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Abstract. In this paper, we establish the existence and the global asymptotic behavior of positive
solutions in an exterior domain Ω ⊂ R

d , d � 3,
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−Δ)
α
2 x = f (t)xp, in Ω,

x > 0, in Ω,

lim
t→∂ Ω

δ (t)1− α
2 x(t) = 0,

lim
|t|→∞

x(t) = 0,

where (−Δ)
α
2 is the infinitesimal generator of a killed symmetric α -stable process XΩ on Ω,

0 < α < 2, p < 1 and the function f is positive and satisfies the suitable conditions related to
the Karamata classes K0 and K∞. Our approach relies on potential theory, Karamata regular
variation theory, and the Schauder fixed point theorem.

1. Introduction

Numerous studies have focused on investigating the existence of a solution for the
following specific type of fractional differential equation

(−Δ)
α
2 x = ϕ(., x), in Ω (1.1)

where Ω is a bounded or unbounded domain of R
d . More details can be found in

[1, 2, 3, 6, 8, 12, 14, 19, 20] and their references.
For a bounded C1,1 -domain Ω ⊂ R

d , d � 2, Chemmam et al., in [8], studied the
equation (1.1). They well applied fixed point arguments and exploited properties of the
Green function Gα

Ω(t,s) associated to (−Δ)
α
2 in Ω as well as functions of a Kato class

(see [8, Definition 2]) to establish the existence of a positive solution x of (1.1) that
satisfies

x(t) =
∫

Ω
Gα

Ω(t,s)ϕ(s,x(s)) ds. (1.2)
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In [9], Chemmam et al. investigated equation (1.1) for ϕ(t,x) = f (t)xp , where p < 1
and f is a function satisfying certain assumptions related to the class K0 , the so-called
Karamata class defined as in the Definition 3. The authors demonstrated that equa-
tion (1.1) possesses a positive continuous solution x in Ω that satisfies the condition
lim

t→∂Ω
δ (t)1− α

2 x(t) = 0. Here and always, δ (t) denotes the Euclidean distance between

t and the boundary ∂Ω .
Moreover, Chemmam et al., in [6], tackled the equation (1.1) in an exterior domain

Ω ⊂ R
d , d � 3, with the following boundary conditions

lim
t→∂Ω

δ (t)1− α
2 x(t) = 0 and lim

|t|→∞
x(t) = 0.

The nonlinearity ϕ(., x) satisfies some condition related to a new functional Kα
∞(Ω) ,

(see definition 2). Thanks to the Kelvin transform (see [5]), the authors in [6], gave
precise estimates of a Green’s function Gα

Ω(t,s) associated to (−Δ)
α
2 , which enabled

them to introduce the class Kα
∞(Ω) . Then, using a fixed point theorem, they proved the

existence, uniqueness and asymptotic behavior of a positive classical solution x in Ω,
defined by

x(t) =
∫

Ω
Gα

Ω(t,s)ϕ(s,v(s)) ds.

Significant progress has been made in unbounded domains regarding the case α = 2.
For instance, Mâagli et al. have used in [15] the sub-super solution method and po-
tential theory tools in their work [15] to investigate the existence of a positive solution
on Ω, which is the outside of unit ball, for the differential equation (−Δ)x = f (t)xp,
conditional on Dirichlet boundary conditions. Here, p < 1 and f satisfies certain as-
sumptions associated with Karamata classes K0 and K∞ (see Definition 4). Recently,
in more general domains not necessarily radial, Mâagli et al. in [16] studied the follow-
ing problem ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−Δ)x = f (t)xp, in Ω,

x > 0, in Ω,

lim
|t|→∞

x(t) = 0,

lim
t→∂Ω

x(t) = 0,

(1.3)

where p < 1 and Ω is an unbounded regular domain in R
d (d � 3), with compact

boundary. The function f needs to satisfy a specific condition that is relevant to classes
K0 and K∞ . They used the sub-super method to establish the existence, uniqueness,
and asymptotic behavior of a positive classical solution for the problem (1.3). More
recently, in [20], the authors’ attention was given to the following singular fractional
problem ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−Δ)
α
2 x = f (t)xp, p < 1, in Ω\ {0},

x > 0, in Ω\ {0},
lim
|t|→0

|t|α−dx(t) = 0,

lim
t→∂Ω

δ (t)1− α
2 x(t) = 0,
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where Ω is a C1,1 -bounded domain in R
d containing zero with d � 3. The weight

function f (t) fulfills suitable conditions associated with the Karamata class K0. The
authors employed Karamata’s theory and Schauder’s fixed point theorem to establish
the existence of a continuous solution to the above problem.

Motivated by the works mentioned above, the main objective of this article is to
investigate the existence and global asymptotic behavior of a positive classical solution
for the following fractional Dirichlet problem in an exterior C1,1 -domain Ω , for 0 <
α < 2, ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−Δ)
α
2 x = f (t)xp, p < 1, in Ω,

x > 0, in Ω,

lim
t→∂Ω

δ (t)1− α
2 x(t) = 0,

lim
|t|→∞

x(t) = 0.

