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Abstract. A study of the existence and uniqueness of the weak solution to a class of nonlinear
elliptic equations governed by the logarithmic perturbation is offered. We exploit interesting
properties of the new modular function involving LplogL -growth and the optimal embedding
theorem for Orlicz-Sobolev spaces. We are concerned with these properties in analyzing the
existence and uniqueness of the solution by the theory of pseudo-monotone operators proposed
in [2, 3] combined with variational methods. Our approach deals not only with problems of the
p -Laplacian type but also yields a slight extension of the results for more general differential
operators with a similar structure.

1. Introduction

In this paper, we study the following nonlinear boundary value problem of the
type: for a given domain  ⊂ R

n with n � 2, a given datum f : ×R → R , to find
u :→ R satisfying

−div
(
Ap,(u)

)
= f (x,u) in , and u = 0 on , (1)

where f : ×R → R is a Carathéodory function; the mapping Ap, :  → R
n , for

1 < p < n ,  � 0 is defined by

Ap,( ) := 
(

1
p
| |p log(e+ | |)

)
,  ∈ R

n. (2)

An important question that immediately arises is whether such problems are well-
posed. To the best of our knowledge, the literature contains various techniques for
obtaining general existence results for solutions to nonlinear problems. To mention
a few, the studies with the Schauder and Banach Fixed Point Theorem, the Contrac-
tion Mapping Principle, or subjectivity theorem for monotone operators, see for in-
stance [10, 12, 14, 20]. It is worth mentioning that the nice subjectivity property related
to monotone operators has become an important tool concerning the existence of solu-
tions from a variety of perspectives.
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Here, we shall deal with the existence and uniqueness of weak solutions when the
left-hand side is modeled around the p -Laplacian as a reference operator under some
appropriate assumptions on a given datum f . To be more specific, in our study, the left-
hand side of (1)1 has logarithmic order, nature. When  = 0, the interest in studying
such a problem is the p -Laplacian. The p -Laplace and p -Laplace type equations are
the subjects of several physical modeling and mechanical branches, such as resonance
problems, electricity, electro-rheological fluid dynamics, glaciology, elasticity theory,
and many others (see for example [5,8,15,19] and references therein). As far as we are
concerned in the literature, there are much less known existence and uniqueness results
concerning this problem for the general case that involves logarithmic order (1).

To give the reader a key tool underlying the existence theory with pseudo-monotone
operators, let us first summarize and exploit the proof idea for the p -Laplacian case.
The weak solution u ∈W 1,p

0 () to −div(|u|p−2u) = f provided
ˆ


(|u|p−2u ·v− f v
)
dx = 0, (3)

holds for every v ∈W 1,p
0 () . The existence theorem is the usage of surjectivity results

for pseudo-monotone operators, which reads as

THEOREM 1.1. (see [3]) If H : X → X
∗ is a bounded, coercive and pseudo-

monotone, then H (u) = 0 has a solution u ∈ X .

Here, for notational purposes, we regard X as a real reflexive Banach space, and
X
∗ is its dual space in the entirety of the paper. Theorem 1.1 yields the existence of a

solution to the classical homogeneous p -Laplace equation, where H connecting with
this problem, is defined by

〈H (u),v〉 :=
ˆ


(|u|p−2u ·v− f (x,u)v
)
dx, v ∈W 1,p

0 (). (4)

This theorem sets forth an important surjectivity result that the famous Lax-Mil-
gram’s theorem and the Main Theorem on Monotone Operators will be constructed as
consequences. Moreover, it can be applied directly to the model problems involving
p -Laplace type operator under appropriate boundary conditions. Inspired by several
subsequent developments regarding the solutions to several classes of equations, whose
nonlinearity even does not satisfy the standard ellipticity conditions, we are devoted
to a more general operator governed by logarithmic order, i.e. Ap, as in (2), also
considered as the borderline case of p -Laplacian.

In the spirit of the Main Theorem on Pseudomonotone Operators stated in Theo-
rem 1.1, we first consider the corresponding operator Hp, satisfying

〈Hp,(u),v〉 :=
ˆ


[
Ap,(u) ·v− f (x,u)v

]
dx, v ∈ X, (5)

where X denotes Orlicz-Sobolev space, which plays as a generalization of Sobolev
space built upon the Orlicz spaces. Its definition will be clarified in Section 2.
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With the wealth of the previous literature, the proof of existence exploits an argu-
ment similar to that in [3, 13], however, our approach is somewhat different, as we em-
ploy a new modular function, the equivalence between the new norm and the prescribed
norm in Orlicz-Sobolev spaces. Furthermore, with an interesting technical comparison,
it allows treating the existence and uniqueness results for (1), where the case is more
general and has been less investigated. These features make our main results in this
paper somewhat interesting and challenging.

Before presenting the main results, we premise some notations and assumptions
used throughout this paper. As a preliminary step, we briefly discuss the notation
adopted in our results. For 1 < p < n and  � 0, let us consider Gp, : [0,+) →
[0,+) a Young function defined by

Gp,() =
1
p
 p log(e+),  � 0, (6)

and G∗
p, the Young’s conjugate of Gp, . It is worth noticing that the operator Ap,

in (2) can be rewritten as

Ap,( ) = Gp,(| |),  ∈ R
n.

