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REMARKS ON LYAPUNOV-TYPE INEQUALITIES
FOR (p,q)-LAPLACE EQUATIONS

HIROYUKI KANEMASU AND MIEKO TANAKA *

(Communicated by C. Amrouche)

Abstract. For the (p,q)-Laplace equation: —Apu — Agu = W (x)(ot|u|P~2u+ Blul9%u) in Q
under the Dirichlet boundary condition, we provide Lyapunov-type inequalities using the Sobolev
constants or the radius of the maximum inscribed ball. Moreover, we give an existence result for
non-trivial and non-negative solutions, and show the optimality of the inequalities.

1. Introduction

It is known that Lyapunov ([23]) established the classical stability condition for
solutions of the ordinary differential equation u” + W (x)u = 0. The classical Lyapunov
inequality introduced by Borg ([6]) is known to be a necessary condition

4
b—a

b
/ W (x)|dx >
for the existence of a non-trivial solution of the problem
W' +Wx)u=0 in(a,b), u(a)=u(b)=0.

This result is naturally extended to one-dimensional p-Laplace equations ([13], [29],
[36]) and other ordinary problems ([5], [20], [34]). Refer to the books [1] and [30] also.
In [8] (and [9]), Canada—Montero—Villegas extended the notion of Lyapunov in-
equality to the partial differential equations (Laplace equation) under Neumann (and
Dirichlet) boundary condition. After that, many authors provide Lyapunov-type in-
equalities for p-Laplace equations ([17], [19], [35]). See [1] and [30] for other PDE
problems. In particular, we mention that for the following p-Laplace equations

—Apu=W(x)|uPu inQ, u=0 ondQ, (L.1)
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2 H. KANEMASU AND M. TANAKA

Edward—Hudson-Leckband ([12]), and de Napoli—Pinasco ([11]) gave Lyapunov-type
inequalities by using Sobolev constant A, (see (1.3)) or the inner radius rg of Q,
respectively. In more detail, we find the Lyapunov-type inequalities

C
IWolly> Ay and [Wally >
Q

in [12, Theorem 2.2.] and in [11, Theorem 2.1, 2.4] with c = p—N if N < p and
o=p—N/yif y>N/p > 1, respectively. Here rq is defined as follows:

rq :=maxdg(x), dg(x):=dist(x,dQ)= min |x—y|. (1.2)
xeQ yEIQ

The main purpose of this paper is to extend the results on the p-Laplace equation (1.1)
in [12] and [11] to the (p,q)-Laplace equation (L), and the corresponding results are
seen in Theorem 1 and Theorem 2:

L
u=20 on 0Q, @)

{—Apu—Aqu = W(x) (alul’ u+Blul?u) inQ,
where Q is a bounded open set in RV(N=1), 1< g<p<-+e, a,BeR,and A; with
s € {p,q} stands for the standard s-Laplace operator defined as Asu = div (|Vu|*"2Vu).
Moreover, W € LY(Q) (y € [1,o°]) is a weight function admitted to change sign.

DEFINITION 1. We say that u € WOI"p(Q) is a solution of (L) if it holds:
/ (|Vu|p72Vu + \Vu\‘fJVu) Vvdx = / W (otulP 2w+ Blul2u)vdx
Q Q

forall v e W, 7(Q).

The most difficulty is to show the optimality of our inequalities. It needs the results
on eigenvalue problems for (p,q)-Laplacian, and so we modify the existence result in
[26] (see Theorem 7).

The equation (L) is constructed from the nonlinear eigenvalue problems for p-
Laplacian and ¢g-Laplacian with weight W. We say that A € R is the eigenvalue of the
s-Laplacian with weight W if the equation

—Au=AW(X)|u2u inQ, u=0 ondQ,

has a non-trivial solution. It is well known that the first (positive) eigenvalue is de-
scribed by minimizing the Rayleigh quotient [q, |Vu|*dx/ [o W|u|*dx. Moreover, the
properties of the corresponding first eigenfunction are known (see [10] and (3.1) also).
In viewpoint of the eigenvalue problems for (p,q)-Laplacian, for example, we study
eigenvalue two parameters (¢, 3) such that (L) has a non-trivial solution, the second
author has studied (p, q)-Laplace equation (L) with Motreanu ([26]) and Bobkov ([3]).
Recently, many authors have studied (p,q)-Laplace eigenvalue problems including
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Fucik—type spectrum, which is the generalization from the eigenvalue (see [15], [24],

[31], [33]).

NOTATIONS. Throughout the paper, || - ||, stands for the standard Lebesgue norm
of L"(Q) for r € [1,00]. We set s* :=e0 (if N <), s* :=sN/(N —s) (if N >s), and
Y stands for Holder conjugate of ¥ € [1,00], namely, ¥ := 1 if y=o0, ¥ :=y/(y—1)
if y€ (1,00) and ¥ :=oco if y=1. As usual, we consider 1/0 and 1/c to be +c and
0, respectively.