(1.4)

This result extends the findings of [16] in the elliptic case (α = 2), revealing notable
differences from the elliptic situation. It should be noted that the techniques of proofs
provided by Chemmem et al. in [6] can be effectively applied to several proofs pre-
sented here. Furthermore, we remark that the special case of radial domains is treated
in this work, particularly the outside of the ball. Here and always, a C1,1 -exterior do-
main Ω in R

d (d � 3) means that Ω
c
=∪1�i�kΩi where Ωi is a bounded C1,1 -domain

of R
d and the intersection between any two domains, Ωi and Ω j , is empty when i �= j.

Then, the fractional power (−Δ)
α
2 is the infinitesimal generator of the following killed

symmetric α -stable process

XΩ
s (w) =

⎧⎨
⎩

Xs(w), s < τs

δ , s � τs,

where τs := inf{s > 0; Xs /∈ Ω} and δ is the cemetery point. We refer to [4, 6, 18]
and the references therein for more details. For t ∈ Ω , g1(t) ≈ g2(t) means that for
two nonnegative functions g1 and g2 defined on a set S there exists c > 0 such that
1
c g2(t) � g1(t) � cg2(t). The notation, B(Ω) is the set of Borel measurable functions
in Ω and B+(Ω) is the set of nonnegative ones. Furthermore, C (Ω) is the set of
continuous functions in Ω and C0(Ω) := {x ∈ C (Ω), lim

t→∂Ω
x(t) = lim

|t|→∞
x(t) = 0} with

its uniform norm ||x||∞ := supt∈Ω |x(t)|. Note that the letter c denotes a generic positive
constant that can vary from one line to another.

Now, for t0 ∈ Ω
c

and B(t0, r) ⊂ Ω
c
, r > 0, we have, from [11],

Gα
Ω(t,s) = rα−dGα

Ω−t0
r

(
t − t0

r
,
s− t0

r

)
, t, s ∈ Ω.

Throughout this work, we assume, without loss of generality, that t0 = 0 and r = 1.
Let t∗ = t

|t|2 be the Kelvin transformation from Ω onto Ω∗ = {t∗ ∈ B(0,1) : t ∈
Ω} (as mentioned in [5]). Applying this transformation, we have the following relation

Gα
Ω(t,s) = |t|α−d|s|α−dGα

Ω∗(t∗,s∗), for any t, s ∈ Ω, (1.5)
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where Gα
Ω(t,s) is the Green’s function associated to (−Δ)

α
2 in Ω and Gα

Ω∗(t∗,s∗) is the
one in the bounded domain Ω∗ (see for instance [6, 8]). Furthermore, let g ∈ B+(Ω) .
We define the α -order Kelvin transform of g in Ω∗ as g∗ , given by the following

g∗(t∗) = |t|d−αg(t).

Then, for all t ∈ Ω , we obtain

ρ(t) =
δ (t)

1+ δ (t)
and 1+ δ (t)≈ |t|, (1.6)

and

δ (t∗) ≈ ρ(t) ≈ δ (t)
|t| , (1.7)

where δ (t∗) be the Euclidean distance between t∗ ∈ Ω∗ and the boundary ∂Ω∗ .
Now, let us define the potential kernel Vg on B+(Ω) by

Vg(t) =
∫

Ω
Gα

Ω(t,s)g(s) ds.

From [6], we have Vg �= ∞ ⇐⇒ ∫
Ω

ρ(t)
α
2

(1+|t|)d−α g(t) dt < ∞. Hence, for any g ∈ B+(Ω)
and ψ ∈ C ∞

c (Ω), such that Vg �= ∞, we obtain

∫
Ω

g(t)(−Δ)
α
2 ψ(t) dt =

∫
Ω

Vg(t)ψ(t) dt.

That is, in the distributional sense

(−Δ)
α
2 Vg = g in Ω (1.8)

Below, we review the definition of super-harmonic functions associated with the killed
symmetric α -stable process (XΩ) , (see for instance [6]).

DEFINITION 1. Let g be a locally integrable function defined on Ω , taking values
in (−∞,+∞] , and satisfying the condition

∫
(|t|>1)∩Ω |g(t)||t|α−ddt < ∞ for 0 < α < 2.

We say that g is α -superharmonic with respect to XΩ if it is lower semicontinuous in
Ω and for every open set S such that S ⊂ Ω , the following condition holds

Et [|g(XΩ
τr

)|] < ∞ and g(t) � Et [|g(XΩ
τr

)|], for t ∈ S.

EXAMPLE 1. The functions t �→ ∫
Ω Gα

Ω(t,s)g(s)ds for any g ∈ B+(Ω) , t �→
ρ(t)

α
2 −1 and t �→ Gα

Ω(t,s) are α -superharmonic with respect to XΩ. From [13], if
a function g is α -superharmonic with respect to XΩ , it implies that its α -order Kelvin
transform g∗ is also α -superharmonic with respect to XΩ∗

.
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Throughout this paper, we assume that the function f satisfies the following hy-
pothesis.