Here, we shall carry out the details of the Young function, its conjugate, and the
properties between them in Section 2, for the convenience of the reader. Moreover,
in this respect, we also connect the 2 -Young functions with Orlicz spaces denoted
by LGp, () , and Orlicz-Sobolev spaces W 1,Gp, () , that is made up of a function
h ∈ W 1,1() such that h ∈ LGp, () . For the sake of readability, from now on

we will denote by X := W 1,Gp, () and X0 := W
1,Gp,
0 () , its closure of C

0 () in
W 1,Gp, () , and when needed, further notations will be introduced step by step in the
arguments. We devote Section 2 for the reader to have a place to look things up in the
details.

Let us now state the main results of this paper via two following theorems, where
the existence and uniqueness of weak solutions are presented.

THEOREM 1.2. (Existence) Let p ∈ (1,n) ,  � 0 and g ∈ L
∗ := LG∗

p, () .
Then, one can find a constant 0 � 0 such that if

| f (x, t)| � g(x)+ 0|t|p−1 log(e+ |t|), for all x ∈, t ∈ R, (7)

and so, there exists at least a weak solution u ∈ X0 to (1).

Here, for the sake of brevity, we use L as the Orlicz space LGp, () connected
with Young function Gp, and L := LG∗

p, () corresponds to the its Young’s conjugate.
These notations will be specified in Section 2.

THEOREM 1.3. (Uniqueness) Let p∈ (1,n) and  � 0 and assume that f (·,u)≡
g ∈ L

∗ . Then, the Dirichlet problem (1) admits a unique weak solution u ∈ X0 .
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The plan of our paper is as follows. In the next section, we first briefly recapitulate
some standard definitions and preliminary results. In Section 3, we shall introduce
the main tool of this paper: the modular and some interesting properties, proving the
relation to the corresponding norm in Orlicz-Sobolev spaces in a standard way. The next
section is devoted to establishing some important properties of the p -Laplacian with
logarithmic order based on the subjectivity theorem for pseudo-monotone operators.
Finally, in Section 5 we end up by proving main results stated above.

2. Preparatory and preliminary materials

In this section, we collect some basic definitions and necessary auxiliary results
which will be employed later.

2.1. Pseudo-monotone operators

First, by
(
X,‖ · ‖X

)
, we denote a general reflexive Banach space and X

∗ its dual
space. The notation 〈·, ·〉 denotes the duality pairing between X

∗ and X . For ease of
notation in the argument, we shall make use of → and ⇀ the norm convergence and
weak convergence, respectively. To be more precise, for a sequence (k)k∈N ⊂ X , one
has

k →  ⇐⇒ lim
k→

‖k −‖X = 0,

and

k ⇀  ⇐⇒ lim
k→

〈T,k〉 = 〈T,〉 for any T ∈ X
∗.

DEFINITION 2.1. (see [3]) Let us consider a continuous operator H : X → X
∗ .

For any sequence (k)k∈N ⊂ X and  ∈ X , we simply write k
(H )−−⇀  if

k ⇀  in X, and limsup
k→+

〈H (k),k −〉 � 0. (8)

Moreover, we say that:

(i) H is bounded if H (S) is bounded in X
∗ for any bounded subset S ⊂ X ;

(ii) H is coercive if lim
‖‖X→

〈H (),〉
‖‖X

= + ;

(iii) H is monotone if 〈H ()−H (),−〉 � 0, for each  , ∈ X ;

(iv) H is pseudo-monotone if

k
(H )−−⇀  =⇒ 〈H (),−w〉 � liminf

k→
〈H (k),k −w〉, for all w ∈ X;

(v) H satisfies the so-called (S+)-property if

k
(H )−−⇀  =⇒ k →  in X.
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2.2. Young functions

Throughout the paper, we consider a function G : [0,)→ [0,) satisfying G(0)=
0 and lim

→
G() =  . We then say that G is a Young function, usually denoted by

G ∈ Y , if G is non-decreasing, convex and

lim
→0+

−1G() = 0, and lim
→

−1G() = .

The Young’s conjugate of Young function G is defined as follows

G∗() = sup{r−G(r) : r � 0},  � 0.

As the reader may easily check that if G∈Y then G∗ ∈Y and (G∗)∗ = G . In addition,
for G ∈ Y , we say that G ∈ 2 if there exists a constant G

2 > 1 such that

G(2) � G
2 G(), for all  � 0.

Otherwise, we will further often write G ∈ 2 if there is a constant G
2 > 1 such that

G(G
2 ) � 2G

2 G(), for all  � 0.

At the same time, the interesting point reads

G ∈ 2 ⇔ G∗ ∈ 2, with G
2 = 2G∗

2 . (9)

Moreover, if G ∈ 2 , then one can find some constants 2 � 1 > 1 and C > 1 inde-
pendent of a and  , such that

C−1 min{a1 ,a2}G() � G(a) � Cmax{a1 ,a2}G(),

for all  ,a � 0. Our last preparatory step regarding Young’s function is contained in
the following lemma. It is known as a generalized version of Young’s inequality. The
proof of this lemma relies on the definitions of G

2 -condition and G
2 -condition and

G∗ . We revisit the complete proof in [7, 11].