Here, we define 4,5 by

Vul|$ ‘

As.o ::inf{ ”” lﬁ"s :uewol*‘(sz)\{o}} >0 (1.3)
Ul

for s € (1,00),and ¢ € [1,00] if N< s, 0 €[l,00) if N=sand o € [1,s*] if N >s. Itis

obvious that A, 5 is the Sobolev constant of the embedding from Wol’s(Q) into L°(Q).

In case 1 < 0 < s, thanks to the compactness of the embedding WOI’S(Q) — L9(Q),
Agc is attained by a non-negative function. In particular, it is easily seen that the
minimizer u > 0 of A;s (0 € (1,5)) is a non-trivial and non-negative solution of
the following equation with A = A, :

— Agu = A||ull$ % lu|®2u inQ, u=0 ondQ. (1.4)

That is, in case 0 =, Ay is the first eigenvalue of s-Laplacian and the minimizer
is the corresponding eigenfunction. Moreover, when € is additionally supposed to
be connected, that is, a bounded domain, the first non-local eigenvalue JL_W is simple
provided ¢ < s and the corresponding first eigenfunction is positive (or negative) in €
for o € (1,s*) (see [16] and [38] for the non-local eigenvalue problem and [18] in case
N=1).

REMARK 1. Due to the standard Moser’s iteration methods, any solution of (L)
and (1.4) is bounded. In addition, under C'¥ -regularity of Q (x € (0,1)), any (weak)
solution belongs to Cé’“ (Q) for some u € (0,1). This regularity result follows from
[21, Theorem 1] (see [22, p. 320]). Moreover, we recall that if Q is connected, that
is, a bounded domain (without the regularity of ), then any non-negative minimizer
of Ay is positive in Q. This is proved by Harnack inequality or maximum principle
(see [32]). Finally, we remark that the positivity (and boundary point condition) of
non-negative and non-trivial C!(Q)-solutions for (L) follows from the strong maximum
principle (refer to [32] and [27]) provided aW and BW are bounded from below, under
C? -regularity of Q.

1.1. Main results on Lyapunov-type inequalities
To state main results corresponding to the sign of (¢, 3), we set
Wep: =Wy if £a-B>0 and Wypg:=W ifa-B <0,

respectively, where W := max{£+W,0}.
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THEOREM 1. Let y € [l,00] if N< g and N/q <y € (1,0 if N > q. If (L) has
a non-trivial solution, then

A’P ;0p 2’51 ,0q

laf B

holds, where As o is defined in (1.3). In particular, the equal sign above is not valid
provided 1 <y < oo.

Wa7ﬁ||y>min{ }, (oy:=sy forse{p,q}) (1.5)

In case y = oo, assuming an additional condition of (i) ~ (iii) as in Proposition 1,
we can see that the equal sign in (1.5) does not hold.

PROPOSITION 1. Let y = oo. Assume that one of the following conditions:

(i) a-p<0;
i) Ayl # Ry IB
(iii) Q is class of C1¥ (for some x € (0,1)) if N > 2.

i

If (L) has a non-trivial solution, then the equal sign in (1.5) is not valid, namely,

Aoy A
Wy, gl > min —p’p,ﬂ}
Wagl- > min{ 728,

holds.

Here, we remark that we do not consider Lyapunov-type inequality using rq in
case N € {p,q} because we can not expect to get it for general sets Q due to Osser-
man’s results ([28]) in case p =N = 2.

The following result is proved for the case N > s as in the argument in the proof
of Theorem 2.4. in [11]. We provide the same result for the case N < s. Since A+ is
independent of €2, we do not consider the case o = s* and s < N for the general open
set Q. See Remark 2 for convex sets and case N = s. It is shown in [7, Proposition
6.1] that we can not get an estimate of A, s as in (1.6) in sublinear case o <s.

PROPOSITION 2. Let s € (1,00)\{N}, 0 € [s,00] if N <s and o € [s,5*) if N >
s. In addition, we assume that € is a Lipschitz bounded domain if N > s. Then there
exists a positive constant C depending only on N, s, o, Hy such that
1570' > Crés-&-N(l—s/G), (1.6)
where As g is defined in (1.3), and Hy is the constant as in Theorem 6 (Hardy inequal-
iry).
In particular, if N < s and ¢ = oo, then we can take C = M;° in (1.6), where
M = M(s,N) is the constant as in Morrey inequality (see Theorem 5).
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REMARK 2. Although H; depends on the capacity of RV \ Q in general, it is
known that the constant H; can be taken independent of Q for convex domains (refer
to [25] and [2, Chapter 3]). In particular, for an open bounded “convex” set €, (1.6) is
shown together with N = s in [7, Corollary 5.1. and Proposition 6.3.].

According to Theorem 1 and Proposition 2, the following two results are proved.
These results correspond to those in [11, Theorem 2.1 and Theorem 2.4] for the p-
Laplace equation. Since we can not apply Proposition 2 to the case s = N for the
general domain Q, we have to assume N & {p,q}.