(H ) : f is a positive function in C γ
loc(Ω) , 0 < γ < 1 satisfying for t ∈ Ω ,

f (t) ≈ (ρ(t))−λ L(ρ(t))|t|−ξ K(|t|), (1.9)

where λ < α, ξ > α +(2−α)(1− p), L ∈K0 defined on (0,η ] , η > 1 and K ∈K∞.
Here, we remark that we have

∫ η

0
uα−1−λL(u) du < ∞,

∫ ∞

1
uα−1−ξ+(2−α)(1−p)K(u) du < ∞. (1.10)

We define the function Θ on Ω by

Θ(t) = ρ(t)min
(

α
2 , α−λ

1−p

)
ϕL,λ ,p(ρ(t))|t|min

(
α−d,

α−ξ
1−p

)
φK,ξ ,p(|t|), (1.11)

where ϕL,λ ,p defined on (0,η ], η > 1, by

ϕL,λ ,p(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if λ < α
2 (1+ p),

(∫ η
u

L(s)
s ds

) 1
1−p

, if λ = α
2 (1+ p),

(L(u))
1

1−p , if α
2 (1+ p) < λ < α,

and φK,ξ ,p is defined on [1,∞) as follows:

φK,ξ ,p(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if ξ > d− p(d−α),

(∫ 1+u
1

K(s)
s ds

) 1
1−p

, if ξ = d− p(d−α),

(K(u))
1

1−p , if α +(2−α)(1− p) < ξ < d− p(d−α).

Let us, now, introduce our main result.

THEOREM 1. Let p < 1 . Suppose that the function f satisfies the hypothesis
(H ) . Then the problem (1.4) has at least one positive continuous solution x on Ω
satisfying for c > 0,

1
c

Θ(t) � x(t) � cΘ(t), t ∈ Ω. (1.12)

We end this section with the outline of the paper. The next section will state
already-known results for functions in the Karamata classes K0 and K∞ . Some results
for the Kato class Kα

∞(Ω) are also obtained. Then, in Section 3, we will focus on
providing estimates on some potential functions. The last section will be devoted to the
proof of the Theorem 1 and we end with illustrative examples.
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2. Preliminaries and key tools

2.1. On the Kato class Kα
∞(Ω)

In this paragraph, we give some results concerning functions belonging to the Kato
class Kα

∞(Ω) , for more details see [6].

DEFINITION 2. Let q∈B+(Ω) . Then q is in the Kato class Kα
∞(Ω) if q satisfies

the following conditions

lim
r→0

sup
t∈Ω

∫
Ω∩B(t,r)

(
ρ(s)
ρ(t)

) α
2

Gα
Ω(t,s)q(s) ds = 0,

and

lim
M→∞

sup
t∈Ω

∫
Ω∩(|s|�M)

(
ρ(s)
ρ(t)

) α
2

Gα
Ω(t,s)q(s) ds = 0.

Let us recall the following result stated in [6, Proposition 4.5].

PROPOSITION 1. Let q∈Kα
∞(Ω). Then for any α -superharmonic function h and

t ∈ Ω , we have for t0 ∈ Ω

lim
r→0

sup
t∈Ω

1
h(t)

∫
Ω∩B(t0,r)

Gα
Ω(t,s)h(s)q(s) ds = 0,

and

lim
M→∞

sup
t∈Ω

1
h(t)

∫
Ω∩(|s|�M)

Gα
Ω(t,s)h(s)q(s) ds = 0.

Next, we give the following theorem proven in [6, Theorem 4.9].

THEOREM 2. Let q∈Kα
∞(Ω) be a nonnegative function. Then the following fam-

ily of functions defined in Ω by

Γ = {t �→ J(g)(t) :=
∫

Ω

(
ρ(s)
ρ(t)

) α
2 −1

Gα
Ω(t,s)g(s)ds : g ∈ Kα

∞(Ω), |g| � q}

is equicontinuous and uniformly bounded in Ω∪{∞} . Furthermore, the set Γ is rela-
tively compact in C0(Ω) .

2.2. Properties of the Karamata classes K0 and K∞

In this paragraph, we present several essential properties of Karamata functions
that will be employed in subsequent sections.
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2.2.1. On the Karamata class K0

DEFINITION 3. The function L defined on (0,η ], η > 0, belongs to the Karamata
class K0 if

L(u) := cexp

(∫ η

u

y(s)
s

ds

)
,

where c > 0 and y be the continuous function on [0,η ] with y(0) = 0.

EXAMPLE 2. Let u ∈ (0, η). Then

L(u) =
n

∏
k=1

(
lnk

(
2η
u

))μk

∈ K0,

where lnk(t) = lno lno . . . ln(t) (k times), μk ∈ R and n � 1.

LEMMA 1. [7, 21] Let L1, L2 ∈ K0 and m ∈ R. Then we have the following:

(i) Lm
1 , L1L2 and L1 +L2 belongs to K0 ;

(ii) Let L ∈ K0 and ε > 0 , then lim
s→0+

sεL = 0 and lim
s→0+

s−εL = ∞.

