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Abstract. This article presents sufficient conditions for the complete controllability of general-
ized semilinear impulsive systems in a finite-dimensional space. The analysis focuses on cases
where the nonlinear perturbation functions satisfy the Lipschitz continuity condition. We es-
tablish these conditions by leveraging functional analysis techniques and various fixed-point
theorems. Furthermore, a numerical example is included to demonstrate the effectiveness of the
proposed results.

1. Introduction

Shah et al. [1,2] have explored the existence and uniqueness of solutions for gen-
eralized impulsive evolution equations, where nonlinear perturbations exhibit abrupt
changes at impulse instants. Such integro-differential models frequently arise in real-
world scenarios, such as vehicle motion dynamics within urban environments and other
physical systems influenced by sudden state transitions. Given the significance of these
models, this work investigates the controllability of generalized impulsive systems gov-
erned by

x(t) =A(t)x(t) + fit,x(t)) + Be(Du(t), 1€ U_ [tx_1,10)Utp,T)
x(to) = xo, (1.1)
x(tF) = [+ Dru())x(ty ), k—1,2,---p

over the time interval [fo,T]. x(z) represents the system state as an n-dimensional
vector, while u(z) is an m-dimensional control input. The function fi(+,-) : RT x R" —
R" adheres to the Carathéodory conditions-ensuring measurability in # for fixed x and
continuity in x for almost all ¢ € [rp,7]. Additionally, the system matrices A(-) €
C([to, T],R"™™), By(:) € C([to, T],R"™), and the impulsive effects are characterized
by Dfu(ty) = ¥, d*u(ty)l, with d € R. The impulse times 19 <t < ... <t, <T
represent instances where abrupt changes occur in the system state.
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Impulsive differential equations have been widely used to model complex systems
across physics, engineering, and biological sciences, where sudden perturbations in-
fluence the system’s evolution. Examples include the impact of Earth’s oblateness on
satellite trajectories, ecological systems undergoing abrupt harvesting, and population
dynamics affected by sudden resource fluctuations [3—12]. These equations capture the
instantaneous effects of external forces, making them a fundamental tool in modeling
real-world discontinuities.

Controllability, a cornerstone of mathematical control theory, is concerned with
determining whether a control function can drive the system from an initial state to a
desired final state [13, 14]. Research on impulsive control systems has evolved signif-
icantly since Leela et al. [15] introduced controllability conditions for time-invariant
impulsive linear systems. Benzaid and Sznaier [16] later established necessary and
sufficient conditions for global controllability under impulse constraints at discontinu-
ity points. Subsequent studies have expanded the theory, including functional analytic
approaches for semilinear systems [17], controllability analyses of time-varying linear
impulsive models [18-20], and sufficient conditions for semilinear systems under Lips-
chitz continuity assumptions [21]. Dubey and George [22] demonstrated that applying
control in earlier intervals is preferable to later stages, refining controllability conditions
for both linear and semilinear impulsive equations.

However, existing research has primarily focused on specific cases, with limited
exploration of more generalized impulsive systems where discontinuous effects are in-
tegrated with broader control strategies. Furthermore, while numerous studies address
applications of impulsive systems, fundamental theoretical aspects, such as solution
definitions and necessary optimality conditions, are often overlooked. Foundational
work by Bressan and Rampazzo [25] introduced the notion of graph completion solu-
tions, while Karamzin [26] provided an alternative framework through discontinuous
time transformations. Recent developments have extended these ideas, incorporating
time delays and deriving maximum principles for optimal control [27,28].

Similarly, the controllability of impulsive systems has been closely linked to asymp-
totic controllability, feedback stabilization, and Lyapunov function approaches. Semi-
nal works such as those by Sontag [29] and Clarke et al. [30] established key connec-
tions between these properties, which were further refined in later studies [31]. More
recent advances have incorporated higher-order Lie bracket conditions and cost regula-
tion constraints, providing a deeper understanding of feedback stabilizability [32-34].

Building upon these theoretical advancements, Shah et al. [35,37] sufficient condi-
tions for the existence and trajectory controllability of conformable fractional evolution
equations using nonlinear functional analysis, Banach’s fixed point principle, and Gron-
wall’s inequality. Their study validated the theoretical results with examples in both fi-
nite and infinite-dimensional Banach spaces. Similarly, Ghansh et al. [36,38, 39]inves-
tigated the controllability of fractional-order nonlinear dynamical systems, proposing
a novel theorem that defines sufficient conditions for controllability while consider-
ing constraints on the steering operator and nonlinear perturbations. Their work also
analyzed the controllability of a coal mill system modeled as a nonlinear differential
system, demonstrating practical implications for industrial applications.