LEMMA 2.2. (Young inequality, see [11]) Let G∈ 2∩2 . For every  > 0 , the
following inequality holds

G∗(−1G()
)

� G() � G∗(2−1G()
)
. (10)

Moreover, for every  ∈ (0,1) , there exists C > 0 such that

r−1G() � G(r)+CG(), for all r � 0,  > 0. (11)
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2.3. Orlicz and Orlicz-Sobolev spaces

In what follows, we denote by M () the set of all measurable functions  :→
R and a Young function G ∈ Y . We here introduce the Orlicz class OG() , defined
by OG() := { ∈ M () : mG() < } , where mG() is the modular function with
respect to G , given by

mG() :=
 


G(|(x)|)dx :=
1
||

ˆ


G(|(x)|)dx. (12)

Here, || denotes the finite n -dimensional Lebesgue measure of  . The linear hull
of OG() will be called the Orlicz space LG() , that is equipped with the following
Luxemburg norm

‖‖LG() = inf
{
 > 0 : mG(−1) � 1

}
.

Let us recall the Hölder’s inequality in Orlicz spaces.

LEMMA 2.3. (Hölder’s inequality, see [16]) If G∈2∩2 , then (LG(),‖·‖LG())
is a reflexive Banach space. Moreover, for every  ∈ LG() and  ∈ LG∗

() , there
exists a constant C > 0 such that

‖‖L1() � 2‖‖LG()‖‖LG∗(). (13)

In two next lemmas, some useful relations between the norm in LG() and the
corresponding modular in (12) will be established.

LEMMA 2.4. Let G ∈ 2 ∩2 with condition G
2 > 2 . Then, one can find a

constant C > 1 such that

C−1(‖‖2
LG() −1

)
� mG() � C

(‖‖1
LG() +1

)
, (14)

for every  ∈ LG() , where 1,2 defined by

1 = log2

(
G

2

)
, and 2 = 1+

[
log2

(
G

2

)]−1
. (15)

Proof. Since G ∈ 2∩2 , it enables us to check that

G(at) � G
2 a1G(), and G(b) � 2G

2 b2G(),

for all a � 1, b ∈ (0,1] and  � 0, where 1,2 are defined as in (15). We refer
the interested reader to [18, Lemma 2.3] for related properties. As a consequence,
inequality (14) can be obtained by applying [17, Lemma 4.11]. �

LEMMA 2.5. Let G ∈ 2 and (k)k∈N be a sequence in LG() . Then, the fol-
lowing statement holds

lim
k→

‖k‖LG() = 0 ⇔ lim
k→

mG(k) = 0. (16)
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Proof. Thanks to statement iii) in Lemma 2.2, since G ∈ 2 , it is possible to find
some constants 1 < 1 � 2 and C > 1 such that

C−1 min{a1 ,a2}G() � G(a) � Cmax{a1 ,a2}G(),

for all a, ∈ R
+ . Plugging these inequalities into the integrals, we infer that if 0 <

‖‖LG() < 1, there holds

C−1 ‖‖−1
LG() mG() �

 


G
(‖‖−1

LG()|(x)|)dx = 1 � C‖‖−2
LG() mG(),

which is equivalent to

C−1 ‖‖2
LG() � mG() � C‖‖1

LG() . (17)

In a similar way, for the remaining case when ‖‖LG() � 1, it yields

C−1 ‖‖1
LG() � mG() � C‖‖2

LG() . (18)

The validity of (16) is obtained by combining (17) and (18). And the proof is com-
plete. �

DEFINITION 2.6. (Orlicz-Sobolev spaces) Given G∈Y , the Orlicz-Sobolev space,
written by W 1,G() , is a generalization of Sobolev space connected with Orlicz space
LG() , defined as

W 1,G() :=
{
 ∈ LG() : | | ∈ LG()

}
,

is also a Banach space equipped with the norm

‖‖W1,G() = ‖‖LG() +‖| |‖LG().

For the sake of simplicity, we will denote

‖‖LG() := ‖| |‖LG().

The closure of C
0 () in W 1,G() will be denoted by W 1,G

0 () .

3. New modular functions and properties

This section sets forth some interesting properties of modular functions modeled
around the Young’s function regarding the nonlinearity Ap, as described above. Fur-
thermore, we also state and prove the equivalence, reveal the relationship between this
modular function and norm function in the context.

Firstly, back to the definition of function Gp, in (6), it is clear that Gp, ∈Y and
Gp, ∈ 2∩2 as a consequence of the following lemma.
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LEMMA 3.1. For every 1,2 � 0 , there holds

Gp,(1 +2) � 2p+ [Gp,(1)+Gp,(2)] .

Moreover, there holds

Gp,() ∼ G′
p,() ∼ 2G′′

p,(),  ∈ R
+. (19)

In the sequel, let us consider the operator Lp, : X0 → X
∗
0 as follows

〈Lp,u,v〉 :=
ˆ


Ap,(u) ·vdx, for u,v ∈ X0, (20)

ans we now focus on some significant properties of Lp, that are useful to our main
proofs later.