LEMMA 2. [16] If L∈K0 defined on (0, η ] , η > 1, and m1, m2 ∈ (0, 1), c � 1
such that 1

cm2 � m1 � cm2. Then, there exists w � 0 such that

c−wL(m2) � L(m1) � cwL(m2).

LEMMA 3. [7, 17, 21] Let β ∈ R and L1 ∈ K0 defined on (0, η ], η > 1. Then,

(i) If β > −1 , then
∫ η
0 tβ L1(t) dt converges and

∫ t
0 sβ L1(s) ds ≈ tβ+1L1(t)

β+1 as t → 0+ ;

(ii) If β < −1 , then
∫ η
0 tβ L1(t) dt diverges and

∫ η
t sβ L1(s) ds≈− tβ+1L1(t)

β+1 as t → 0+ .

LEMMA 4. [7, 21] Let L ∈ K0 defined on (0, η ], η > 1. Then we have the
following assertions:

(i) lim
t→0+

L(t)∫ η
t

L(s)
s ds

= 0 and t �→ ∫ η
t

L(s)
s ds ∈ K0 ;

(ii) If
∫ η
0

L(s)
s ds converges, then lim

t→0+

L(t)∫ t
0

L(s)
s ds

= 0 and t �→ ∫ t
0

L(s)
s ds ∈ K0.

Next, we state a key lemma for the proof of our result.

LEMMA 5. [20] Let Ω∗ ⊂R
d , d � 3, be a bounded C1,1 -domain. If L1, L2 ∈K0 ,

and λ1, λ2 ∈ R. Then, for t, s ∈ Ω∗ , the following statements are equivalent.

(i)

lim
r→0

sup
t∈Ω∗

∫
Ω∗∩B(t,r)

Gα
Ω∗(t,s)|s|−λ1L1(|s|)δΩ∗(s)−λ2L2(δΩ∗(s)) ds = 0, (2.1)

here Gα
Ω∗(t,s) is the Green function of the fractional Laplacian with respect to XΩ∗

.

(ii) λi < α or λi = α with
∫ η
0

Li(r)
r dr < ∞, i ∈ {1,2}.
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2.2.2. On the Karamata class K∞

DEFINITION 4. The function k, defined on [1,∞), belongs to the Karamata class
K∞ if

k(u) := cexp
∫ u

1

y(s)
s

ds,

where c > 0 and y is a continuous function on [1,∞) such that lim
s→∞

y(s) = 0.

EXAMPLE 3. Let u ∈ [1,∞). Then, we have

L(u) =
n

∏
k=1

(lnk(wu))μk ∈ K∞,

where w > 0 sufficiently large number, μk ∈ R and n � 1.

LEMMA 6. [16, 21] Let L1, L2 ∈ K∞ , η > 1 and m ∈ R. Then, we have

(i) Lm
1 , L1L2 and L1 +L2 belongs to K∞ .

(ii) Let L ∈ K∞ and ε > 0 , then lim
s→∞

s−εL(s) = 0 and lim
s→∞

sεL(s) = ∞.

LEMMA 7. [16, 17, 21] Let β ∈ R and L2 ∈ K∞ . Then we have the following.

(i) If β <−1 , then
∫ ∞
1 sβ L2(s) ds converges and

∫ ∞
t sβ L2(s) ds≈− tβ+1L2(t)

β+1 as t → ∞ .

(ii) If β > −1 , then
∫ ∞
1 sβ L2(s) ds diverges and

∫ t
1 sβ L2(s) dt ≈ tβ+1L2(t)

β+1 as t → ∞ .

LEMMA 8. [10] Let L ∈ K∞ . Then

(i) lim
t→∞

L(t)∫ t
1

L(s)
s ds

= 0 and t �→ ∫ t+1
1

L(s)
s ds ∈ K∞.

(ii) If
∫ ∞
1

L(s)
s ds converges, then lim

t→∞
L(t)∫ ∞

t
L(s)

s ds
= 0 and t �→ ∫ ∞

t
L(s)

s ds ∈ K∞.

(iii) There exists m � 0 such that for every e > 0 and u � 1 , we have

(1+ e)−mL(u) � L(e+u) � (1+ e)mL(u).

As a relation between the Karamata classes K0 and K∞ , we have the following
remark due to [16].

REMARK 1. The function u �→ f (u) belongs to K∞ if and only if u �→ f ( 1
u ) ∈

K0, u ∈ (0,1].
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3. Asymptotic behavior of potential functions

In this section, we give estimates on the potential function V ( fΘp) , where f is a
function satisfying (H ) and Θ is the function given in (1.11). First, let us recall the
following lemma due to Salah et al. [20].

LEMMA 9. Let Ω∗ ⊂ R
d be a bounded C1,1 -domain containing 0, d � 3.