This paper aims to bridge these theoretical gaps by extending the controllabil-
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ity analysis of generalized impulsive systems. Unlike previous studies that focus on
specific subclasses, our approach provides a more comprehensive framework by in-
corporating both classical and modern advancements in impulsive control theory. In
particular, we analyze the interplay between system controllability and impulse-driven
perturbations while integrating contemporary theoretical developments. By leveraging
recent insights into asymptotic controllability and feedback stabilization, we offer novel
conditions that enhance the applicability of impulsive control strategies across various
domains.

2. Preliminaries

This section is devoted to mathematical preliminaries related to linear control sys-
tems and some concepts from nonlinear functional analysis.

2.1. Controllability of linear systems

In this section, we are going to discuss some basic definitions and facts related to
the controllability of linear systems. Consider the linear system without impulses

X(r) =A(t)x(t) + B(t)u(r)
x(to) = xo @D

over the interval [19,T], fo < T. Where for each € [ty,T], x(¢) € R" is state of the
system, u(r) € R™ is control, A(7) and B(¢) are n x n and n X m matrices, respectively.

DEFINITION 1. [22] (Controllability) System (2.1) is said to controllable to a
state x; € R if for any time T (> to) if there exists a control u(-) € L*([ty, T|;R™)
such that the solution of the system (2.1) satisfies x(7') = x; . That is,

T
x1 =®(T,t0)xo+ | DP(T,s)B(s)u(s)ds,
T

where ®(z,s) is the transition matrix for the linear system x(z) = A(t)x(¢). If x| is
arbitrary, then the system is completely controllable.

The following theorem gives a characterization of complete controllability of the
system (2.1).

THEOREM 1. [22] The following statements are equivalent:
(i) System (2.1) is completely controllable.

(ii) The operator C : L*([ty, T|;R™) — R" defined by Cu(t) = ftg D(T,s)B(s)u(s)ds
is onto.

(iii) The operator C* (adjoint of C) defined by (C*x)(t) = B*(t)®*(T,t)x is one-one.

(iv) CC* is onto.
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Note that the operator CC* is called the controllability grammian of the system
(2.1), denoted by W (fo, T) . If this controllability grammian is invertible then the control
for the system ug(¢) = B*(t)®* (T, )W~ (ty, T) (x; —®(T,19)x0) steers the system (2.1)
from x( at time 7y to a desired state x; att =T .

If A(¢) and B(t) are time-invariant real matrices, then we have the following sim-
ple criterion for controllability.

THEOREM 2. [22] The following statements are equivalent:
(i) The time invarying system (2.1) is completely controllable.
(ii) Rank([B|AB|A%B|---|A""'B]) = n (Kalmann Condition).
(iii) No eigen vector of AT lies in kernel of BT .

(iv) Rank(A — AIB)=n for every eigen value A of A.

2.2. Some concepts from nonlinear functional analysis

In this section, we introduce some fundamental concepts from nonlinear functional
analysis.

DEFINITION 2. [23] Let X be a real Banach space. Let Lip(X) be the set of all
operators N : X — X which satisfy Lipschitz condition, that is there exist o > 0 such
that ||[Nx— Ny|| < o]|x—y]||, forall x,y € X.

For N € Lip(X), define norm ||N||* = sup =N

pil
= forall x,y e X, x #y.

DEFINITION 3. [23] Let H be the real Hilbert space. Let .# (H) be the set of all
operators on H such that there exist o > 0 such that < Nx —Ny,x —y >> o||x — y||?
forall x,y € H.

For each N € .Z (H) define

< Nx—Ny,x—y>
[l —yII?

[J(N) = infx.,ye&x;éy

The operator N is monotone (strongly monotone) if u(N) >0 (u(N) > 0).

We have the following note on Lipchitzian and monotone operators. Let H be a
Hilbert space then

(i) Lip(H) C .#(H).
(i) F € Lip(H) implies —||F||* < u(F) < ||F|[*.

(iii) F,G € Lip(H) implies ||[FG||* <||F|[*||G||*.
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DEFINITION 4. [23] Let X be a Banach space, and let X* be its dual. Then the
operator F : X — X* is coercive if

o Fx)
[l [ |||

— oo,

Here, (y,x), for y € X* and x € X, represents the evolution of y on x. In case X is
Hilbert space (y,x) = (y,x) (inner product of y and x).

DEFINITION 5. [23] Let X be a Banach space and X* be its dual then the oper-
ator F : X — X* is to be of type (M) if the following conditions hold:

(a) If the sequence {x,} in X converges weakly to x in X, {Fx,} converges weakly
to y in X* and lim, sup(Fxp,x,) < (y,x) then Fx=y.

(b) F is continuous from a finite-dimensional subspace of X to X* endowed with a

weak topology.

