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COMPARISON RESULTS FOR PERIODIC BOUNDARY VALUE

PROBLEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

JUAN J. NIETO

Abstract. We study a linear fractional differential equation with a periodic boundary condition
and give the explicit form of the solution and the corresponding Green’s function. Using some
properties of the Green’s function we present some new comparison results.

1. Introduction

Initial value problems for fractional differential equations have been considered
by some authors recently [9, 10, 20]. However the study of boundary value problems
need further study, and in particular the periodic boundary value problem for fractional
differential equations. In that direction we present in this paper some new results on
differential inequalities related to the periodic boundary value problem for fractional
differential equations.

Fractional calculus is a generalization of ordinary differentiation and integration
to arbitrary non-integer order. The subject is as old as the differential calculus, and
goes back to time when Leibniz and Newton invented differential calculus. The idea of
fractional calculus has been a subject of interest not only among mathematicians, but
also among physicists and engineers, appearing in rheology, viscoelasticity, electro-
chemistry, electromagnetism, etc. For details, see the monographs of Kilbas et al. [7],
Kiryakova [8], Lakshmikantham et al. [11], Miller and Ross [12], Oldham et al. [15],
Podlubny [16], and Samko et al. [18] and the references therein. Some recent contribu-
tions to the theory of fractional differential equations can be seen in [1, 2, 3, 4, 5, 6, 20].

Comparison principles are a crucial tool to study nonlinear differential equations
and obtain approximate solutions.

In section 2 we recall some basic definitions and facts on fractional calculus, on
linear fractional differential equations, and on Mittag-Leffler functions. Then we prove
in section 3 some comparison principles for the periodic boundary problem. Our results
improve previous results and include the integer case.
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2. Preliminaries

Let α ∈ (0,1], T > 0, λ ∈ R, and σ : (0,T ] → R.
We study the linear fractional differential equation

Dαu(t)−λu(t) = σ(t), t ∈ J := (0,T ], (1)

where

Dαu(t) =
1

Γ(1−α)
d
dt

∫ t

0
(t− s)−αu(s)ds

is the usual Riemann-liouville fractional derivative of order α of a function u(0,T ] →
R. We note that

Dαu(t) =
d
dt

I1−αu(t),

where I1−α is the Riemann-Liouville fractional primitive of order 1−α of u. For
details on fractional calculus, we refer to the monographs [7, 11, 16, 18].

Denote the set of functions u : (0,T ] → R such that u(t) is continuous on (0,T ],
t1−αu(t) is continuous on [0,T ], and I1−αu(t) is continuously differentiable on [0,T ],
by E . By F we denote the set of functions v : (0,T ]→ R such that v(t) is continuous
on (0,T ], and t1−αv(t) is continuous on [0,T ],

Let σ ∈ F . By a solution of (1) we mean a function u ∈ E satisfying (1).
We are interested in solutions of (1) satisfying the periodic boundary condition

lim
t→0+

t1−αu(t) = T 1−αu(T ). (2)

Note that for α = 1 the solution u ∈ C1[0,T ] and the boundary condition (2) is the
usual periodic boundary condition u(0) = u(T ).

Consider the linear fractional differential equation (1) with the periodic boundary
condition (2). To find the possible solutions of this linear problem, we write the general
solution of (1) [7]:

u(t) = u0Γ(α)tα−1Eα ,α(λ tα)+
∫ t

0
(t − s)α−1Eα ,α(λ (t − s)α)σ(s)ds, (3)

where limt→0+ t1−αu(t)= u0 ∈R is the initial condition, and Eα ,α is the Mittag-Leffler
function

Eα ,α(z) =
∞

∑
k=0

zk

Γ(α(k+1))
,z ∈ C.

We note that Eα ,α(x) > 0 for every x ∈ R and Eα ,α(x) is strictly increasing in x [13,
17, 19]. Then for x > 0 we have that Eα ,α(−x) < Eα ,α(0) = 1

Γ(α) < Eα ,α(x).
For α = 1 this representation is still valid since Γ(1) = 1 and E1,1(z) = ez. We

thus obtain the solution

u(t) = u0e
λ t +

∫ t

0
eλ (t−s)σ(s)ds,
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of the initial problem for a linear first order ordinary differential equation

u′(t)−λu(t) = σ(t), u(0) = u0.

Now, for t = T in (3), we get

T 1−αu(T ) = u0Γ(α)Eα ,α (λTα)+T 1−α
∫ T

0
(T − s)α−1Eα ,α(λ (T − s)α)σ(s)ds. (4)

Using the periodic condition (2), it is possible to determine a unique value of u0 if and
only if 1−Γ(α)Eα ,α(λTα) �= 0.