Let γ < d−2+ α , μ < α and L1, L2 ∈ K0 with η > diam(Ω∗). Suppose

b(t) = δ (t)−μL1(δ (t))|t|−γL2(|t|), t ∈ Ω∗ \ {0}.
Then, for t ∈ Ω∗ \ {0}, we have

Vb(t) ≈ δ (t)min( α
2 ,α−μ)L̃1(δ (t))|t|min(0,α−γ)L̃2(|t|),

here L̃1 and L̃2 are defined on (0,η) by

L̃1(u) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if μ < α
2 ,

∫ η
u

L1(s)
s ds, if μ = α

2 ,

L1(u), if α
2 < μ < α,

and

L̃2(u) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if γ < α,

∫ η
u

L2(s)
s ds, if γ = α,

L2(u), if α < γ < d−2+ α.

PROPOSITION 2. Let g be a positive continuous function satisfies, for all t ∈ Ω,

g(t) ≈ (ρ(t))−β1M1(ρ(t))|t|−β2M2(|t|), (3.1)

where β1 < α, β2 > 2, M1 ∈ K0 and M2 ∈ K∞. Then, for all t ∈ Ω, we have

Vg(t) ≈ ρ(t)min( α
2 , α−β1)M̃1(ρ(t))|t|min(α−d,α−β2)M̃2(|t|),

where

M̃1(u) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if β1 < α −1,

∫ η
u

M1(s)
s ds, if β1 = α −1,

M1(u), if α −1 < β1 < α,

and

M̃2(u) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if β2 > d,

∫ u+1
1

M2(s)
s ds, if β2 = d,

M2(u), if 2 < β2 < d.
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Proof. By (3.1), we have, for t ∈ Ω,

Vg(t) ≈
∫

Ω
Gα

Ω(t,s)ρ(s)−β1M1(ρ(s))|s|−β2M2(|s|) ds.

From (1.7) and Lemma 2 we get, for t ∈ Ω,

M1(ρ(t)) ≈ M1(δΩ∗(t∗)). (3.2)

Therefore, by (1.5), (1.7) and (3.2), we obtain

Vg(t) ≈ |t∗|d−α
∫

Ω∗
Gα

Ω∗(t∗,s∗)(δ (s∗))−β1M1(δ (s∗))|s∗|β2−d−αM2

(
1
|s∗|

)
ds∗.

Let

μ = β1, γ = d + α −β2, L1(t) = M1(t) and L2(t) = M2

(
1
t

)
.

Since β2 > 2 then γ < d + α − 2. By Remark 1, the function t �→ M2( 1
t ) belongs to

K0 . So, from Lemma 9, we obtain

Vg(t) ≈ δ (t∗)min( α
2 , α−β1)M̃1(δ (t∗))|t∗|d−α+min(0,β2−d)L̃2(|t∗|),

where for all u ∈ (0,1],

M̃1(u) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if β1 < α
2 ,

∫ η
u

M1(s)
s ds, if β1 = α

2 ,

M1(u), if α
2 < β1 < α,

and L̃2(u) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if β2 > d,

∫ η
u

M2( 1
s )

s ds, if β2 = d,

M2( 1
u ), if 2 < β2 < d.

(3.3)
By (1.7), for t ∈ Ω, we have

δ (t∗)min( α
2 , α−β1)M̃1(δ (t∗)) ≈ ρ(t)min( α

2 , α−β1)M̃1(ρ(t)). (3.4)

Since M̃2( 1
u ) = L̃2(u) for u ∈ (0, 1] . Then, by (3.3), we obtain for u ∈ [1,∞)

M̃2(u) := L̃2(
1
u
) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if β2 > d,

∫ η
1
u

M2( 1
s )

s ds, if β2 = d,

M2(u), if 2 < β2 < d.

Therefore, using Lemma (8), we obtain

M̃2(u) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if β2 > d,

∫ u
1
η

M2(r)
r dr, if β2 = d,

M2(u), if 2 < β2 < d,

=⇒ M̃2(u)≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if β2 > d,

∫ u+1
1

M2(r)
r dr, if β2 = d,

M2(u), if 2 < β2 < d.
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Moreover, since |t∗| = 1
|t| , then

|t∗|d−α+min(0,β2−d)M̃2

(
1
|t∗|

)
= |t|α−d−min(0,β2−d)M̃2(|t|). (3.5)

Using the fact that

d−α +min(0,β2−d) = min(α −d,α −β2),

and by (3.4) and (3.5), we obtain

Vg(t) ≈ ρ(t)min( α
2 , α−β1)M̃1(ρ(t))|t|min(α−d,α−β2)M̃2(|t|), t ∈ Ω.

This finished the proof. �
The proposition presented below holds a crucial role in this article.

PROPOSITION 3. Assume that f is a function that satisfies (H ) , and let Θ be
the function given by equation (1.11). Then

V ( fΘp)(t) ≈ Θ(t), t ∈ Ω.

Proof. From the hypothesis (H ) and (1.11) we have, for t ∈ Ω,

f (t)Θ(t)p ≈ ρ(t)−λ+pmin( α
2 , α−λ

1−p )(Lϕ p
L,λ ,p)(ρ(t))|t|−ξ−pmin

(
d−α , ξ−α

1−p

)
(Kφ p

K,ξ ,p)(|t|).