THEOREM 3. [23] Let K € .# (H) be continuous and N € Lip(H), u(N) > 0.
If(y([()—FM(N)HNH’FZ) > 0 then [+ KN is invertible with [I+KN|~! € Lip(H) and
1
H(N) (R(K) +w(N)INT[2)
THEOREM 4. [23] Let X be Banach space and let G : X — X* be Lipschitz on

X with ||G||* < 1. Then the operator N = I+ G is invertible, N~ ' is Lipschitz on X
and |IN7'||* <

1(7+KN) 1" <

1
1-[[G][* -

THEOREM 5. [23] Let X be the Banach space and F : X — X* be of type(M).
If F is coercive, then the range of F is all of X*.

THEOREM 6. [23] Let T be a continuous operator on a Banach space X such
that there exists a positive number n > 1 such that ||T"x — T"y|| < k||x — y|| for all
x,y € X and for some positive number k < 1. Then T has a unique fixed point.

When n = 1, the result becomes the Banach contraction principle.

3. Controllability of generalized linear impulsive systems

In this section, we are going to derive sufficient conditions for the controllability of
the generalized impulsive system (1.1). To derive sufficient conditions, we first assume
that all f;’s are identically equal to zero. By assuming all f;.’s are zero the system (1.1)
becomes:

x(1) =A)x(t)+Br(t)u(t) t€n,T], t#n, k=12,...,p+1, t,. =T
x(l‘o) = X0

x(t) = [+ Dru(t)]x(1).
(3.1)
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The system (3.1) is a linear impulsive system with different By ’s. We first derive con-
ditions for controllability of the linear impulsive system (3.1), subsequently we analyze
the controllability of system (1.1) by assuming the system (3.1) is controllable.

One can easily varify that the solution of (3.1) in the interval [y, 7] is given by

h—
x(t) = (]_[lln + Diu(ti)) D(1,10)x0

i=1
+Z<kHl o+ Dlu(ty)) )/ ®(1,5)B;(s)u(s)ds (3.2)
+ [ oBoutas

for all 7 € [fx—1,1). Where, ®(z,s) is the transition matrix of the system x(¢) =
A(f)x(t).

Various approaches are available to check the controllability of the system (3.1)
and to design the particular open-loop control u(z) that renders (3.1) controllable. One
of the approaches is to observe the system up to the last impulse #, and then find then
check the controllability of the system (3.1) in the sub-interval [¢,,7]. Thatis u(t) =0
forall ¢ € [19,1,] and u(ty) =0 forall k=1,2,---, p. In this case solution (3.2) becomes

X(t) = D(1,10)x0 + / (1, )B s (s)uls)ds. (3.3)
At t =T the solution (3.3) becomes:
T
A(T) = (T, to)x0 + / O(T, 5)Bp1(s)u(s)ds. (3.4)

To check controllability and derive control u(¢) we define operators Cpy1 : L*([t, T]) —
R" by Cp1u(t) = ;7 D(T,5)Bp1 (s)u(s)ds and Cp . :R" — L2([t,, T]) by (Cpy1)(1)
=B, @ (T,1)x. Note that C,y is an adjoint of Cp+1. Now we have the following
theorem about controllability of the system (3.1).
THEOREM 7. System (3.1) is completely controllable over the interval [ty,T] if
(i) The operator Cp,1 is onto.
(ii) The operator C*Jrl is one-one.
(iii) Cpy1C, ., is non-singular.

One can easﬂy prove this theorem using the concept of the finite-dimensional func-
tional analysis.

The operator Cp 1C; 1 is called controllability grammian for the system (3.1)
over the interval [t,,T| denoted by W(t,,T). If this controllability grammian is invert-
ible, then we define the controller u(r) as

u(t) = By, ()@*(T, W (1), T) (x1 — (T, 10)x0), if 1€t),T)
0, otherwise
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where x; is the desired final state of the system. Plugin the controller u(¢) in (3.4), the
state at t = 7' becomes

x(T) =®(T,t0)x0 + T@(T,S)Bp+1(s)B;+l (t)q)*(T,t)Wil (tp,T)[x1 — ®(T,10)x0]ds,

tp

= O(T,10)x0 + (Cps1Cppy )W (1, T) [x1 — D(T ' 10)x0] = x1.

Thus, this controller u(¢) drives the trajectory of the system to given initial state xo at
t = t¢ to the desired final state x| at t =1¢;.
If the system is time-invariant, then we have the following statement.

THEOREM 8. The time invarying system (3.1) is completely controllable over the
interval [ty,T| if Rank([Bp41|ABps1|A’Bpii|--|A"1B,11]) = n (Kalmann Condi-
tion).

Proof of Theorem 8 is on the same line as the proof of Theorem 2.