THEOREM 2. Let y=1 and N < q. If (L) has a non-trivial solution, then there
exists a positive constant C such that

C
max { ||, Y, 1BV}

HWa,ﬁHI >

where C depends only on N, p and q.

THEOREM 3. Let N & {p,q}, and y € [1,00] if N < q and N/q <y € (1,] if
N > q. Assume that Q is a Lipschitz bounded domain if N > q. If (L) has a non-trivial
solution, then there exists a positive constant C such that

C

H”a/} s
D —N N
max{|a|rgp /y, ‘[3|rgq /y}

ly =

where C depends only on N, p, q, Y, and Hardy constants H, and Hy (as in Theo-
rem 0).

For convex sets, applying the results in [7, Corollary 5.1. and Proposition 6.3.]
instead of Proposition 2 (refer to Remark 2), we get the following result including the
cases N=p and N =q.

THEOREM 4. Assume that Q is an open bounded convex set. Let y € [1,0] if
N <qgand N/g<y€ (1,] if N>gq. If (L) has a non-trivial solution, then there
exists a positive constant C such that

C

W, ,
P max [ty V7 By )

ly >

where C depends onlyon N, p, q and Y.
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1.2. Results on the optimality

First, we show the optimality of (1.5) except the case y=1.

PROPOSITION 3. Let N/q <y € (1,)|. Assume that

. 2’1770'13 A"Ivo'q z’on_P 3’5170—‘1 .
m‘“{ CIRT }<ma"{ Bl } (@i=s?). (D)

Then, for any € > 0 there exists W € L™(Q) satisfying

2, o, zfqo'
Wapl <min{ “22, 2100 ]
i jaf 1]

such that (L) has a non-trivial and non-negative solution.

Finally, in case that Q is a ball, we prove that the powers p; :=s—N/y of rg in
Theorem 4 are optimal. The same arguments for the p-Laplace equation are done in
[11, Proposition 2.7.].

PROPOSITION 4. Assume that Q = Bg, that is, Q is the open ball of radius R > 0
centered at the origin. Let N/g <y € [l,] and 1 <y<N/(N—1) if N> 2. For
any C >0 and € > 0 satisfying € < min{1,p,,pq4,p —q}, where ps:=s—N/y, the
following assertions hold:

(1) If o #0 and B € R, then for any sufficiently large R > 1 there exists W €
LY(Bg) satisfying

C C
|y < =

W,
Wapllr < fofker= = max (e BT )

such that (L) has at least one non-trivial (and non-negative) solution.

(ii) If B # 0 and o € R, then for any sufficiently small 0 < R < 1 there exists
W € LY(Bg) satisfying
Waply < oo = =
AP IBIRPE T max {[alRrTE, B R

such that (L) has at least one non-trivial (and non-negative) solution.

The structure of the paper is as follows. In section 2, we prove Lyapunov-type
inequalities: Theorem 1, Proposition 1 and Proposition 2. In section 3, we provide the
proofs of Proposition 3 and Proposition 4. In Appendix, we give a sketch of the proof
for the existence theorem stated in section 3.
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2. Proofs for Lyapunov-type inequalities

First, we reall Morrey inequality and Hardy inequality. See [14] or [2, Theorem
3.2.1] for details.

THEOREM 5. Let N < s < co. Then there exists a positive constant My depending
only on s and N such that any u € WOl *(Q) satisfies

u(x) = u(y)] < M| Vulls o=y

forall x,y € Q.

THEOREM 6. Let s € (1,00). Assume that Q be a Lipschitz bounded domain if
N > 5. Then, there exists a positive constant Hg such that

Wl Y
< H. :
/Q(dg(x) dx\H_X/Q|Vu| dx

1,
for any u e W,"(Q).
Let us start to prove Lyapunov-type inequality.

Proof of Theorem 1. Let u be a non-trivial solution of (L). Taking u as a test
function, we have

IVullp+ IVullg = o | WlulPdx+B | Wul?dx < [[We,glly ( |l llulls, + \ﬁlllull?;q>
Q Q

(2.1)
by Holder inequality. This leads to Lyapunov-type inequality as follows:
Vul|b+ || Vuld Vu||h Vul|d
o [[ulls, + 1Bl llulls, o l[ulls, " 1Blllulls,
A A
;min{ 2% ‘1""’}. (2.2)
o] * (B

Finally, we prove that Lyapunov-type inequality (1.5) is strict in case 1 < y < oo by
contradiction. So, if the equality in (1.5) holds, then all equal signs in (2.1) and (2.2)
hold. We easily see that the equality of (2.1) is impossible in the case o - < 0.
Moreover, if either o or f is zero, then the second inequality in (2.2) is strict. Let
o, > 0. Then, the equality of (2.1) implies that W > 0 a.e. in Q, and the equal-
ity condition of Holder inequality guarantees that (W /||W||,)" = (|u|/||u[|5,)% and
W/IW )7 = (Jul/||ull,)% ae. in Q. Since 6, > 0y, this gives that u is constant,
that is, # = 0. This is a contradiction. In case o, 3 < 0, we can get a contradiction in
the same way. The proof is complete. [
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Proof of Proposition 1. By contradiction, we suppose that the equality in (1.5),
that is,

