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J. SANCHEZ-ORTIZ ∗ AND Y. PEÑA-PÉREZ
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Abstract. In this work, we study an initial boundary-value problem for a stochastic Benjamin-
Bona-Mahony equation with Riesz-fractional spatial derivative and white noise on the half-line.
For the associated linear problem, we construct the Green’s function adapting the main ideas
of the Fokas method. Then, the main problem will be understood in the Walsh sense and the
Picard scheme is used to prove existence and uniqueness of solutions. Moreover, an example is
presented to show the results obtained.

1. Introduction

The waves are produced when the equilibrium state of a medium in a system is
disturbed and the disturbance propagates from one region to another, its study is a broad
and well known research topic, with numerous applications in several fields of science
(e.g., see [1, 8, 10, 12] and related references). The propagation of unidirectional,
one-dimensional, small-amplitude long waves has been studied through two classical
models; the celebrated Korteweg-de Vries (KdV) equation [14]

ut +ux +uux +uxxx = 0,

and the also famous Benjamin-Bona-Mahony (BBM) equation [4]

ut +ux +uux−uxxt = 0,

among others. The KdV equation is suitable when the values of the wavenumber are
small enough; however, if this does not hold the phase velocity can be negative, which
contradicts the physical nature wave propagation. On the other hand, the BBM equation
produces a more reasonable dispersion relation for any value of the wavenumber (see
Benjamin et al. [4]). The description of the drift of waves in plasma physics, the
propagation of wave in semi-conductors and optical devices and the behavior of Rossby
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waves in rotating fluids are some other phenomena that are modeled by this equation
[7, 16].

The BBM equation has been studied by many authors using diverse methods; for
example, in Besse [5] and Wang [25], the Crank Nicolson time discretization scheme is
used to study continuous and discrete artificial boundary conditions for the linearized
BBM equation. Moreover, two results of unique continuation on a bounded interval
of the linearized BBM equation, using the eigenvector expansion and spectral analysis,
appear in Zhang [26]. Also, Micu [17] shows the finite-domain controllability of the
linearized BBM equation and its spectral non-controllability. Moreover, Vishal [23] use
the Fokas method [11] to solve the linear BBM equation, considering a Robin problem
on the half-line and a finite interval.

On the other hand, although most of the theoretical structure of fractional calculus
has been realized, in recent years it has attracted the attention of scientists and engineers
who have managed to rediscover and apply it in various fields. For example, the frac-
tional Benjamin-Bona-Mahony equation is used to study the phenomena of propagation
for small amplitude long unidirectional waves in a nonlocal elastic medium [19]. Also,
this equation describes cold plasma for hydromagnetic and audio waves in harmonic
crystals [21]. Recently, Pava [20] has considered the non-linear stability on a specific
interval and the spectral instability of the solutions and Amaral [2] studied a Cauchy
problem using the Petviashvili’s iteration method, both considering a fractional BBM
equation. This type of models can be generalized by including a random variable which
leads to the study of fractional stochastic equations [3, 15, 18, 22]. Elmandouh and Fad-
hal, investigated the bifurcation of exact solutions with the influence of a multiplicative
noise of the modified BBM equation [9].

In this work, we study a stochastic differential equation on the half-line with ad-
ditive white noise and Riesz fractional derivative, the paper is organized as follows:
Section 2 deals with the preliminaries and the statement of the problem. The Neu-
mann’s problem for a fractional BBM equation is analyzed in Section 3. The existence
and uniqueness of the solution are proved in Section 4. In order to illustrate our results
an explicit example is presented.

2. Preliminaries and statement of the problem

In this section we set up the notations and recall some basic definitions. Further-
more, the problem to be studied is presented.

DEFINITION 1. The Laplace transform of u(x,t) is defined by

û(k,t) =
∫ ∞

0
e−ikxu(x,t)dx, ℑmk � 0,

and the inverse Laplace transform is given by

u(x,t) = 1
2π

∫
R

eikxû(k,t)dk.
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There exist numerous definitions of fractional integrals and fractional derivatives.
This paper deals with the Riesz fractional derivative.

DEFINITION 2. The Riesz fractional derivative is defined by the following inte-
gral

Rα
x u(x, t) = − 1

Γ(2−α)cos(π
2 α)

∫ ∞

0

sgn(x− y)
(x− y)α−1 ∂ 2

y u(y,t)dy,

where u(x, t) is twice differentiable, α ∈ (1,2) and the integral has to be understood in
the sense of Cauchy principal value.