Assume that

β1 = λ − pmin

(
α
2

,
α −λ
1− p

)
, β2 = ξ + pmin

(
d−α,

ξ −α
1− p

)
,

M1(t) = (Lϕ p
L,λ ,p)(t) and M2(t) = (Kφ p

K,ξ ,p)(t).

Then
f (t)Θ(t)p ≈ ρ(t)−β1M1(ρ(t))|t|−β2M2(|t|).

By Lemma 1, Lemma 4 and the hypothesis (H ) , we have M1 ∈ K0. Moreover, using
Lemma 6 and Lemma 8, we obtain M2 ∈K∞. Since λ < α and ξ > α +(2−α)(1− p)
then, β1 < α and β2 > 2. So, by Lemma 3 and Lemma 7, we have

∫ η

0
uα−1−β1M1(u) du < ∞ and

∫ ∞

1
u1−β2M2(u) du < ∞.

Now, applying Proposition 2, we get, for t ∈ Ω

G( fΘp)(t) ≈ ρ(t)min( α
2 ,α−β1)M̃1(ρ(t))|t|min(α−d,α−β2)M̃2(|t|).

By computation, we have

min
(α

2
, α −β1

)
= min

(
α
2

,
α −λ
1− p

)
, min(α −d, α −β2)= min

(
α −d,

α − ξ
1− p

)
.
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Also, by elementary calculus, we obtain, for t ∈ Ω ,

M̃1(ρ(t)) = ϕL, λ , p(ρ(t)) and M̃2(|t|) = φK, ξ , p(|t|).

Then, we conclude that
G( fΘp)(t) ≈ Θ(t), t ∈ Ω.

The proof is completed. �

4. Proof of main result

In order to prove the existence result, we require the following lemma from [20].

LEMMA 10. Let q be a function satisfying (2.1). Then the following function
v(t∗) defined by

v(t∗) := |t∗|d−α
∫

Ω∗
Gα

Ω∗(t∗,s∗)|s∗|α−dq(s∗) ds∗. (4.1)

is in C0(Ω∗).

Now, we need to prove the following.

PROPOSITION 4. Let p < 0. Assume that hypothesis (H ) is satisfied. Then, for
t ∈ Ω, we have

h(t) = ρ(t)(1−
α
2 )(1−p) f (t) ∈ Kα

∞(Ω). (4.2)

Proof. Let r > 0 and t ∈ Ω . By (1.5), (1.7) and (1.9), we have

∫
Ω∩B(t,r)

(
ρ(s)
ρ(t)

) α
2

Gα
Ω(t,s)ρ(s)(1−

α
2 )(1−p) f (s)ds

� c
∫

Ω∩B(t,r)

(
ρ(s)
ρ(t)

) α
2

Gα
Ω(t,s)ρ(s)(1−

α
2 )(1−p)−λL(ρ(s))|s|−ξ K(|s|)ds

� c|t∗|d−α
∫

Ω∗∩B(t∗,r)

(
δ (s∗)
δ (t∗)

) α
2

Gα
Ω∗(t∗,s∗)δ (s∗)(1−

α
2 )(1−p)−λ

×L(δ (s∗))|s∗|ξ−α+d−2dK

(
1
|s∗|

)
ds∗

� c|t∗|d−α δ (t∗)
α
2

∫
Ω∗∩B(t∗,r)

Gα
Ω∗(t∗,s∗)δ (s∗)(1−

α
2 )(1−p)+ α

2 −λ

×L(δ (t∗))|s∗|ξ−α+d−2dK

(
1
|s∗|

)
ds∗

� c|t∗|d−α
∫

Ω∗
Gα

Ω∗(t∗,s∗)|s∗|α−d f1(s∗)ds∗,
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where f1(s∗) := δ (s∗)(1−
α
2 )(1−p)+ α

2 −λ L(δ (s∗))|s∗|ξ−2αK( 1
|s∗| ) belongs to the Kato class

Kα(Ω∗) , in a bounded domain Ω∗ (see [8]). Indeed, since p < 0, λ < α and ξ >
α + (2−α)(1− p) then, λ0 = λ − (1− α

2 )(1− p)− α
2 < α and ξ0 = 2α − ξ < α.