App A
W, oo:nflin ﬂ)ﬂ}
IWapl- = min{ 728, 5

holds for some weight function W € L=(Q). Then, for some non-trivial solution u of
(L) with such W, all equal sign holds in (2.1) and (2.2). Note that 6, = p and oy = ¢
since we are considering the case y = c. The second equality in (2.2) shows that
o - B # 0. Moreover, combining with the last equality in (2.2), we see that A, ,/|ct| =
Ag.q/|B|, and u is a minimizer of both A, , and A, . The first assertion is impossible
provided the case (ii).

Next, let us consider case - 8 < 0. The equality in (2.1) means that

0= [ (Wi~ oWl dx= [ (BIIW].~pW)u?dx. @3

If oo > 0> B3, then (2.3) is equivalent to 0 < o||W||o = oW and 0 < (—f)||W|| = W
ae. in {x € Q : u(x) #£0} =: [u+#0]. Hence |[W||.. =W = —W ae. in [u # 0], and
so W =0 a.e. in [u # 0]. This means that

Va2 + ||V} ¢ = a/[ ]Wlu\”dx+ﬁ/[ Wialtdr =0,
u=0 u=0

whence this contradicts to u # 0. Similarly, the case oz < 0 < 3 is impossible.

Finally, let us consider the case (iii). Recalling that u is the minimizer of both
Ap,p and A4 4, we may assume that u > 0 in Q by considering |u| if necessary. Since
minimizers are solutions of corresponding eigenvalue equation, u is a non-trivial and
non-negative solution of

—Agu = /157s\u|5_2u in Q, u=0 ondQ

for s € {p,q}. Under the regularity of Q as in (iii), it is known that u € C'-9(Q) (see
Remark 1). Take a component ' of Q such that u # 0. Hence, u > 0 in €/, that is,
u is a positive solution of

—Agut = Aggul*u inQ, u=0 onodQ’

for s € {p,q} . Recall that only the first eigenfunction of s-Laplacian (s € (1,e0)) has a
constant signin Q. Thus, A = A, (') and u is the first eigenfunction corresponding
to both 4, ,(Q') and A,,(€Q"). On the other hand, it is shown in [3, Proposition 13.]
(note that the proof requires that positive eigenfunctions have a maximum point in Q')
that the first eigenfunctions of p-Laplacian and g-Laplacian are linearly independent.
So, we have a contradiction.

As aresult, we get a contradiction in all cases. The proof has been completed. (|
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Proof of Proposition 2. Let u be a minimizer of A, s since itis attained by o < s*
Gf N = s).

Case N > s is shown by the same argument as in the proof of [11, Theorem 2.4].
For readers’ convenience, we give only the sketch. Take 7 € (0,1] satisfying o =
Ts+ (1 — 7)s*. Then, by Holder inequality, Hardy inequality (Theorem 6) and Sobolev
embedding, we get

c Ts+(1—1)s* s T
lulg et Mg(/(u|)w>wwﬂ
) o da(x) o \da(x)

<A TOPHE V) e,

where dg is the distance function from the boundary dQ defined in (1.2). This yields
[Valls

leells =~

7L *(1-1)/o S_ST/O-rg_gs+N(l_S/0)~

5,5%

Aso =

Since A+ depends only on s and N, our assertion is shown.

Case N < s: First, we recall that the argument as in [ 1, Theorem 2.1.] implies
1-N
e < M|Vt 7y ™, (2.4)

where M; = M,(s,N) > 0 is the constant as in Morrey inequality (Theorem 5). In fact,
this is easily shown to apply Morrey inequality with a maximum point x € Q of |u| and
y € dQ such that |x — y| = dist (x,0Q) (< rq).

In case 0 = =, our assertion follows from (2.4). Now let ¢ < o= and we choose
any 7 € (0,0). Then, using (2.4), we have

leelle < [lull|1" < Myrg ™ 1Q1V |V 5, 2.5)

where |Q| is the Lebesgue measure of Q. Let (7, =)t € (0,1) satisfy 0 = s+ (1 —
7). Then, by (2.5) instead of Sobolev embedding as in the above argument, we get

| Hg <HT||V Hrs” ||f(1*7)<HTM(1*T)‘Q|1—T 1(1-7)(1-N/s) v HO’
rg\x ulls 11Ul S g My o Uls s
and hence
_ Vul|®
rQert(l ‘L')N/o‘ \‘L'/O'M t(1-7)s /0—|Q‘ s(1-1)/ g || uHs :2’8‘0' (2.6)
[lulls
Letting ¢ — o in (2.6), since
t—0O
=7 -1, (I-1t)t=0—-sT—0—5 ast — oo,
—s

we get
A«\' - > H;s/o'M:(Gfs)s/G rgz.\'JrN(lfs/O')'

GX)

The proof is complete.  [J
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3. Proofs of the optimality

3.1. Existence result

Here, we consider the following (p, q)-Laplace equation:

P
u=20 on 0Q, ®)

{—Apu —Agu = A (VpluP2u+Vylul"u)  inQ,
where A € R and V; € L% (Q) (s € {p,q}).