Note that, the Laplace transform of the Riesz fractional derivative is

R̂α
x u(k,t) = −|k|α−2 [

(ik)2û(k,t)− iku(0,t)−ux(0,t)
]
.

DEFINITION 3. The operator F is called lipschitzian if there exist a constant M >
0, such that

|Fv−Fw|� M |v−w| ,
where v , w are real-valued functions.

LEMMA 1. (Gronwall’s Lemma) (See Hirsch [13]) Suppose σ1,σ2, . . . : [0,T ]→
R

+ are measurable non-decreasing. Suppose also that here exist a constant M such
that for all integers n � 1 , and t ∈ [0,T ] ,

σn+1(t) � M
∫ t

0
σn(s)ds.

Then,

σn(t) � σ1(t)
(Mt)n−1

(n−1)!
.

We study the following Neumann problem for a fractional BBM equation⎧⎪⎪⎨⎪⎪⎩
ut −auxxt +bRα

x u = Fu+ Ḃ, x,t � 0,

u(x,0) = u0(x), x � 0,

ux(0,t) = h1(t), t � 0,

(2.1)

where Rα
x is the Riesz fractional derivative with α ∈ (1,2) , F is a lipschitzian operator

and Ḃ is the white noise defined on a complete probability space (Ω,A ,At ,P) . Here,
A is a σ−algebra and At{t�0} is a right-continuousfiltration on (Ω,A ) such that A0

contains all P−negligible subsets, being P a probability measure. Moreover, suppose
that B generates a (At ,t � 0)−martingale measure in the Walsh sense [24], where

B = {B(x,t) | x � 0, t � 0}

be a center Gaussian field.
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3. Neumann’s problem for a fractional BBM equation

In this section, we construct the Green function for the linear Neumann problem
(2.1), where the BBM equation with a Riesz fractional derivative is considered. In
order to state precisely the main result of this paper, we define the following Green’s
operators:

G I(t)u0 =
∫ ∞

0

[
GI(x+ y,t)+GI(x− y,t)

]
u0(y)dy,

G B(x)h1 =
∫ t

0
GB(x,t− s)h1(s)ds,

and the Green’s functions are

GI(x,t) = 1
π

∫ ∞

0
e
− b|k|α

1+ak2
t
cos(kx)dk,

GB(x,t) = 2
π

∫ ∞

0

−b|k|α
k2(1+ak2)2 e

− b|k|α
1+ak2

t
cos(kx)dk, (3.1)

GB∗
(x,t) = 2

π

∫ ∞

0

a
1+ak2 e

− b|k|α
1+ak2

t
cos(kx)dk.

THEOREM 1. Let be the initial-value u0(x) ∈ L1(R+) and the boundary-value
h1(t) ∈ C(R+) . Assume that there is some function u(x, t) satisfying (2.1), then u(x,t)
has the following integral representation

u(x, t) = G I(t)u0 +G B(x)h1 +h1(0)GB∗
(x,t)−h1(t)GB∗

(x,0), x, t � 0.

Proof. First, applying the Laplace transform in (2.1), we arrive

ût(k, t)+ γ(k) û(k, t) = − b|k|α
k2(1+ak2)

[
h1(t)+ ikh0(t)

]
− a

1+ak2

[
h′1(t)+ ikh′0(t)

]
, (3.2)

where γ(k) := b|k|α/(1+ak2) , h1(t)= ux(0,t) , h0(t)= u(0,t) , h′1(t)= ∂tux(0,t)
and h′0(t) = ∂t u(0, t) . Now, multiplying the equation (3.2) by eγ(k)t and integrating
from 0 to t , we get the global relation

eγ(k)t û(k, t)− û0(k) = − b|k|α
k2(1+ak2)

[
ikH0

0

(
γ(k),t

)
+H0

1

(
γ(k),t

)]
(3.3)

− a
1+ak2

[
ikH1

0

(
γ(k),t

)
+H1

1

(
γ(k),t

)]
, ℑmk < 0,

with

Hi
j(w,t) =

∫ t

0
ews∂ i

s∂ j
x u(0,s)ds, i = 0,1, j = 0,1.
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Thus, by means of the inverse Laplace transform, u(x,t) = 1
2π

∫
R

eikxû(k,t)dk, we
arrive to

u(x, t) = 1
2π

∫
R

eikx−γ(k)t û0(k)dk

− 1
2π

∫
R

b|k|α
k2(1+ak2)e

ikx−γ(k)t
[
ikH0

0

(
γ(k), t

)
+H0

1

(
γ(k),t

)]
dk

− 1
2π

∫
R

a
1+ak2 eikx−γ(k)t

[
ikH1

0

(
γ(k),t

)
+H1

1

(
γ(k),t

)]
dk.