The presence of Gp, brings us the corresponding Orlicz space LGp, () with the
following norm

‖‖L = inf
{
 > 0 : mGp,

(
−1

)
� 1

}
,  ∈ L. (21)

However, it could be difficult to handle the norm in L by itself nature when dealing
with the problem (21). The novelty of our study here lies in the construction of a new
modular function having some equivalent properties to the norm. This idea was found
in our previous work [21] when treating a related problem. In this paper, we shall
consider the following modular function:

[ ]L :=
( 


|(x)|p log

(
e+‖‖−1

p |(x)|)dx

)1/p

, (22)

and it is provided whenever ‖‖p > 0, where

‖‖p :=
( 


|(x)|pdx

) 1
p

.

At this stage, there are three interesting points with this new modular function. On
the one hand, it allows us to derive a comparison between the proposed new modular
and the former one given in (12), stated in the next lemma, whose proof is based on the
following basic facts:

log(e+ s) � 2
[
log  + log(e+ s)

]
, log  �

(

eq

)
q, (23)

for any  � 0,  � 1 and q > 0.

LEMMA 3.2. For every  ∈ L , the following relation holds

−1mGp, ()−‖‖p+1
p � [ ]p

L
� p2

[‖‖p−1
p +mGp, ()

]
, (24)

where  is defined by

 := 2 max

{(

e

)
;1

}
. (25)
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Proof. We now distinguish two cases. For the first case, we assume that ‖‖p � 1
and it is clear to obtain

[ ]p
L

=
 

|(x)|p log

(
e+‖‖−1

p |(x)|)dx � 2 pmGp, (). (26)

Moreover, applying (23) for  = ‖‖p � 1, it yields

mGp, () =
1
p

 

|(x)|p log

(
e+ |(x)|)dx

� 2

p

[
log

(‖‖p
) 


|(x)|pdx+

 

|(x)|p log

(
e+‖‖−1

p |(x)|)dx

]

� 2

p

[(

e

)
‖‖p+1

p +[ ]p
L

]
� 

[‖‖p+1
p +[ ]p

L

]
, (27)

where  is given as in (25). Combining two estimates in (26) and (27) we may conclude
that

−1mGp, ()−‖‖p+1
p � [ ]p

L
� p2mGp, (), if ‖‖p � 1. (28)

Hence, the inequality (24) holds true for the first case. For the remaining case when
0 < ‖‖p < 1 by applying a similar argument as in the previous one. Firstly, there
holds

mGp, () =
1
p

 

|(x)|p log

(
e+ |(x)|)dx � 1

p
[ ]p

L
� [ ]p

L
.

On the other hand, we take (23) into account for  = ‖‖−1
p > 1 to arrive at

[ ]p
L

� 2
[
log

(‖‖−1
p

) 

|(x)|pdx+ p

 


Gp,(|(x)|)dx

]

� p2
[

1
p

(
e

)‖‖p−1
p +mGp, ()

]
� p2

[‖‖p−1
p +mGp, ()

]
. (29)

Invoking two above estimates, one gets that

−1mGp, () � [ ]p
L

� p2
[‖‖p−1

p +mGp, ()
]
, if 0 < ‖‖p < 1. (30)

Finally, the assertion of (24) is concluded from (28) and (30). �
The second feature of the new modular function we would like to emphasize here

is the equivalence, which is stated in the following lemma. This nice property was in
fact pointed out in [21], we shortly write ‖ · ‖L ∼ [ · ]L .

LEMMA 3.3. (see [21]) With  defined as in (25), one has

‖‖L � [ ]L � ‖‖L, for every  ∈ L. (31)
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On the other hand, an additional interesting point is that the norm ‖‖X = ‖‖L +
‖‖L is equivalent to ‖‖L , for all  ∈ X0 . More precisely, this result may be
directly obtained by the fact that the embedding X0 ↪→ L is compact. This feature can
be obtained by applying the compact embedding result discussed in [4, Theorem 1 and
Theorem 3]. We send the reader to [9] and [21] for detailed proofs in some specific
cases. Therefore, in X0 , we may consider the following norm

‖‖X0 = ‖‖L,  ∈ X0, (32)

which is also equivalent to the modular [ ]L . In particular, combining (31) together
with (32), there holds

‖‖X0 � [ ]L � ‖‖X0 , for every  ∈ X0. (33)

4. Some properties of Lp log L operators

In this section, once having the preparatory lemmas at hand, we exploit some
necessary properties of the left-hand side LplogL operators to establish the existence
and uniqueness results along the lines of the theory studied in the Main Theorem on
Pseudo-monotone operators in [3]. It is also worth mentioning that during chains of
our technical comparison estimates throughout this section, constants will be denoted
by the same letter C . Their value is unimportant and may change from line to line,
sometimes, within the same line.

LEMMA 4.1. The LplogL-Laplace operator Lp, defined as in (20) is bounded
and coercive.