However, we have derived control for the system (3.1), which is applicable only
on the final subinterval. Still, there exist many practical situations where we could not
implement the controller in the last subinterval [7,,T]. Because to control the system,
a huge amount of potential is required during a small time interval, which may leads
to failure of the system or it will affect the lifespan of the system. So it is always
desirable to apply control as early as possible that is in any other subinterval [t;_;,]
and it can again bring back the system as desired state by reapplying control in any
other subinterval [t j_l,tj] (i < j) if, any aberration from the expected behaviour of
the system. So we discuss the controllability of the system in any of the subintervals
[l‘,;] s li) .

Over any subinterval [t;_1,#] let C; : L>([t;_1,t],R™) — R" be defined by Cju =

tf: | ©(ti,5)Bi(s)u(s)ds then we have following lemma establishes the controllability of
the system (3.1) in terms of the operator C; for i=1,2,---,p.

LEMMA 1. The system (3.1) can be steered from any initial state xy € R" to
desired final state x| € R" during time interval [ty,T] if CI)(t,-,T)[H,H<,k<T(In +

Dru(t))] “ye R(C;) +span{®(t;,t0)xo} forany i=1,2,---,p, where R(C;) denotes
the range of the operator C;.

Proof. Since, ®(t;,T) [T, , <y<1(In+Du(t))] ' x1 € R(C;) + span{®(t;,10)x0}
forany i =1,2,---,p. Therefore there exist u;(-) € L*([t;_1,4],R™) and n— vector «
such that

Xp = ( H ([n —i—Dku(tk)))@(T,ti) [/[ti D(t;,5)B;(s)u;(s)ds + o ®d(t;,10)xo

ti_ <ty <T i

:< H (I,,+Dku(tk))> /t:(I)(T7s)B,-(s)ui(s)ds)

ti_ <ty <T
+oc< I1 (In+Dku(tk))>(I)(T7t0)xo. (3.5)
ti <y <T
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To define control u(-) € L*([t, T],R™) first choose u(ty) is such that [T, ;. , (In +
D*u(t)) = aly, for all k =1,2,---,p. This is always possible, as (I, +DFu(t)) is a
diagonal matrix. For the rest of the domain, we define control as follows:

u(t) =

{0, lf IS Ufzhk#i(tkflatk) U (t[” T} (36)

u;i(t); if 1€ (ti1,1).

Plugging this control (3.6) in equation (3.2) we get

x(1) = ( I1 (In—|—Dku(tk)))<D(t,to)xo

to<ty<t

+ ’i< H (In+Dku(fk)))q)(t,S)Bi(S)M,‘(S)dS.

lic1 \tj_ <<t

Evaluating at r =T we get

x(T)z( 11 (In—i—Dku(tk)))CD(T,to)xo

to<ty<T

I ( AL (D) LT, B 55

:oc< I (In—i—Dku(tk)))CD(T,to)xo

ti <y <T

I ( AL (D) 0T, B 55

as (I, +DFu(t)) are constant diagonal matrices. Therefore, x(T) = x; and thus u(-)
defined by (3.6) steers the given initial state x( to the desired final state x;. Hence, the
proof of the lemma follows. [l

LEMMA 2. The control u(t) € L*([ty,T],R™) defined by

B 0, if t ¢ [ti—latl'}
u(t) = {ui(t) if 1 € [tio1,1i] -

steers the system (3.1) from given initial state xy € R" at t =ty to desire final state x| €

-1
R" where, u;(t) = B} (t)®* (t;,t)W = (t;_1,1) {q)(t,-,T) (Hti1<tk<T (In—|—Dku(tk))> X1

— (Ht0<tk<t,_ (I, + Dku(tk))> (I)(thto)xo} .

Proof. Plugging the given controller u(7) given by (3.7) in (3.2) and evaluting the
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systemat t =T, we get x(T) = x;

x(T) = ®(T,19)x0 + t.ti O(T,s)B;(s)u;i(s)ds
:@(T,IQ)XO-FQ)(T,I,‘) " q)(ti,S)Bi(S)B;-F(S)q)*(ti,S)W_l(ti_l,l‘,')

i1

X [(I)(ti7T)x1 —CD(thto)xo}

= (T, 19)x0 + P(T,1;) (C:CHW L (11, 1,) [Q(xi, T)x; — D(t;,10)x0
= CD(T,I())X() +x1— CD(T,I()))C() = XI.

Therefore, the controller u(z) defined by (3.7) steers the system (3.1) from the
given initial state xy to the desired final state x;. This completes the proof of the
lemma. [J

The next theorem gives sufficient conditions for the controllability of the impulsive
system (3.1) in terms of the operator C;.

THEOREM 9. The system (3.1) is completely controllable over the interval [ty T]
if one of the following condition holds:

(i) The operator C; is onto.
(ii) The operator C} is one-one.