Moreover, by Remark 1, we have t �→ K( 1
t ) ∈ K0 . Thus, by Lemma 5 and Lemma 10,

we deduce that

lim
r→0

sup
t∈Ω

∫
Ω∩B(t,r)

(
ρ(s)
ρ(t)

) α
2

Gα
Ω(t,s)ρ(s)(1−

α
2 )(1−p) f (s)ds = 0. (4.3)

Now, let us prove that

lim
M→∞

sup
t∈Ω

∫
Ω∩(|s|�M)

(
ρ(s)
ρ(t)

) α
2

Gα
Ω(t,s)ρ(s)(1−

α
2 )(1−p) f (s)ds = 0. (4.4)

Let M > 1. By (1.5) and [8, Proposition 1], we have

∫
Ω∩(|s|�M)

(
ρ(s)
ρ(t)

) α
2

Gα
Ω(t,s)ρ(s)(1−

α
2 )(1−p) f (s)ds

� c|t∗|d−α
∫

Ω∗∩(|s∗|� 1
M )

(
δ (s∗)
δ (t∗)

) α
2

Gα
Ω∗(t∗,s∗)δ (s∗)−λ1L(δ (s∗))|s∗|−ξ1K

(
1
|s∗|

)
ds∗

� c|t∗|d−α
∫

Ω∗∩B(t∗,r)

(
δ (s∗)
δ (t∗)

) α
2

Gα
Ω∗(t∗,s∗)δ (s∗)−λ1L(δ (s∗))|s∗|−ξ1K

(
1
|s∗|

)
ds∗

+ c|t∗|d−α
∫

Ω∗∩(|s∗|� 1
M )∩(|t∗−s∗|�r)

(
δ (s∗)
δ (t∗)

) α
2

Gα
Ω∗(t∗,s∗)δ (s∗)−λ1

×L(δ (s∗))|s∗|−ξ1K

(
1
|s∗|

)
ds∗

� cε + c
∫

(|s∗|� 1
M )

δ (s∗)α−λ1L(δ (s∗))|s∗|−ξ1K

(
1
|s∗|

)
ds∗

� cε + c
∫

(|s|>M)
ρ(s)α−λ1L(ρ(s))|s|ξ1−2dK(|s|)ds

� cε + c
∫

(|s|>M)
|s|α−d−ξ K(|s|)ds

� cε + c
∫ ∞

1
uα−ξ−1+(2−α)(1−p)K(u)du,

where λ1 = λ − (1− α
2 )(1− p) and ξ1 = d+α −ξ . By (1.10), we have the limit value

(4.4). Finally, the required result, (4.2), is obtained from (4.3) and (4.4). �
Next, let us recall that the potential kernel V satisfies the complete maximum

principle, we have the following.

LEMMA 11. [6] Suppose q ∈ B+(Ω) and v is an α -superharmonic function.
Let w ∈B(Ω) satisfy V (q|w|) < ∞ and v = w+V (qw) . Then w satisfies the following

0 � w � v.
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Proof of Theorem 1. Let p < 1 and f be a function satisfying (H ) . By Proposi-
tion 3, there exists a constant m � 1 such that, for all t ∈ Ω and q(t) = f (t)Θp(t) , we
have

1
m

Θ(t) � Vq(t) � mΘ(t), (4.5)

where Θ is the function defined in (1.11).
The proof is divided into two cases, depending on the sign of p.

Case 1. If p < 0. Let t ∈ Ω. Let ϕ(t,x) = ρ(t)(1−
α
2 )(1−p) f (t)xp(t). By Propo-

sition 4, we deduce, from [6, Theorem 2.17], that the problem (1.4) has a positive
continuous solution x in Ω such that

x(t) =
∫

Ω
Gα

Ω(t,s) f (s)xp(s) ds. (4.6)

So it remains to prove that x satisfies (1.12).
From (4.5), we get

mp(Vq)p(t) � Θ(t) � m−p(Vq)p(t),

Put c = m
p

p−1 . Let f ∈ B+(Ω) be a function given by

h(t) := c f (t)[Θp(t)−mp(Vq)p(t)].

Using an elementary calculus, we deduce the following.

cVq = V ( f (cVq)p)+Vh. (4.7)

By (4.6) and (4.7), we obtain

cVq− x+V( f (xp − (cVq)p)) = Vh. (4.8)

Let g be the function defined on D by

g(t) =

⎧⎨
⎩

f (t) xp(t)−(cVq)p(t)
cVq(t)−x(t) , if x(t) �= (cVq)(t),

0, if x(t) = (cVq)(t).

This implies that g ∈ B+(Ω) and since p < 0, we have

f (xp − (cVq)p) = g(cVq− x). (4.9)

Clearly, (4.8) becomes

cVq− x+V(g(cVq− x)) =Vh.

Combining (4.9), (4.6), (4.7) and (4.5), we get

V (g|cVq− x|) � V ( f xp)+V( f (cVq)p)
� x+ cVq

� x+ cmΘ < ∞.
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So, by Lemma 11, we have
x � cVq.

By the same manner, we find that
1
c
Vq � x.

Hence (1.12) holds by (4.5).

Case 2. If 0 � p < 1.
Let ζ (t) = 1

ρ(t)
α
2 −1

Θ(t) for t ∈ Ω. Then, by (4.5), we have

1
m

ζ (t) � 1

ρ(t)
α
2 −1

Vq(t) � mζ (t). (4.10)

Let Z be the non-empty closed, convex set defined by

Z =
{
w ∈ C0(Ω);

1
c

ζ � w � cζ
}
, c = m

1
1−p .

We define the operator Q on Z by

Qw(t) =
1

ρ(t)
α
2 −1

∫
Ω

Gα
Ω(t,s) f (s)ρ(s)(

α
2 −1)pwp(s) ds.

