � ψs ∈ W 1,s
0 (Ω)∩L∞(Ω)∩C0

loc(Ω)
(see [10] for the details about the minimizer). Remark that we don’t get the positivity
of ψs in general because Ω is not supposed to be connected.

Since λq(Vq) is not attained in case γq = N/q if N > q , and the minimizer ψq

may not belong to W 1,p
0 (Ω) , we need to prepare the following result.

LEMMA 4. Let γq ∈ [1,∞] (N < q) and γq � N/q if N � q. Assume that λq(Vq) <

∞ . Then, for any ε > 0 there exists ψq,ε ∈W 1,p
0 (Ω) such that

ψq,ε � 0,

∫
Ω

Vqψq
q,ε dx = 1 and

∫
Ω
|∇ψq,ε |q dx < λq(Vq)+ ε. (4.1)

Proof. Take any ε > 0. First, due to λq(Vq) < ∞ , we can choose ψ ∈ W 1,q
0 (Ω)

such that ∫
Ω

Vq|ψ |q dx = 1 and
∫

Ω
|∇ψ |q dx < λq(Vq)+ ε/2.

Since C∞
c (Ω) is dense in W 1,q

0 (Ω) , thanks to the continuous embedding from W 1,q
0 (Ω)

into Lqγ ′q(Ω) , there exists a sequence {ψn}n ⊂C∞
c (Ω) such that

lim
n→∞

∫
Ω

Vq|ψn|q dx =
∫

Ω
Vq|ψ |q dx = 1 and lim

n→∞

∫
Ω
|∇ψn|q dx =

∫
Ω
|∇ψ |q dx.

So, |ψn|/(
∫

ΩVq|ψn|q dx)1/q satisfies (4.1) for large n . �

Next, we set an energy functional E+
λ on W 1,p

0 (Ω) as follows:

E+
λ (u) :=

1
p

H+
λ (u)+

1
q

G+
λ (u) for u ∈W 1,p

0 (Ω),

H+
λ (u) := ‖∇u‖p

p−λ
∫

Ω
Vpu

p
+ dx and G+

λ (u) := ‖∇u‖q
q−λ

∫
Ω

Vqu
q
+ dx,

where u± := max{±u,0} . We see that any critical point u of E+
λ satisfies u � 0 by

taking u− as a test function. It is easily shown that any critical point of E+
λ corre-

sponds to a non-negative solution of (P) (refer to [26, Remark 3.1.] or Remark 1 for the
regularity of solutions).

The proof is done with the same argument in [26, Theorem 1.3.] using

I :=
∣∣∣∣
∫

Ω
Vsu

s
+ dx

∣∣∣∣� ‖Vs‖γs‖u+‖s
σs

� ‖Vs‖γs‖∇u‖s
s

λs,σs

,
‖Vs‖γs‖∇u‖s

p

λ s/p
p,σs

for s ∈ {p,q} with σs := sγ ′s instead of I � ‖Vs‖∞‖u+‖s
s � ‖Vs‖∞‖∇u‖s

s/λs,s in [26].
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Moreover, we use the following result instead of [26, Lemma 3.3]. The proof is
done by the same argument as in [37, Lemma 9.] according to the compactness of the
embedding from W 1,p

0 (Ω) into Lq(Ω) and Lσp(Ω) . For readers’ convenience, we give
a sketch of the proof.

LEMMA 5. Let q,σp ∈ [1,∞] if N < p and 1 � q,σp < p∗ if N � p. Set

X(d) :=
{

u ∈W 1,p
0 (Ω) : ‖∇u‖p

p � d ‖u‖p
σp

}
for d > 0 . Then there exists Cd > 0 such that

‖∇u‖p � Cd‖u‖q for all u ∈ X(d).

Proof. Suppose, by contradiction, that there exist d > 0 and a sequence {un}n ⊂
X(d) such that ‖∇un‖p > n‖un‖q for all n ∈ N . Then, since a normalized sequence

vn := un/‖un‖σp is bounded in W 1,p
0 (Ω) by un ∈ X(d) , we may assume, up to a sub-

sequence, that vn converges some v0 weakly in W 1,p
0 (Ω) and strongly in Lσp(Ω) and

Lq(Ω) . Because ‖vn‖σp = 1 for all n , we have v0 �= 0. On the other hand, our contra-

dictional assumption leads to that d1/p � limsupn→∞ ‖∇vn‖p � limn→∞(n‖vn‖q) = ∞ ,
from which we get the desired conclusion. �

Proof of Theorem 7. Case λq(Vq) < λ < λp(Vp)(� ∞) : In this case, we shall
show that E+

λ has a global minimum point with negative energy. In fact, by the argu-
ment as in [26, page 11.], we can show that

E+
λ (u) � ε

p
‖∇u‖p

p−
λ‖Vq‖γq

qλ q/p
p,σq

‖∇u‖q
p for all u ∈W 1,p

0 (Ω),

where ε ∈ (0,1] satisfying (1− ε)λp(Vp) > λ if λp(Vp) < ∞ . Hence, E+
λ is coercive

and bounded from below, because σp,σq < p∗ (if N � p ) guarantees the weakly lower
semi-continuity of E+

λ , and so E+
λ has a global minimizer. Since from λq(Vq) < λ

and q < p , for small δ ∈ (0,λ − λq(Vq)) , the nonnegative function ψq,δ ∈ W 1,p
0 (Ω)

obtained in Lemma 4 satisfies that E+
λ (tψq,δ ) < 0 for small t > 0. Thus, the minimum

value of E+
λ is negative, and so E+

λ has a non-trivial critical point.

Case λp(Vp) < λ < λq(Vq)(� ∞) : First, we note that by the standard argument (re-
fer to [37, Lemma 12.] or see [3, Lemma 3.2.] for the boundedness of the Palais–Smale
sequence), it is proved that the functional E+

λ satisfies the Palais–Smale condition pro-
vided λ �= λp(Vp) .

In this case, we shall see that E+
λ has the mountain pass geometry. In Lemma 5

we take d satisfying

d > max

{
1,λ‖Vp‖γp ,

λ‖Vp‖γp

λp,σp

}
.
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Using above d in [26, (19)], the arguments as in [26, p. 12–13] leads to

E+
λ (u) � − (d−1)Cp

d

p
‖u‖p

q +
ελq,q

q
‖u‖q

q for any u ∈W 1,p
0 (Ω), (4.2)

where Cd is the constant obtained by Lemma 5 and ε ∈ (0,1] such that (1−ε)λq(Vq) >
λ if λ (Vq) < ∞ . Moreover, it is easily shown that E+

λ (Rψp) → −∞ as R → ∞ by
λ < λp(Vp) . Thus, we define a mountain pass value as follows:

c := inf
γ∈Γ

max
t∈[0,1]

E+
λ (γ(t)),

Γ :=
{

γ ∈C
(

[0,1],W 1,p
0 (Ω)

)
: γ(0) = 0 and γ(1) = Rψp

}
,

where R > 0 is a large number satisfying E+
λ (Rψp) < 0. Thanks to (4.2), c > 0 holds,

whence c is a positive critical value of E+
λ .

Consequently, the proof has finished. �
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