(iii) The controllability grammian W (t;_1,t;) is invertible.

Proof. From the lemma 1, it is clear that the system can be steered from any initial
state xo to desired final state x; if ®(;,T)[I1,,_, <, <1 (I +Dku(tk))]71x1 €R(G) +
span{®(t;,io)xo}. Therefore the system is controllable if ®(T,4)[I1;, <y <7(n +
Dru(t))] (R(C;i) + span{®(t;,t)x0}) = n. Equivalently,

[ T1 +Dru@))]RC) =n.

ti <ty <T

Choosing control function u(¢) defined by (3.7) with D*u(t;) for k=i i+1,---,p
such that (I, + D*u(t;)) is invertible, range condition leads to R(C;) = n. This is pos-
sible if C; is onto.

We know that C; is onto if and only if C; is one-one and which will imply the
invertibility of the controllability grammian W (z;_1,t;). This completes the proof of
the theorem. [

Now we have the following observation regarding the controllability of the impul-
sive system (3.1).
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REMARK 1. (1) The conditions in Theorem 9 are sufficient but not necessary,
that is, if the system (3.1) is completely controllable, then there is no guarantee
that any of the conditions in the theorem hold.

(2) Inimpulsive system (3.1), null controllability is a weaker condition than complete
controllability, unlike a non-impulsive linear system. This is because O is always
lies in R(G;) + span{®(t;,t0)xo} .

THEOREM 10. If A(t) and By (t) are time invariant matrices, then the system is
completely controllable if Rank([B;|AB;|---|A"~'B;]) = n for at least one i=1,2,---, p.

Proof. Let K = Rank([B;|AB,|---|A"'B;]). For time-invariant matrices A and
B;, one can easily show that Range(K) = Range(C;). This leads to surjectivity of the
operator C; and using the theorem 9 we get complete controllability of the system
3.D). O

4. Controllability of generalized semilinear impulsive systems

In this section, we discuss the controllability of the semilinear impulsive system
(1.1) in terms of the solvability of the coupled equation

e =uy — G2€2 (4 1)
erx=uy+Grep '

for some appropriate operators G : X; — Xz and G; : X, — X;. Here X; and X, are
Hilbert spaces. Here we are looking for some sufficient conditions for the complete
controllability of the system (1.1). So choose u(t) such that D*u(t) = 0 for all k =
1,2,---,p and u(t) =0 for 7 ¢ [t,_1,1] that is, the control is chosen only in the time
interval [r;_y,#;]. Therefore for each € [t,,, T] the solution of the system is given by

P g t
X(l) :¢(tat0)x0+z d)(t,s)f,-(s,x(s))ds—i- q)(t,s)fp+1(s,x(s))ds
i=171i-1 Ip
G (4.2)
[ D, 5)Bi(s)u(s)ds.
ti1
Taking, F(t,x(¢)) = fi(t,x(¢)) foreach ¢ € [ty_1,4), k=1,2,---,p+1 then the equa-
tion (4.2) becomes:
1

x(t) = ®(t,19)x0 + /tt D(z,5)F (s,x(s))ds + D(t,5)B;(s)u(s)ds. (4.3)

Li—1
At t =T the equation (4.3) becomes:
1

x(T) =®(T,t0)xo + ' DO(T,s)F (s,x(s))ds + DO(T,s)B;(s)u(s)ds.

T i1
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Suppose that the system (1.1) with the control u(r), which is active only in the interval
(ti—1,1) . Therefore we have
1

X1 = ®(T,10)x0 + tOTd)(T, F(x(s)ds-+ | @(T5)Bils)u(s)ds.
That means
X — DT, 10)x0 — tOTCID(T,s)F(s7x(s))ds = t:iICD(T,s)Bi(s)u(s)ds
= O(Toi)xo— | (T,5)F(s,x(s))ds = D(Toty) [ Bt 5)Bi(s)u(s)ds.

T i1

Taking v = ®(1;,T) [x; — @(T,19)x0 — j;OTdb(T,s)F(s,x(s))ds] we get the above equa-
tion Cju(t) = v. Therefore, a suitable choice of control u(z) that satisfies the equation
is given by

u(t) = C;(GC;) M. 4.4)

Therefore, the control u(¢) in the time interval [t;_,7] is given by

u(t) =CrHCC)™! [@(t;, T) (x1 — D(T, 10)x0 — T@(T,S)F(s,x(s))ds)] . 4.5)

fo

Without loss of generality, we can take xo = 0 due to the following theorem.

THEOREM 11. The system (1.1) is controllable by force only if for every x; € R"
there is a control u(t) € L*([ty, T],R™) that guides 0 to x;.