Hence for λ �= 0 we have that Eα ,α(λTα) �= 1
Γ(α) and

u0 =
T 1−α

1−Γ(α)Eα ,α(λTα)

∫ T

0
(T − s)α−1Eα ,α(λ (T − s)α)σ(s)ds.

Substituting into (3) we have

u(t) =
T 1−αΓ(α)tα−1Eα ,α(λ tα)

1−Γ(α)Eα ,α(λTα)
·
∫ T

0
(T − s)α−1Eα ,α(λ (T − s)α)σ(s)ds

+
∫ t

0
(t − s)α−1Eα ,α(λ (t − s)α)σ(s)ds. (5)

Let

cα =
T 1−αΓ(α)

1−Γ(α)Eα ,α(λTα)
.

Hence forλ �= 0 we have that the linear fractional periodic boundary value problem
(1)–(2) has a unique solution given by

u(t) =
∫ T

0
Gλ ,α(t,s)σ(s)ds, (6)

where Gλ ,α(t,s) = cαEα ,α(λ tα)Eα ,α(λ (T−s)α)tα−1(T−s)α−1+(t−s)α−1Eα ,α(λ (t−
s)α), for 0� s � t � 1; and Gλ ,α(t,s) = cαEα ,α(λ tα)Eα ,α(λ (T −s)α)tα−1(T −s)α−1,
for 0 � t < s � 1.

For α = 1 the problem is u′(t)−λu(t) = σ(t) , t ∈ [0,1] , u(0) = u(1) and it has
a unique solution [14] given by (6). It coincides with the usual representation of the
solution [14].

Now, if λ < 0, then 1−Γ(α)Eα ,α(λTα)> 0 since Eα ,α(λTα)< 1
Γ(α) = Eα ,α(0).

Analogously, if λ > 0, then 1−Γ(α)Eα ,α(λTα) < 0 since Eα ,α(λTα) > 1
Γ(α) =

Eα ,α(0).
Now, for μ ∈ R, consider the nonhomogeneous boundary condition

lim
t→0+

t1−αu(t) = T 1−αu(T )+ μ . (7)

The solution of the problem

Dαu(t)−λu(t) = 0, t ∈ (0,T ] (8)
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together with the boundary conditions (7) is obtained as follows. The general solution
of the fractional equation (8) is

u(t) = u0Γ(α)tα−1Eα ,α(λ tα)

with u0 = limt→0+ t1−αu(t). Hence (7) leads to the equation

u0 = T 1−αu(T )+ μ = u0Γ(α)Eα ,α(λTα)+ μ .

This equation has a unique solution if and only if λ �= 0. Thus,

u0 =
μ

1−Γ(α)Eα ,α(λTα)
.

Consequently, the unique solution of (8)–(7) is

θμ(t) =
μΓ(α)

1−Γ(α)Eα ,α(λTα)
tα−1Eα ,α(λ tα). (9)

LEMMA 2.1. For λ �= 0, the solution of (1)–(7) is given by

u(t) =
∫ T

0
Gλ ,α(t,s)σ(s)ds+θμ(t).

Proof. The function
∫ T
0 Gλ ,α(t,s)σ(s)ds is the solution of the problem (1)–(2),

and θμ(t) is the solution of (8)–(7). In consequence, the sum of these two functions is
indeed a solution of (1)–(7).

To prove that it is the unique solution, let u1 and u2 be solutions of the problem
(1)–(7), then u = u1 − u2 is solution of the problem Dαu−λu = 0 and the boundary
condition (2). Using the representation (5) we see that u(t) = 0, t ∈ [0,T ], that is
u1 = u2. �

3. Comparison Results

We now present our main results.

THEOREM 3.1. Let λ < 0. Suppose that u ∈ E with

Dαu(t)−λu(t) � 0, t ∈ (0,T ]

and
lim

t→0+
t1−αu(t) � T 1−αu(T ).

Then u(t) � 0 , t ∈ [0,T ].

Proof. The function u satisfies (1) with σ(t) � 0, t ∈ (0,T ] and (7) with μ � 0.
Using the representation of the solution given by Lemma 2.1, we see that u(t) � 0 for
every t ∈ [0,T ]. �

Analogously, we have
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THEOREM 3.2. Let λ > 0. Suppose that u ∈ E with

Dαu(t)−λu(t) � 0, t ∈ (0,T ]

and
lim

t→0+
t1−αu(t) � T 1−αu(T ).

Then u(t) � 0 , t ∈ [0,T ].

Using these results it is possible to obtain approximate solutions for nonlinear
fractional problems with periodic boundary conditions via the monotone iterative tech-
nique. It will be useful for practitioners working on dynamical systems of fractional
order and will be published elsewhere.
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