Proof. First, it is clear to see that the integral Lp, is well-defined, which means
that the integral on the right-hand side of (20) is finite. Indeed, from the definition of
Ap, in (2), for u ∈ X0 , one has

|Ap,(u)| � |u|p−1 log(e+ |u|)+

p
|u|p log−1(e+ |u|)

e+ |u|
�

(
1+


p

|u|
(e+ |u|) log(e+ |u|)

)
|u|p−1 log(e+ |u|)

�
(

1+

p

)
|u|p−1 log(e+ |u|)

= ( + p)
Gp,(|u|)

|u| ,

where Gp, defined in (6). Combining this estimate together with the fact that G∗
p, ∈

2∩2 , and then applying (10), we arrive at
ˆ


G∗
p,

(|Ap,(u)|)dx � C
ˆ


G∗
p,

(
Gp,(|u|)

|u|
)

dx � C
ˆ


Gp,
(|u|)dx. (34)
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Since |u| ∈ LGp, () , inequality (34) ensures that Ap,(u) ∈ LG∗
p, () . For this

reason, it allows us to apply Hölder’s inequality (13) to obtain

∣∣〈Lp,u,v〉∣∣ �
ˆ


∣∣Ap,(u)
∣∣ |v|dx

� C‖Ap,(u)‖
LG∗

p, ()
‖v‖LGp, ()

= C‖Ap,(u)‖
LG∗

p, ()
‖v‖X0 ,

for all u,v ∈ X0 . Gathering all these estimates, one may conclude that Lp, is well-
defined. In addition, the above inequality also yields

‖Lp,u‖X∗
0
= sup

v�=0

|〈Lp,u,v〉|
‖v‖X0

� C‖Ap,(u)‖
LG∗

p, ()
, for every u ∈ X0.

Next, for the boundedness of Lp, , it is sufficient to ask for the following term

M := ‖Ap,(u)‖
LG∗

p, ()

to be bounded. By Lemma 3.1, one can choose Gp,
2 = 2p++1 > 2. Thanks to (9), it

gets G∗
p,

2 = 2p+ . Then, applying inequality (14) in Lemma 2.4, we infer that

M = ‖Ap,(u)‖
LG∗

p, ()
� C

(
1+

ˆ


G∗
p,

(|Ap,(u)|)dx

) p+
p++1

, (35)

and
ˆ


Gp,
(|u|)dx � C

(
1+‖u‖p++1

LGp, ()

)
. (36)

Combining (34), (35) and (36), it enables us to estimate M as follows

M � C
(
1+‖u‖LGp, ()

)p+ = C
(
1+‖u‖X0

)p+
.

Notice that p+ > 0, it is enough to conclude that Lp, is boundedwith the following
estimate

‖Lp,u‖X∗
0
� C

(
1+‖u‖X0

)p+
, for every u ∈ X0.

At this stage, for the proof of coercive property, let us write

〈Lp,u,u〉 = p
ˆ


Gp,
(|u|)dx+

ˆ



p
|u|p+1 log−1(e+ |u|)

e+ |u| dx

� p
 


Gp,
(|u|)dx.
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In virtue of the Lemma 2.4 again, it yields to

〈Lp,u,u〉� C
(‖u‖

X0
−1

)
, where  := 1+

(
log2

Gp,
2

)−1
. (37)

Since  > 1, inequality (37) guarantees that

lim
‖u‖X0

→

〈Lp,u,u〉
‖u‖X0

= ,

and the conclusion reads Lp, is coercive. �

LEMMA 4.2. The LplogL-Laplace operator Lp, defined as in (20) is continu-
ous.

Proof. Let (uk)k∈N ⊂ X0 such that uk → u in X0 . It is necessary to prove that
Lp,uk → Lp,u in X

∗
0 . First, let us consider for every k ∈ N and v ∈ X0 , then, there

holds

|〈Lp,uk −Lp,u,v〉| =
∣∣∣∣
ˆ


(
Ap,(uk)−Ap,(u)

) ·vdx

∣∣∣∣
�
ˆ


∣∣Ap,(uk)−Ap,(u)
∣∣ |v|dx. (38)

Furthermore, we recall that∣∣Ap,(1)−Ap,(2)
∣∣ ∼ G′′

p,(|1|+ |2|)|1− 2|, 1,2 ∈ R
n.

Thus, one obtains from (38) that

|〈Lp,uk −Lp,u,v〉| � C
ˆ


G′′
p,(|uk|+ |u|)|uk−u||v|dx.

Here, it notices that the positive constant C depends on p and  . Thanks to Hölder’s
inequality (13), we arrive at

|〈Lp,uk −Lp,u,v〉| � C‖Tk‖LG∗
p, ()

‖v‖X0 , (39)

where Tk is defined by

Tk := G′′
p,(|uk|+ |u|)|uk−u|.

Using (39), we readily infer that

|〈Lp,uk −Lp,u,v〉| � C‖Tk‖LG∗
p, ()

‖v‖X0 , for all v ∈ X0,

which is equivalent to

‖Lp,uk −Lp,u‖X∗
0
� C‖Tk‖LG∗

p, ()
.
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To complete the proof, it is sufficient to show that limk→ ‖Tk‖LG∗
p, ()

= 0. Thanks to

Lemma 2.5, we only need to show that

lim
k→

 


G∗
p,(Tk)dx = 0.

At this stage, thanks to Lemma 2.2, one can find  > 1 such that

G∗
p,( t) � CG∗

p,(t), for all t � 0 and  ∈ (0,1].