To state the existence result, we define the first eigenvalue of s-Laplacian (for
s € (1,00)) with weight as follows:

. [Vl , Ls i
As(V) ._mf{—(fgwwx)m Lue W@\ {0}, /va dx>0} 3.1)

for V € LY(Q) satisfying Vi £ 0 with y > N/s (if N > s), v € (1,00] (if N = s),
y € [1,00] (if N < s). Moreover, we set A(V) = +oo if V <0 ae. in Q. Clearly,
As(V) = A6/ |V ||y holds, where ¢ = sy . Incase V.. #0 and y> N/s (if N > ), itis
well known (see Remark 1 and [10]) that A;(V) is attained by a non-negative solution
belonging to L= (Q)NCY (Q) for

loc

—Au=A(V)V(¥)|u|u inQ, u=0 ondQ.

The following result is already proved in [26] provided that V), and V,; are bounded.

THEOREM 7. Assume that s € [1,00| (if N <) for s € {p,q}, vp € (N/p,°| (if
NZ=p) ¥ € (1, (if N=q) and ¥4 € [N/q,] (if N> q). If A satisfies

min{2,(V,), Ag(Va)} < A < max{A,(V,), A4(V,)} (< +e0),

then (P) has at least one non-trivial and non-negative solution u € Wol’p (Q)NL=(Q).

In particular, under the additional condition that Q is a bounded domain with £2
boundary (if N > 2), if V, and V; are bounded from below a.e. in Q, then u € C1=9(Q)
(0 €(0,1)), and it satisfies u >0 in Q and du/dv <0 on dQ, where v denotes the
outer normal vector on 0Q.

The proof of Theorem 7 can be done in the same way as in [26, Theorem 1.3.]. So
we give only the sketch of the proof in the Appendix.
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3.2. Proofs of Propositions 3 and 4

For the proof of Proposition 3, we prepare the following calculation.

LEMMA 1. Let s,y € (1,00), ¢ >0 and vy satisfy y> N/s if N > s. For the
minimizer ¢ >0 of Ay with 6 = sY(< 5*), we set V := @*/("1(= @9%). Then
VeLr°(Q), and

B As(V) As.c
Viy=lels" and A(cV)=—==—
Vi, =llelS V) ===

hold, where Ay and As(V) are defined in (1.3) and (3.1), respectively.

Proof. The boundedness of V follows from ¢ € L*(Q) (see Remark 1). Accord-
ing to simple calculations, we have ||V|, = [|¢||g~* by /7y =0 —s and

. Vul|3 s
AS(CV):le{W:O#MGWOL (Q)}
L. [Vl Ls As(V)
= —inf 0 Wy (Q) » =
¢ {fQVuP'dx FueW () ¢
1 . HVMHS 1,s } 2fs.cr
> inf L 0A£uew,’(Q) p = ———, (3.2)
clVily {fglu"dx 0 clVily

where we used [, V|u|*dx < ||V||y|lul|%; by Holder inequality. On the other hand, be-
cause it holds

V Sd :/ Gd — s G—S: N V ,
| vieras= [ ooax=lols ol = lols V1,

by taking the minimizer ¢ of Ao as an admissible function, the definition of A(V)

leads to Vol ol .
)< Vel _ Vel _ Ao
JoVleldx  eols VI, IVIy

Thus the opposite inequality in (3.2) is shown, whence our assertion is complete. [

Proof of Proposition 3. Our assumption (1.7) is divided into the following cases

(1) is (ii):

P ) Aoy Ao

: P (L) (i) o0 and TP 0 (<o),

Bl < o] (S e ol <7p] ()
(3.3)

Corresponding to case (i) or (ii), we shall set suitable A and V; (s € {p,q}) and provide
a non-trivial and non-negative solution of (L) applying Theorem 7.
First, we consider the case y = oo. Then 0, = p and 0, = g. Define

(i)B#0 and

(i) Vp:=sign(B)a, V,:=|B| and (ii) Vp :=at|, V,:=sign(o)p,
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where sign(¢) =1¢/|¢| for ¢ # 0, and put

As :=min{A,(V,),A4(V4)} +8 for§ >0.
Since it holds

A’SS
MO > A(C) = T PrCeR, se{pg)

we have

=
<
&

min{2p(Vp): Aq(Vq)} = mi“{ g } ) ma"{ o _7}

<max{A,(V,),Aq(Vy)},

and so A5 < max{A,(V,),A4(V,)} for small 6§ > 0. Therefore, by setting W5 =
sign(B) As in case (i) or Wg = sign(o) Ag in case (ii) with small é > 0, Theorem 7
guarantees that our equation (L) (with Wg) has a non-trivial solution, whence the proof
is done in case y = oo.