We can easily prove Theorem 11 using similar arguments as in Proposition 2.2
of [24]. Thus, equations (4.3) and (4.5) can be rewritten as

/ D(z,5)F (s,x(s))ds + ! D(t,5)B;(s)u(s)ds, (4.6)

ti1

T
u(t) = u(t) =CH(CCF) @6, T) (x1 — | (T,5)F(s,x(s))ds)].  (4.7)
fo
Thus, the controllability of the system (1.1) leads to the solvability of the coupled
equations (4.6) and (4.7). Let X; = L*([t;_1,],R") and X, = L*([t;_1,4]) and define
operators K,N : X, — X5, H; : X; — X and R; : X, — X as follows:

(Kx)(t) = tot(I)(Ls)x(s)ds
(Nx)(1) = F(f,X(t))
(Hu)(t) = [ ®(t,5)Bi(s)u(s)ds

i1

T
(R)(1) = CH(CCH) (1, T) /,0 D (15, 5)x(s)ds.
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Clearly, the operators K, H;, and R; are continuous linear operators. The operator N is
nonlinear.

With these notation, equations (4.6) and (4.7) can be written as pair of operator
equations:

x = KNx+ Hiju (4.8)
u=u;— RiNx 4.9)

where, u;(t) = C}(C;C;)~'®(t;,T)x;. Now we have the following theorem based on
the controllability of (1.1) in terms of the solvability of coupled equations (4.8) and
(4.9).

THEOREM 12. The system (1.1) is completely controllable if equations (4.8) and
(4.9) are uniquely globally solvable.

Proof. Assuming the equations (4.8) and (4.9) are universally globally solvable,
therefore there exists a pair (x*,u”) such that x* = KNx* + Hu* and u* = u; — R;Nx*.
Define control u(t) € L*([ty, T],R™) by

u(t) = {g*(t)’ ‘€ (i) (4.10)

otherwise.

Putting the control in equation (4.3), we get x(T) = x;, and since x; is arbitrarily
chosen, the system (1.1) is completely controllable. This completes the proof of the
theorem. [J

From this theorem, we can conclude that the controllability of the impulsive sys-
tem (1.1) reduces to the solvability of the coupled equations (4.8) and (4.9).

The next lemma describes the solvability of coupled equations (4.8) and (4.9) into
the invertibility of the operator (I — KN).

LEMMA 3. The coupled equations (4.8) and (4.9) are uniquely globally solvable
if and only if the operator (I — KN) is invertible.

Proof. 1f the coupled equations (4.8) and (4.9) are uniquely globally solvable
therefore for every u* € X; there exists a unique (x*,u”) € (X2,X;) such that x* =
KNx*+ Hu* and u* = uy — R;Nx*. This leads to invertibility of the operator (I —KN).

Conversely, if the operator (I — KN) is invertible then for each u € X, the equation
(I — KN)x = H;u has unique solution say x* and choosing u* = u; — R;Nx*, (x*,u*) is
solution of coupled equations (4.8) and (4.9). Hence, coupled equations (4.8) and (4.9)
are uniquely globally solvable. [J
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5. Controllability conditions under Lipschitzian nonlinearity

In this section, we are going to derive sufficient conditions for the solvability of
coupled equations (4.8) and (4.9).

From now on, we fix b; = sup, <, ||Bi(#)|| and b=max{b;;i=1,2,--- ,p+1}
and make the following assumptions for the discussion of the complete controllability
of the system (1.1).

(A1) Let, the transition matrix for the linear system ®(z,s) is such that ||®(z,s)||
< h(t,s), where h(-,-) : [to,T] x [to,T] — R is the bounded function satisfying

T 3
[/ hz(t,s)dsdt} — k<o,
1 Ji

(A2) Functions fi: [ti—1,4;] x R" for i =1,2,---,p+ 1 are measurable with respect to
the first argument and continuous with respect to the second argument. Moreover,
there exist positive numbers ¢; such that

[1fie,x) = file,y)|| < aullx =yl
and let, « = max{a;;i=1,2,---,p+1}.
LEMMA 4. The bounds for the operators K,H; and R; under the assumptions
1
(A1)—(A2) are estimated as ||K|| <k, ||H;|| < bk; = h;, where k; = U;OT ,f_’;l h*(t,s)dsdt)?

1
and ||R;|| < bl?c; = y;, where ¢; = ||(C:C;) ™| and 1; = [ftg h*(t;,5)ds) * . Further; the
nonlinear operator N is Lipschitz continuous with Lipschitz constant o.