Applying this inequality and using (19), the following estimate

Tk � CG′
p,(|uk|+ |u|) |uk −u|

|uk|+ |u| ,

holds, it moreover gets
 


G∗
p,(Tk)dx � C

 


G∗
p,

(
G′

p,(|uk|+ |u|))[ |uk −u|
|uk|+ |u|

]
dx. (40)

Here, recall that G′
p,() ∼ Gp,()/ by Lemma 3.1. Therefore, applying inequal-

ity (10) in Lemma 2.2 and Hölder’s inequality (13) again, estimate (40) deduces to
 


G∗
p,(Tk)dx � C

 


Gp,(|uk|+ |u|) |(uk −u)|
|uk|+ |u|dx

� C‖(|uk|+ |u|)−1Gp,(|uk|+ |u|)‖
LG∗

p, ()
‖(uk −u)‖LGp, ()

� C‖uk −u‖X0 . (41)

Turn our attention to the last estimate in (41), it allows us to conclude the desired
result with the fact that ‖(|uk|+ |u|)−1Gp,(|uk|+ |u|)‖

LG∗
p, ()

is bounded. In

a completely similar way, we can estimate M as in the previous lemma. The proof is
now complete. �

LEMMA 4.3. The LplogL-Laplace operator Lp, defined as in (20) is mono-
tone, pseudo-monotone and satisfies (S)+ -condition.

Proof. First, we may rewrite the operator Lp, in (20) as follows

〈Lp,u,v〉=
ˆ


(
|u|p−2u log(e+ |u|)+ 

p
|u|p−1u

log−1(e+ |u|)
e+ |u|

)
·vdx.

The proof is divided into several steps. In the first step, we will show that Lp, is
monotone. Indeed, for all u1,u2 ∈ X , by [1, Section 3.2] it is readily verified that

〈Lp,u1−Lp,u2,u1−u2〉 =
ˆ


(
Ap,(u1)−Ap,(u2)

) · (u1−u2)dx

� C
ˆ


∣∣Vp,log (u1)−Vp,log (u2)
∣∣2dx,
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where the auxiliary vector field Vp,log : R
n → R

n is defined by

Vp,log ( ) :=
(
| |p−2 log(e+ | |)+


p
| |p−1 log−1(e+ | |)

e+ | |
) 1

2

 ,

whenever  ∈ R
n . Thus, we are able to claim that Lp, is monotone.

In the second step, let us assume that uk
(Lp, )−−−−⇀ u in the sense of (8). In order to

show Lp, satisfies the (S)+ condition, we have to point out that limk→ ‖uk −u‖X0 .
Since uk ⇀ u in X and Lp, ∈ X

∗ , one has

lim
k→

〈Lp,u,uk −u〉= 0,

which implies to
limsup

k→
〈Lp,uk −Lp,u,uk −u〉� 0.

On the other hand, since Lp, monotone, one has

0 � liminf
k→

〈Lp,uk −Lp,u,uk −u〉� limsup
k→

〈Lp,uk −Lp,u,uk −u〉� 0.

Once having this estimate, it allows us to conclude

liminf
k→

〈Lp,uk −Lp,u,uk −u〉= limsup
k→

〈Lp,uk −Lp,u,uk −u〉= 0,

which ensures that
lim
k→

〈Lp,uk −Lp,u,uk −u〉= 0.

This is equivalent to

lim
k→

 


(
Ap,(uk)−Ap,(u)

) · (uk −u)dx = 0. (42)

Making use of [1, Section 3.2] and Lemma 3.1, there holds 


(
Ap,(uk)−Ap,(u)

) · (uk −u)dx

� C
 


G′′
p,(|uk|+ |u|)|uk−u|2dx,

in which from (42), it leads to

lim
k→

 


G′′
p,(|uk|+ |u|)|uk−u|2dx = 0. (43)

Next, we show the following inequality which can be verified following Young’s in-
equality 


Gp,

( |uk −u|)dx � 
( 


Gp,

( |u|)dx+
 


Gp,
( |uk|

)
dx

)

+C

 


G′′
p,(|uk|+ |u|)|uk−u|2dx,

(44)
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for every  > 0, where C = C(p,,) > 0. Indeed, it is worth mentioning that the
next inequality

I := Gp,
( |uk −u|) � C |uk −u|2 G′′

p,(|uk −u|)
holds by Lemma 3.1. Moreover, there holds

G′′
p,(|uk −u|) � CG′′

p,(|uk|+ |u|)
whenever p � 2. Therefore, (44) is obviously valid in this case by applying Lemma 3.1.
Otherwise, for 1 < p < 2, we first decompose I as follows

I =
( |uk|+ |u|) p(2−p)

2
(( |uk|+ |u|)p−2 |uk −u|2 ) p

2 log(e+ |uk −u|).
We then apply Young’s inequality (11) in Lemma 2.2 for ̃ > 0, it gives us

I � ̃Gp,
( |uk|+ |u|)

+C̃ |uk −u|2 ( |uk|+ |u|)p−2
log

(
e+ |uk|+ |u|).