Next, let 1 < y < eo. For s € {p,q} we let ¢; > 0 be the minimizer of A,
(05:=sY), and set V;* = &~ because our assumption N/q < y € (1,o0] gives oy < s*
if N > 5. Then it follows from Lemma 1 that

AVS)  Ase

Ag(cV) = = = f 0. 4
s(eVy) " avels orc > 3.4

Moreover, because [q V;*[u|*dx < ||[V/*||y||lu[|5, by Holder inequality, we have

As(cV)) = A (V) > As.o,
e ¢ g CHVr*Hy

forc >0 (3.5)

if s#1€{p,q}. Define
(i) Vp:=sign(B)aV,, V,:=|[B|V, and (ii)V,:=|a|V,, V,:=sign(a)BV,.

Hereafter, we put s = g or s = p in case (i) or (ii), respectively. We claim that for any
€ >0 we can take a small ¢ > 0 satisfying

As :==min{A,(V,),A4(Vy)} + 8 <max{A,(V,),A4(V,)} (3.6)
and
Apc, Ago.
AsV <min{ﬂ7ﬂ}+s. (3.7)
” A HY ‘OC‘ |ﬁ‘

If these claims are shown, applying Theorem 7, we can get a non-trivial and non-
negative solution of

—Apu—Agu = As (Vp\u|p_2u—|—Vq\u|q_2u) inQ, u=0 ondQ.
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So, the proof is done with W = sign(f8) A5V, in case (i) and W = sign(a) A5V, in case
(ii).

Now, let us show our claim. We shall consider only the case (i) with § > 0 because
other cases can be shown in the same way. First claim (3.6) follows from (3.4), (3.3)
and (3.5) that

o 2"170'11 2’17~,(7p
BlVilly — ledlVglly

Aq(Vg) Slp(\a\Vq*) g7L17(O‘Vq*):%p(vp)(g o).

Hence A5 = A4(V,) + 6 and

* 2"170— * 2"170— *
16V lly = ( . +5> IVglly=—7—+8lIVlly

BlIVylly B

. Apcr,, )ch,,}
= min L =L >+ 0|V ly-
{ ol 18] J TOMVally

Thus, (3.7) holds if 0 < & < ¢/|[V/|ly. O

For the proof of Proposition 4, we prepare two simple calculations, which are also
arguedin [1 1, Proposition 2.7.]. The first result is easily shown by the direct calculation.
We omit the proof.

LEMMA 2. Let y€ [l,), § >0 and p > —N/y. Set
Wi (x) := x0.5)(|x]) [x|P forx e RY, (3.8)
where x; denotes the characteristic function of an interval 1. Then, it holds
1 _
IW-lly = @y (py+N) =17 804N,

where wy denotes the surface measure of the unit ball in RV .

LEMMA 3. Let s € (1,0), —min{N,s} < p <1—N, and assume that Q includes
the open ball Bg centered at the origin with radius 6 > 0. Then A;(W.) with W,
defined by (3.8) satisfies

A(W,) <8P (s—1) (ﬁ)

Proof. By considering the zero extension, we may suppose that WO1 *(Bs) C WO1 Q).
First, we note that we can see W € LY(Q) with min{1,N/s} < v < N/|p| by the
assumption —min{N,s} < p(<0). Thus, [oW.|u|*ds is well defined for any u €
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WOI’S(Q). By p+ N —1 <0, the simple calculations guarantee that

[Vl

A,S(W*) = lnf{w :

uew,”(Q), / W, |ul® dx > O}
Q

<inf{ ——— :ue W,”(Bs), Wilu|*dx >0
{fB,;W*”de 0" (Bo) Bs a

6 N—11,/|s
< inf{M cu e wh(0,8), u'(0) =0 =u(8) }

fo‘s rPHEN=L|y|s dr
SN-1

< WMO’& =6""P(s—1) (ﬁ) ’

where A4(0,6) = 8 *(s— 1)(r/ssin(m/s))* is the first eigenvalue of one dimensional
s-Laplacian in the interval (—6,6). O

Now let us prove Proposition 4.

Proof of Proposition 4. Let Q = Bg and € > 0 and C > 0 been given in Proposi-
tion 4. Here we note that our assumption ¥y < N/(N —1) if N > 2 gurantees —N/y <
I1—N. So,weset p=0if N=1and y=c, —N/y< p < 1—N(<L0) otherwise.
Note that —N/y > —min{N, s} follows from the assumptions N/s < y and y > 1. Put
ps:=s—N/y.