Now, dividing R = (−∞,0]∪(0,∞) in the last two integrals in the above equation,
considering the analytic extension

|k|α =

{
kα , ℜe(k) > 0,

(−k)α , ℜe(k) < 0,

and since that ℜe
(
b|k|α/(1+ak2)

)
> 0 in the region

Cθ = (−∞,0]e−iθ ∪ (0,∞)eiθ , θ ∈ [0,π/4],

then by the Cauchy Theorem and Jordan’s Lemma we can deform the integration con-
tour R into Cπ/4.

Moreover, since γ(k) = γ(−k), the transformation k �→ −k in the global relation
(3.3) gives

ikb|k|α
k2(1+ak2)H

0
0

(
γ(k),t

)
+ ika

1+ak2 H1
0

(
γ(k),t

)
= eγ(k)−t û(−k, t)− û0(−k)

+ b|k|α
k2(1+ak2)H

0
1

(
γ(k),t

)
+ a

1+ak2 H1
1

(
γ(k),t

)
, ℑmk > 0.

Therefore, we get

u(x, t) = 1
2π

∫
R

eikx−γ(k)t û0(k)dk+ 1
2π

∫
Cπ/4

eikx−γ(k)t û0(−k)dk

− 1
π

∫
Cπ/4

b|k|α
k2(1+ak2)H

0
1

(
γ(k),t

)
+ a

1+ak2 eikx−γ(k)tH1
1

(
γ(k), t

)
dk

− 1
2π

∫
Cπ/4

eikxû(−k,t)dk. (3.4)

Now, lets notice that by Cauchy’s Theorem and Jordan’s Lemma, we obtain∫
Cπ/4

eikxû(−k,t)dk = 0,
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then, using the above equation and deforming back the integrate contour to the real line,
(3.4) can be expressed by

u(x,t) = 1
2π

∫
R

eikx−γ(k)t
∫ ∞

0
e−ikyu0(y)dydk

+ 1
2π

∫
R

eikx−γ(k)t
∫ ∞

0
eikyu0(y)dydk

− 1
π

∫
R

b|k|α
k2(1+ak2)e

ikx−γ(k)t
∫ t

0
eγ(k)sh1(s)dsdk

− 1
π

∫
R

a
1+ak2 eikx−γ(k)t

∫ t

0
eγ(k)sh′1(s)dsdk.

Furthermore, applying Fubini’s Theorem we obtain

u(x,t) = 1
2π

∫ ∞

0

∫
R

eik(x−y)−γ(k)t u0(y)dkdy

+ 1
2π

∫ ∞

0

∫
R

eik(x+y)−γ(k)t u0(y)dkdy

− 1
π

∫ t

0

∫
R

b|k|α
k2(1+ak2)e

ikx−γ(k)(t−s)h1(s)dkds

− 1
π

∫ t

0

∫
R

a
1+ak2 eikx−γ(k)(t−s)h′1(s)dkds.

Integrating by parts the last term on the right-hand side and using the Green’s
functions (3.1), we obtain the desired result. �

4. Main problem

In this section, we consider the following Neumann problem for a stochastic equa-
tion ⎧⎪⎪⎨⎪⎪⎩

ut −auxxt +bRα
x u = Fu+ Ḃ, x, t � 0,

u(x,0) = u0(x), x � 0,

ux(0,t) = h1(t), t � 0,

(4.1)

where F is a lipschitzian operator an Ḃ(x,t) is the white noise. The function u is
called a solution of the problem, if for all x > 0 and t ∈ [0,T ] satisfies

u(x,t) =
∫ ∞

0
GI(x,y,t)u0(y)dy

+
∫ t

0
GB(x,t− s)h1(s)ds

+h1(0)GB∗
(x,t)−h1(t)GB∗

(x,0)

+
∫ t

0

∫ ∞

0
G(x− y,t− s)Fu(y,s)dyds

+
∫ t

0

∫ ∞

0
G(x− y,t− s)dB(y,s),
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where

G(η ,τ) = 1
2π

∫ +∞

−∞
eikη+γ(k)τdk.