Using fundamental inequalities in Lemma 3.1, it yields to

I � C̃
[
Gp,

( |u|)+Gp,
( |uk|

)]
+C̃ |uk −u|2 G′′

p,
( |uk|+ |u|).

By changing C̃ =

2

in this inequality, it leads to (44). Thanks to Lemma 3.1, one

obtains the following inequality

Gp,
( |uk|

)
� C

[
Gp,

( |u|)+Gp,
( |uk −u|)] .

Thus, we can deduce from (44) to 


Gp,
( |uk −u|)dx � 

 


Gp,
( |u|)dx

+C

 

|uk −u|2G′′

p,
( |uk|+ |u|)dx,

(45)

for all  > 0. Let us take 0 = 1/(2p2) , where  is defined by (25). For all  ∈
(0,0) , it is possible to fix  > 0 in (45) satisfying


( 


Gp,

( |u|)dx+1

)
<

1
p


p(p+1)
p−1 . (46)

Thanks to (43), one can find k0 ∈ N such that 

|uk −u|2G′′

p,
( |uk|+ |u|)dx � C−1

 , for all k � k0.

Combining (45) and (46), for every k � k0 , there holds
 


Gp,
( |uk −u|)dx <

1
p


p(p+1)
p−1 . (47)
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From now on, we always consider k bigger than k0 . From (47), one has

0 �
 

|uk −u|pdx � p

 


Gp,
( |uk −u|)dx < 

p(p+1)
p−1 ,

which ensures that

0 � ‖uk −u‖p < 
p+1
p−1 . (48)

On the other hand, thanks to Lemma 3.2, one has

[uk −u]p
L

� p2
[
‖uk −u‖p−1

p +
1
p

 


Gp,
( |uk −u|)dx

]
.

Substituting (47) and (48) into this inequality, it gives us

[uk −u]p
L

� p2
[
 p+1 + 

p(p+1)
p−1

]
� 2p2 p+1 �  p.

Applying inequality (31) in Lemma 3.3, we then obtain that

‖uk −u‖
X0

= ‖uk −u‖L � [uk −u]L �  .

Therefore, it allows us to conclude that

lim
k→

‖uk −u‖
X0

= 0,

or uk → u in X0 . Hence, Lp, satisfies the (S)+ condition.

Finally, we show that Lp, is pseudo-monotone. Assume that uk
(Lp, )−−−−⇀ u . Ac-

cording to the above proof, one has uk → u in X0 . Moreover, combining with the fact
that Lp, is continuous, one gets that Lp,(uk) → Lp,(u) in X

∗
0 . Thus, Lp, is

pseudo-monotone. �

5. Existence and uniqueness of weak solution to the main problem

After dealing with some technical lemmas that play crucial ingredients in this pa-
per, we are now in the position to accomplish our main results regarding the problem (1)
that stated in Theorems 1.2 and 1.3. Let us first revisit the following lemma to handle
the difficulties that may happen during the arguments.

LEMMA 5.1. Let G ∈ 2 ∩2 . Then, there exists  ∈ (0,1) such that

 


G(| |)dx � C

[ 


[G(| |)] dx

] 1

, (49)

for every  ∈W 1,G
0 () .
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The proof of this lemma can be found in [6, Theorem 7]. At this stage, we are
allowed to apply the assertion of this lemma and Hölder inequality to conclude that:
there exists C0 > 0 such that

 


Gp,(| |)dx � C0

 


Gp,(| |)dx, (50)

for every  ∈ X0 .

5.1. The existence

Proof of Theorem 1.2. Let us consider the new operator Hp, : X0 → X
∗
0 defined

by

〈Hp,(u),v〉 = 〈Lp,(u),v〉−
ˆ


f (x,u)vdx, u,v ∈ X0. (51)

We will split the proof into three steps. In the first step, we show that Hp, is well-
defined and bounded. Indeed, it is clear to see that

 


G∗
p,

(
Gp,(|u|)

|u|
)

dx �
 


Gp,(|u|)dx < ,

which means that
Gp,(|u|)

|u| ∈ L
∗ . Combing with the fact that g ∈ L

∗ , one obtains

g(x)+ p0
Gp,(|u|)

|u| ∈ L
∗.

Moreover, assumption (7) gives us

| f (x,u)| � g(x)+ 0|u|p−1 log(e+ |u|) = g(x)+ p0
Gp,(|u|)

|u| ,

which implies to

 


G∗
p,(| f (x,u)|)dx �

 


G∗
p,

(
g(x)+ p0

Gp,(|u|)
|u|

)
dx < .