As the same argument in the proof of Proposition 3, applying Theorem 7 to V),
and V, (defined later in corresponding to the case), we shall find A and R such that the
following equation

—Apu—Agu =2 (Vp|ulP2u+Vy|ul"*u) inBg, u=0 ondBg,  (3.9)

has a non-trivial (and non-negative) solution.

(i) oc #0 and B € R: First, we assume that y # oo if N =1. Since p, > p, and
o # 0, we may assume that |¢¢|RP? > |3|RP4 for large R > 1. Take 6 = R%(< R) with
a € (0,1) and R > 1. By using the function W, defined by (3.8), we set

Vy:=|o|W, and V,:=sign(a)BW..

Here, in case Q = Bg, we recall that the constant in (1.6) is independent of R and (1.6)
holds in case N € {p,q} too (see Remark 2). According to Lemma 2, Lemma 3 and
(1.6) with Q = Bg and § = R“, as R — o we have

‘ AW B
Wl =0 (B9 )y = 220 <o) <

and

Vv

A
Ag(Vy) = A (|BIW,) > =22

> >0 R PHN/M=Ps ) = [T
BHW-ly ( )
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where O(R") denotes the term such that limg_... O(R")/R" > 0. Therefore, to obtain A
satisying 4,(V,) <A < A4(V,) and

IAW.||; < CR™P»*¢ /| @], equivalently, 0 < A < O <R‘P"+8‘“(”+N/ Y>) =11

for large R > 1, it sufficient to show that I < I1I < II for large R > 1, that is, a(p +
p)>pp—€e+alp+N/y)>a(p+N/y)+ py. The last inequality follows from p,, —
€ > p,. Moreover, the first inequality is obtained by taking a such that 1 >a > 1—
€/pp. Consequently, for such large R > 1, choosing A above, equation (3.9) has a
non-trivial and non-negative solution. Therefore, our assertion is proved with W :=
sign(o) AW, .

Now let us consider the case Yy = o and N = 1. Recall that it is known that
Ayq = (g—1)(m/gsin(r/q))?R™4 in case Q = (—R,R). Because of p =1—-N=0,
Wi (x) = x[-5,5)(x) and ||W || = 1. Take & = R with a € (0,1), and then we observe
that

M) <O(R ) =1, Ay(BIW) > it >0 (R 4) =1
and

C
AWl = 12 < [op RS =201

Choosing a € (0,1) such that ap > p — €, we see that I < III < II for large R > 1

because of € < p, —p, = p — q. Hence, by the same argument above, this case can be
shown.

(ii) B # 0 and o € R: The proof can be done in the same way as above. So, we
give a sketch of the proof. Since p, > p, and B # 0, we may assume that |¢t|RPP <
|BIRPa for small 0 < R < 1. Take 6 =R’(< R< 1) with > 1 and 0 < R< 1. Set

V, :=sign(B)aW, and V,:=|B|W..

By taking suitable A >0 and small 0 < R < 1. Theorem 7 guarantees the existence of
a non-trivial (and non-negative) solution of (3.9), whence the proof is done by setting
W :=sign() A W... Now let us see the existence of A. As R — 40, we have

IW.lly =0 (RPN ) 2y (vy) <0 (R0 ) =1

and

A
A, (V) = Ao (|ac|W,) > _rpry >0 RPHN/V=pp ) —. 1
»(Vp) (o[ W) o] |[We|ly < )

Moreover, we see that
[AW.||y < CRP1=¢/|B|, equivalently, 0 <A < O (R_pq_s_b(erN/Y)) =:111. (3.10)

So, if we choose b > 1 such that b < 14¢/p,, then I <III <II as R — +0. Therefore,
for such small R < 1 we can get A satisying (3.10) and A,4(V,) <A < 4,(V,). The
proof has been completed. [
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4. Appendix: Proof of Theorem 7

Here, we give the sketch of the proof of Theorem 7.

First, we note that A;(V;) is attained if 7, > N/s if N > s. We choose one (non-
negative) minimizer of A¢(V;) and denote it by 0 < vy, € WO1 Q) NL=(Q)NCY(Q)
(see [10] for the details about the minimizer). Remark that we don’t get the positivity

of y; in general because € is not supposed to be connected.
Since A,4(V;) is not attained in case y, = N/q if N > g, and the minimizer y,

may not belong to W, , we need to prepare the following result.
bel W, (Q d he followi I

LEMMA 4. Let y, € [1,00| (N <gq) and v, >N/q if N > q. Assume that A4(V,) <
co. Then, for any € > 0 there exists Y, ¢ € Wol’p(Q) such that

Vo >0, /quwgﬁgdle and /Q\qu7£|qu<xq(vq)+e. @.1)

Proof. Take any € > 0. First, due to A4(V,) < e, we can choose y € WO1 1(Q)
such that