In the following theorem the existence of a unique solution is proved.

THEOREM 2. Suppose that F is an lipschitzian operator. If for some p � 1,

sup
x∈R+

E(|u0(x)|p) < ∞, (4.2)

then u(x, t) exists and is the unique solution to the problem (4.1). Moreover, for all
T > 0 and p > 1 ,

sup
x∈R

+

t∈[0,T ]

E(|u(x,t)|p) < ∞.

Proof. First, we construct a Picard iteration

un+1(x,t) =u0(x,t)+
∫ t

0
GB(x,t− s)h1(s)ds

+h1(0)GB∗
(x,t)−h1(t)GB∗

(x,0)

+
∫ t

0

∫ ∞

0
G(x− y,t− s)Fun(y,s)dyds

+
∫ t

0

∫ ∞

0
G(x− y,t− s)dB(y,s), (4.3)

where

u0(x,t) =
∫ ∞

0
GI(x,y,t)u0(y)dy.

For the convergence in Lp(Ω) of {un(x,t)}n�0 , let n � 2 then

E

(∣∣un+1(x,t)−un(x,t)
∣∣p

)
= E

(∣∣∣∣∫ t

0

∫ ∞

0
G(x− y,t− s)

[
Fun(y,s)−Fun−1(y,s)

]
dyds

∣∣∣∣p)
� C(p)

∫ t

0

∫ ∞

0
G(x− y,t− s)E

(∣∣un(y,s)−un−1(y,s)
∣∣p

)
dyds

� C(p)
∫ t

0
sup
y∈R

+
E

(∣∣un(y,s)−un−1(y,s)
∣∣p

)
ds,

by Burkholder’s inequality [6] and (4.2) we obtain

sup
x∈R

+
E
(|u1(x, t)−u0(x,t)|p) � C(p)

(
sup
x∈R

+
E
(|u1(x,t)|p)+ sup

x∈R
+

E
(|u0(x, t)|p)) < ∞.
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Then, the Lemma (1) shows that

∑
n�0

sup
(x,t)∈R

+×[0,T ]
E

(
|un(x,t)−un−1(x, t)|p

)
< ∞.

Therefore,
{
un(x,t)

}
n�0 is a Cauchy sequence in Lp(Ω) . Let

u(x,t) = lim
n→∞

un(x,t).

Then for each (x,t) ∈ R
+ × [0,T ]

sup
(x,t)∈R

+×[0,T ]
E(|u(x,t)|p) < ∞.

Thus, we show that u(x,t) satisfies the problem (4.1) at both sides of (4.3) when
n → ∞ in Lp(Ω) . Let v and w be two solutions of the problem (4.1), then

E
(|v(x,t)−w(x,t)|p)

= E

(
|
∫ t

0

∫ ∞

0
G(x− y,t− s)

[
Fv(y,s)−Fw(y,s)

]
dyds|p

)
� C(p)

∫ t

0

∫
R

G(x− y,t− s)E
(|v(y,s)−w(y,s)|p)dyds

� C(p)
∫ t

0
sup
y∈R

+
E
(|v(y,s)−w(y,s)|p)ds.

Applying Lemma (1), we get

E
(|v(y,s)−w(y,s)|p) = 0.

Then, the uniqueness of the solution is proved. �

4.1. Example

We give an example to verify the theoretical analysis. Here, we consider problem
(2.1) with initial condition u0(x) = xe−0.2x , boundary value h1(t) = cos(t) and positive
constants a = 1, b = 3. In the Figures 1, 2 and 3, we present the plot of the solution
u(x,t) for different α values. The graphs show that the behavior of the system is more
diffusive for alpha values close to 2. That is, the non local property of the fractional
derivative look more suitable to describe the non homogeneity of the medium.
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Figure 1: Plot of the solution u(x,t) for value α = 1.5 .

Figure 2: Plot of the solution u(x,t) for value α = 1.7 .

Figure 3: Plot of the solution u(x,t) for value α = 1.9 .
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