Proof. To compute a bound for K consider,

|1Kx]2, = /to " K0 P < / T( [d>(t,s)x(s)ds)2dt

fo T

T 1 2 t 2
< / < d)(t,s)ds) ( / x(s)ds) dr (applying Holder’s inequality)
to T

fo
T 2 2 2 2
< ([ [ reasar ) i, =21,
0 0

Therefore, ||K|| < k.
To compute a bound for H; consider,

T T t; 2
|| Hiul3, = /t (| Hx(t)|Pdr < /t ( /t @(t,s)B,-(s)u(s)ds) di
0 0 i—1

<[ ([ 1ewsnpas) ([ imcoipas)a

(applying Holder’s inequality)

< K07 [l %, < KFBP[[ul [, -
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Therefore, ||H;|| < bk; = h;. Finally, to compute bounds for R; consider

1
IR, = [ IIRixto) s

ti—1

1 T
= | NG@CE)™) | @s)x(s)ds|Pde

ti—1 fo

—/ \(BE (1) (11,1) (C,CT) /cpz,, (s)ds|[2dt

< [M 1m0 walPaice)E 1 [ o) PasdllR,
i—1 i1
< b1 || ‘Xz'

Therefore, ||R;|| < bl?c; £ ¥;. Furthermore, for x,y € R" and ¢ € [to, T],

|INx(2) = Ny(0)[| = [|F (£,5) = F (&, 9)[| = [|fi (2, %) = fit, )| < 04l [x = y|| < ot e =y

Hence, N is Lipschitz continuous with Lipchitz constant ¢. This completes the proof
of the lemma. [l

The following theorem gives sufficient conditions for the invertibility of the oper-
ator (I —KN).

THEOREM 13. The operator I — KN is invertible if Assumptions (A1)—(A2) hold.
Moreover (I — KN) is Lipschitz continuous with Lipschitz constant ﬁ if kao < 1.

Proof. To show that I — KN is invertible, we first show that the equation x, | =
KNx,, + v has a unique solution.
For x,y € X,

IKNx— KNy < / 19, 3)] [1F (s.x(5)) — F(s,(5)) |ds < mo(T — to)| [x— y]|

[[(KN)2x — (KN)%||

=N [ 00.5)F (s.5(5)ds) = (N) ([ 00,9 (s.5(5)ds) |
1 [ @r (s @t mF(matman) Jas
-/ <1><r,s>F(s7< [ <1><s,r1>F<r1,x<n>>dn>)ds|
«| o9 / s, ) IF (11.2(1)) = F(x1,3(1) [ dmids
<o [ [" 0ol 06.7)ldndsllc—
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T T
< az[/ / hz(t,s)dsdt} [lx— ||
i) i)

22 2
o T —1
M [lx—y|| (mis uperbound for £).

Using mathematical induction,

a"m(T — 1)

<

[I(KN)"x = (KN)"y|| € ——————|lx—yl|  (m is uperbound for /).
n!
Since, w — 0 as n — oo therefore there exist ng such that %OT,_W) <1.

This means (KN)™ is a contraction and thus by the generalized Banach fixed point
theorem the equation x,.; = KNx, + v has a unique solution. Therefore each v € X;
there exist unique x,, € X, such that x, = KNx, 4+ v. This means for every v € X, there
exists a unique x, € X, such that (I — KN)x, = v. Therefore, the map (I —KN): Xo —
X5 is invertible.

To show Lipschitz continuity of the operator (I — KN)~!, consider

|(I—KN)" 'y — (I—KN) 'vy]|
= H‘xvl _xvzu
= ||[KNx,, +vi — KNx,, — v2||
< HKN)CVI _KNxvzH + HVI _V2H

t 1
< H/t D1, $)F (8,3 (s))ds — | @1, 5)F (5,50, (s))ds][ +[[v1 = va|
0 0

< H/IOtCD(Z»S)[F(S»xw (8)) = F (8,20, (5))]ds][ + [[v1 = va|

K| {INxy; — Noxy, ||+ [[vi = va|
kOCHle _xvz‘|+|“’1_"2”

Hence, (1 —ko)||xy, —Xy,|| < ||[vi —v2|| which mean (I —KN)~! is Lipschiz continu-
ous with Lipschitz constant m Which completes the proof of the theorem. [J

THEOREM 14. Suppose that the linear system (3.1) is controllable and assump-
tions (A1)-(A3) are satisfied and (f‘_y’){h;) <1 then,

(1) the couple equations (4.8) and (4.9) are globally solvable.