It is clear from (4.10), that for all w ∈ Z, we have on Ω

1
c

ζ (t) � Qw(t) � cζ (t).

Since for all w ∈ Z and t ∈ Ω, we have

|wp(t)| � cp||ζ p||∞.

Then

|Qw(t)| � c
∫

Ω

(
ρ(s)
ρ(t)

) α
2 −1

Gα
Ω(t,s)h(s) ds,

where h(s) be the function given by (4.2). Therefore, using Proposition 4 and Theorem
2, we deduce that

Qw ∈ C0(Ω), for all w ∈ Z.

So
QZ ⊂ Z.

Now, consider the sequence of functions (wk) ∈ C0(Ω) defined by

w0 =
1
c

ζ and wk+1 = Qwk, ∀k ∈ N.

Since p � 0, then the operator Q is nondecreasing on Z. Using the fact that QZ ⊂ Z,
we obtain

1
c

ζ = w0 � w1 � w2 . . . � wk � wk+1 � cζ .
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Thus, from the monotone convergence theorem, we deduce that the sequence (wk)
converges to a function w, such that for each t ∈ Ω,

w(t) =
1

ρ(t)
α
2 −1

∫
Ω

Gα
Ω(t,s) f (y)ρ(s)(

α
2 −1)pwp(s) ds,

and
1
c

ζ (t) � w(t) � cζ (t). (4.11)

Using the same method as used above, we deduce, by (4.11) and Theorem (2), that

w ∈ C0(Ω).

Let x(t) = ρ(t)
α
2 −1w(t). Then x ∈ C (Ω) and we have, for all t ∈ Ω,

x(t) =
∫

Ω
Gα

Ω(t,s) f (s)xp(s)ds.

Finally, since w ∈ C0(Ω). Then

lim
t→∂Ω

δ (t)1− α
2 x(t) = lim

|t|→∞
x(t) = 0.

By (1.8) and using the fact that x ∈ C (Ω) , we deduce that x is a solution of problem
(1.4). The proof of Theorem 1 is finished. �

EXAMPLE 4. Let p < 1. Suppose that f is a nonnegative function in C
γ
loc(Ω), 0 <

γ < 1, such that for t ∈ Ω,

f (t) ≈ ρ(t)−λ
(

ln

(
4

ρ(t)

))−β1

(1+ |t|)−ξ (ln(2(1+ |t|)))−β2,

where λ < α, ξ > α + (2−α)(1− p), β1 > 1 and β2 > 1. Then by Theorem 1,
problem (1.4) has a positive solution x satisfying, for t ∈ Ω,

x(t) ≈ ϕ(ρ(t))φ(|t|).
Where

ϕ(ρ(t)) =

⎧⎪⎪⎨
⎪⎪⎩

ρ(t)
α
2 , if λ � α

2 (1+ p),

ρ(t)
α−λ
1−p

(
ln

(
4

ρ(t)

))−β1
1−p

, if α
2 (1+ p) < λ < α,

and

φ(|t|) =

⎧⎪⎨
⎪⎩
|t| α−ξ

1−p , if ξ � d− p(d−α),

|t|α−d(ln(2|t|)
−β2
1−p , if α +(2−α)(1− p) < ξ < d− p(d−α).
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EXAMPLE 5. Let Ω = {t ∈R
d , |t|> 1} and f be a nonnegativemeasurable func-

tion such that, for all t ∈ Ω

f (t) ≈
(

1− 1
|t|

)−λ
ln

(
4|t|

|t|−1

)
|t|−ξ ln(4|t|)−m ,

where λ < α, ξ > α +(2−α)(1− p) and m > 1. Suppose that L
(
1− 1

|t|
)

= ln
(

4|t|
|t|−1

)
and K(|t|) = ln(4|t|)−m. Then by Theorem 1, problem (1.4) has a positive solution v
satisfying, for t ∈ Ω and p > 1

x(t) ≈ ϕL,λ ,p

(
1− 1

|t|
)

φK,ξ ,p(|t|).

With

ϕL,λ ,p

(
1− 1

|t|
)

=

⎧⎪⎪⎨
⎪⎪⎩

(
1− 1

|t|
) α

2
, if λ � α

2 (1+ p),

(
1− 1

|t|
) α−λ

1−p
(
ln

(
4|t|
|t|−1

)) 1
1−p

, if α
2 (1+ p) < λ < α

and

φK,ξ ,p(|t|) =

⎧⎪⎨
⎪⎩
|t| α−ξ

1−p , if ξ � d− p(d−α),

|t|α−d(ln(4|t|) −m
1−p , if α +(2−α)(1− p)< ξ < d− p(d−α).

Declarations

Availability of data and materials. Data sharing not applicable to this paper as no
data sets were generated or analyzed during the current study.

Conflict of interest. the authors declare that they have no conflict of interest.

Author’s contributions. All authors read and approved the final manuscript.

Funding. Not available.

RE F ER EN C ES
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