It follows that f (x,u) ∈ L
∗ . Now we are able to apply Hölder’s inequality (13) in

Lemma 2.3, it holds

|〈Hp,(u),v〉| �
ˆ


∣∣Ap,(u) · v∣∣dx+
ˆ

| f (x,u)||v|dx

� C
[∥∥Ap,(u)

∥∥
L∗ ‖v‖X0

+‖ f‖
L∗ ‖v‖L

]
� C

[∥∥Ap,(u)
∥∥

L∗ +‖ f‖
L∗

]‖v‖
X0

,



102 M.-T. LUONG, T.-T.-D. DUONG AND T.-T.-N. VU

for all u,v ∈ X0 . Then, we arrive at

∥∥Hp,(u)
∥∥

X∗
0
= sup

v�=0

|〈Hp,(u),v〉|
‖v‖

X0

� C
[∥∥Ap,(u)

∥∥
L∗ +‖ f‖

L∗
]

which allows us to conclude that Hp, is well-defined and bounded.
In the second step, we prove that Hp, is pseudo-monotone. Let (uk) be a se-

quence in X0 such that uk
(Hp, )−−−−⇀ u in the sense of (8). Since Hp, is continuous,

which can be implied by the continuity of Lp, in Lemma 4.2. Therefore, it is suffi-
cient to prove uk converges to u strongly in X0 . Let us introduce a bounded sequence
Tk defined by

Tk = ‖g‖L∗ + 0
∥∥|uk|p−1 log(e+ |uk|)

∥∥
L∗ .

Combining assumption (7) and Hölder’s inequality (13) in Lemma 2.3, one obtains∣∣∣∣
ˆ


f (x,uk)(uk −u)dx

∣∣∣∣ �
ˆ


g(x)|uk −u|dx

+ 0

ˆ

|uk|p−1 log(e+ |uk|)|uk −u|dx

� Tk‖uk −u‖L. (52)

The fact that X0 ↪→ L compactly and uk ⇀ u in X0 give us uk → u in L . Hence,
sending k to  in (52), it follows that

lim
k→

ˆ


f (x,uk)(uk −u)dx = 0.

Again, combining with assumption uk
(Hp,)−−−−⇀ u , it leads to

limsup
k→

〈Lp,(uk),uk −u〉 = limsup
k→

〈Hp,(uk),uk −u〉� 0.

Thanks to (S)+ property of Lp, in Lemma 4.3, we may conclude uk → u in X0 . As
our discussion above, it is enough to conclude that Hp, is pseudo-monotone.

Let us move to the last step which is the proof of coercive property for the operator
Hp, . For all u ∈ X0 , one has

1
|| 〈Hp,(u),u〉 = p

 


Gp,(|u|)dx+
 


|u|Gp,(|u|)
(e+ |u|) log(e+ |u|)dx

−
 


f (x,u)u(x)dx

� p
 


Gp,(|u|)dx−
 


f (x,u)u(x)dx. (53)
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Taking the assumption (7) and Poincaré’s inequality into account, there holds 


f (x,u)u(x)dx �
 


g(x)u(x)dx+ p0

 


Gp,(|u|)dx

� C‖g‖L∗‖u‖L + p0C0

 


Gp,(|u|)dx

� C‖g‖L∗‖u‖X0 + p0C0

 


Gp,(|u|)dx. (54)

It is noticed that the constant C0 is given in (50). Collecting two estimates in (54)
and (53), one gets that

1
|| 〈Hp,(u),u〉 � p

(
1− 0C0

) 


Gp,(|u|)dx−C‖g‖L∗‖u‖X0 . (55)

On the other hand, one can see that (29) leads to [ ]p
L

� p2
[
1+mGp,()

]
for all

 ∈ X0 . Combining with (33), one has 


Gp,(|u|)dx � 1
p2

‖u‖p
X0

−1.

By fixing 0 such that 0 � 0 < 1
C0

and substituting above inequality into (55), it yields

1
|| 〈Hp,(u),u〉 � 1

p
(
1− 0C0

)‖u‖p
X0

−C‖g‖L∗‖u‖X0 − p
(
1− 0C0

)
. (56)

Since p > 1, inequality (56) implies that 〈Hp,(u),u〉
‖u‖X0

goes to infinity as ‖u‖X0 →  .

Thus, Hp, is coercive.
Finally, thanks to Theorem 1.1, equation Hp,(u) = 0 has a solution u ∈ X0 . In

other words, equation (1) has a weak solution in u ∈ X0 . The proof of existence result
is complete. �

5.2. The uniqueness

Proof of Theorem 1.3. Thanks to Theorem 1.2, equation (1) has a weak solution
in X0 . Assume that u1,u2 ∈ X0 are two weak solutions to this equation. It is sufficient
to show that u1 = u2 in X0 . Testing the variational formulas by v = u1−u2 , one gets
that  



(
Ap,(u1)−Ap,(u2)

) · (u1−u2)dx = 0.

Similar to the proof of (44), there holds
 


Gp,
( |u1−u2|

)
dx � 

( 


Gp,
( |u1|

)
dx+

 


Gp,
( |u2|

)
dx

)

+C

 


(
Ap,(u1)−Ap,(u2)

) · (u1−u2)dx,
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for every  > 0. It yields
 


Gp,
( |u1−u2|

)
dx = 0,

which allows us to conclude that u1 = u2 in X0 . Indeed, it can be obtained by the
following inequality which is deduced from Lemma 3.2 and Lemma 3.3:

‖u1−u2‖X0 � p2

[( 

|u1−u2|pdx

) p
p−1

+
 


Gp,

(
|u1−u2|

)
dx

]

� p2

[( 


Gp,
( |u1−u2|

)
dx

) p
p−1

+
 


Gp,
( |u1−u2|

)
dx

]
.

The proof is now complete. �
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