(2) the control vector u(t) defined over the interval [t;—,1;] steers zero initial state
at ty to a desired target state x; at time T, can be approximated by iterates u(”)(t)

defined by

U (1) = CH(CCH) T @8, T) (1 — /, TCD(T,s)F(s,x(”) (5))ds)] (5.1)

and the state vector approximation in the time interval [to, T) is given by the iterates

x("H)(t) = ttD(Ls)F(s,xfn)(s))ds—i— ! D (t,5)Bi(s)u™ (s)ds. (5.2)

1
fo i1
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Proof. Since, assumptions (A2) and (A3) are satisfied therefore by theorem 13 the
equation x = KNx + v is uniquely globally solvable for all v € X,. This mean there
exist unique x such that x = (I — KN)~'Hu for any fixed Hju € X,.Therefore, the
equation u = u; — R;Nx becomes

u=u; —RN(1—KN) 'Hu (5.3)

and solvability of this equation leads to the solvability of the coupled equations (4.8)
and (4.9), which leads to controllability of the semilinear system (1.1).
Define an operator .# : X; — X; by

AMu(t) = (uy —RiN(1 — Kor) " "Hu) (1)

then one can easily show that the equation (5.3) is solvable if and the operator equation
u = ./ u has unique fixed point.

Since the corresponding linear system is controllable, the controllability grammian
C,C} is invertible, and assuming (A1)-(A3), one can get

ayih;

— < L "

[Ju =l

oyihi
(I—koex)
theorem the operator .# is contraction. Thus, the operator equation (5.3) is uniquely
globally solvable.

Furthermore, starting from any initial state x° € X; the iterates

and according to hypotheses of the theorem < 1 therefore by Banach fixed point

XD = (1 —KN) ' Hu™ (5.4)
ul™ = uy — RiNx" (5.5)
drives the system (4.2) to desired final state x; as n — oo.
Hence, the iterates for the control u(¢) € L?([ty, T],R™) that steers the initial state
xo € R" at 1y to the desired final state x; € R” at time T are given by (5.1) and state

of the system at any time ¢ € [, 7] is given by (5.2). This completes the proof of the
theorem. [

REMARK 2. When [I, + D*u(#;)] # 0, controllability of the system (1.1) can also
be established by modifying the operators K, H; and R; and using similar arguments as
mentioned in the theorems 13 and 14.

EXAMPLE 1. Consider the system

x(t) = Ax(t) + fi(t,x(¢)) + Bu(t), ¢ €[0,0.5)U[0.5,1),
x(0) = xo, (5.6)
x(0.57) = (I +d'u(0.5)1)x(0.57)

during the interval [0, 1].
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Here, the state x(7) = [xl (t)} ,A= [ 0 1] ,B1= [ﬂ , By= B] and fi(¢,x(1)) =

)CQ(I) —10
1 |sin(x1(T)) _ 1 |cos(xi (1)) o
3 [sin (2(t)) and f>(t,x(t)) = 3 cos(ra(t))| Clearly, the rank of the controllability
matrices [B) : ABj| = i _11 , [B2,AB;] = ; _12] are 2, which is equal to the dimen-

sions of the state vector. The nonlinear functions f; are measurable with respect to ¢
and Lipschitz continuous with respect to the state x.

Assume u(0.5) = 0, this means no control is applied at the impulse point. Since
the rank of the controllability matrices is equal to the state vector’s dimensions, a linear
system corresponding to (5.6) is controllable over each subinterval. Moreover, the non-
linear terms are Lipschitz continuous with respect to x, and the nonlinear system (5.6)
is controllable over the interval [0,0.5]. The figure 1 shows the controlled state x(r),
controller u(), and phase portrait.

State Evolution x(t)

States
o
o

Controls
|
N o
L
1
5 5

00 01 02 03 04 05
Phase Portrait of x(t)

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
xi(t)

Figure 1: Controlled State, Controller and Phase Portrait.

At 1 = 0.5, the state of the system reaches x(0.5) = [0,2]". In order to drive the
system from this state to the desired final state x; = [—1,0]" at 7 = 1, it is necessary
to apply a control input over the time interval [0.5,1]. The design and application of
this control input follow the same procedure as implemented earlier over the interval
[0,0.5]. Specifically, the controller is designed to steer the system dynamics from the
current state at + = 0.5 to the target state at + = 1, ensuring a smooth and accurate
transition.

Thus, the control strategy is applied in two stages: initially over [0,0.5], where
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the system evolves from the initial condition to the intermediate state x(0.5) = [0,2],
and later over [0.5,1], where the control is used to guide the system from x(0.5) to the
desired final state x; = [—1,0]’. This piecewise application of control enables effective
handling of the system’s behavior over the entire interval [0, 1] and ensures that the
terminal condition at # = 1 is successfully achieved.

6. Conclusion

In this article, we discuss the controllability of semilinear impulsive systems on a
finite-dimensional space. By deriving sufficient conditions for the solvability of cou-
pled equations, we have established the controllability of the system. Under certain
assumptions and conditions, we have shown that the system can be steered from an ini-
tial state to a desired final state by appropriate controls applied in specific time intervals.
The results provide insights into the controllability of complicated impulsive systems
with nonlinearities, offering solutions for practical applications in various fields.
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