/Vq|11/\‘1dx:1 and /\Vl{/\qu<7tq(Vq)+8/2.
Q Q

Since C*(Q) is dense in WOl “(Q), thanks to the continuous embedding from WO1 1(Q)
into L9% (), there exists a sequence {y, }, C C2°(Q) such that

n—oo

fim Vq|wn\‘1dx:/Vq|w\‘1dx:1 and lim/ |Vq/n|‘1dx:/ V|7 dx.
Q Q n—ee JQ Q

So, |Wnl/(fq Vylwn|9dx)"/9 satisfies (4.1) for large n. [
Next, we set an energy functional E}‘f on WO1 P(Q) as follows:

1 1
E; (u):= ;H{(u) + ” GF(u) forue Wol"p(Q),

H (u) 1= ||VuH§—7L/QVpu’frdx and G (u) ::\\vung—x/quuidx,

where uy := max{+u,0}. We see that any critical point u of E}‘f satisfies u > 0 by
taking u_ as a test function. It is easily shown that any critical point of E{ corre-
sponds to a non-negative solution of (P) (refer to [26, Remark 3.1.] or Remark 1 for the
regularity of solutions).

The proof is done with the same argument in [26, Theorem 1.3.] using

l:= ‘/QVSuidx

for s € {p,q} with oy := 57 instead of I < ||Vi]|oo[ue||§ < [|Vs||oo || Ve[S / As,s in [26].

IVslly IValls Vsl [[Val[5,
A‘.Y,O'S ’ )Ls/p

D05

< Wsllyllus s, <
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Moreover, we use the following result instead of [26, Lemma 3.3]. The proof is
done by the same argument as in [37, Lemma 9.] according to the compactness of the
embedding from WO1 P(Q) into L9(Q) and L°(Q). For readers’ convenience, we give
a sketch of the proof.

LEMMA 5. Let q,0p € [1,00] if N< p and 1 < q,0, < p* if N> p. Set
L, .
X(d):={ue Wy (@)« |Vullh <d|ull, |
for d > 0. Then there exists Cg > 0 such that

|Vul|, < Cqllully forallu e X(d).

Proof. Suppose, by contradiction, that there exist d > 0 and a sequence {u, }, C
X (d) such that ||Vu,||, > n||luy||; for all n € N. Then, since a normalized sequence
Vp i= U/ ||tn| s, is bounded in W()17p(§2) by u, € X(d), we may assume, up to a sub-
sequence, that v, converges some vy weakly in WOl P(Q) and strongly in L°(Q) and
L(Q). Because [|vy||g, = 1 for all n, we have vy # 0. On the other hand, our contra-
dictional assumption leads to that d'/? > limsup,_... [|Vva||, = limy—w(n]|[va] ;) = o,
from which we get the desired conclusion. [l

Proof of Theorem 7. Case Ay(Vy) < A < A,(V,)(< ) : In this case, we shall
show that E{ has a global minimum point with negative energy. In fact, by the argu-
ment as in [206, page 11.], we can show that

AllVylly,

q/p

£
E; (u) > ;HVMH,’?—
P,0q

[Vul|9 for all u € Wy ” (L),

where € € (0, 1] satisfying (1 —¢)A,(V,) > A if 4,(V,) < oo. Hence, E; is coercive
and bounded from below, because o,,0, < p* (if N > p) guarantees the weakly lower
semi-continuity of E;, and so E; has a global minimizer. Since from A,(V,) < 4
and g < p, for small 6 € (0,4 —A,(V,)), the nonnegative function v, 5 € WO1 7(Q)
obtained in Lemma 4 satisfies that E; (ry, 5) < 0 for small 7 > 0. Thus, the minimum
value of E{ is negative, and so E{ has a non-trivial critical point.

Case Ap(Vy) <A < A4(Vy)(< oo) : First, we note that by the standard argument (re-
ferto [37, Lemma 12.] or see [3, Lemma 3.2.] for the boundedness of the Palais—Smale
sequence), it is proved that the functional E{ satisfies the Palais—Smale condition pro-
vided A # A,(V),).

In this case, we shall see that E{ has the mountain pass geometry. In Lemma 5
we take d satisfying

AV
d> max{1,xvp||yp, AlVelly, }
A'p70'p
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Using above d in [26, (19)], the arguments as in [206, p. 12—13] leads to

(d—1)C?

el
Ef(u) > — < [ul| P+ %HMHZ forany u € W, "(Q),  (4.2)

where C; is the constant obtained by Lemma 5 and € € (0,1] such that (1 —g)A,4(V,) >
A if A(V,) < eo. Moreover, it is easily shown that E; (Ry,) — —co as R — o by
A < Ap(V,). Thus, we define a mountain pass value as follows:

.= inf EF(y(z
¢:= inf max 2 (r(1)),

r= {ye C([O,l],W&”’(Q)) £ 7(0) = 0 and (1) :pr},

where R > 0 is a large number satisfying E;[ (Ry,) < 0. Thanks to (4.2), ¢ > 0 holds,
whence c is a positive critical value of £ Q‘f .
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