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ON THE STABILITY ANALYSIS OF WEIGHTED AVERAGE FINITE

DIFFERENCE METHODS FOR FRACTIONAL WAVE EQUATION

N. H. SWEILAM, M. M. KHADER AND M. ADEL

Abstract. In this article, a numerical study for the fractional wave equations is introduced by
using a class of finite difference methods. These methods are extension of the weighted aver-
age methods for ordinary (non-fractional) wave equations. The stability analysis of the proposed
methods is given by a recently proposed procedure similar to the standard John von Neumann sta-
bility analysis. Simple and accurate stability criterion valid for different discretization schemes
of the fractional derivative, arbitrary weight factor, and arbitrary order of the fractional deriva-
tive, is given and checked numerically. Numerical test example and comparisons have been
presented for clarity.

1. Introduction

In the last few years, there are many studies for the fractional differential equa-
tions, because of their important applications in many areas like physics, medicine and
engineering, and this field, fractional calculus allows us to study fractal phenomena
which can not be studied by the ordinary case. There are many applications of the
fractional differential equations see ([4]-[8], [10], [14], [16]-[22]), the studied models
have received a great deal of attention like in the fields of viscoelastic materials [1],
electrochemical processes [7], control theory [17], advection and dispersion of solutes
in natural porous or fractured media [2], anomalous diffusion, signal processing and
image filtering [12].
In this section, the definitions of Riemann-Liouville and the Grünwald-Letnikov frac-
tional derivatives are given as follows:

DEFINITION 1. The Riemann-Liouville derivative of order α of the function y(x)
is defined by

Dα
x y(x) =

1
Γ(n−α)

dn

dxn

x∫
0

y(τ)
(x− τ)α−n+1 dτ, x > 0,
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where n is the smallest integer exceeding α and Γ(.) is the Gamma function. If α =
m ∈ N , then the above definition coincides with the classical mth derivative y(m)(x).

DEFINITION 2.. The Grünwald-Letnikov definition for the fractional derivatives
of order α > 0 of the function y(x) is defined by

Dαy(x) = lim
h→0

1
hα

[ x
h ]

∑
k=0

w(α)
k y(x−hk), x � 0,

where [ x
h ] means the integer part of x

h and w(α)
k are the normalized Grünwald weights

which are defined by w(α)
k = (−1)k

(
α
k

)
.

The Grünwald-Letnikov definition is simply a generalization of the ordinary dis-
cretization formula for integer order derivatives. The Riemann-Liouville and the Grünwald-
Letnikov approaches coincide under relatively weak conditions; if y(x) is continuous
and y′(x) is integrable in the interval [0,x] , then for every order 0 < α < 1 both the
Riemann-Liouville and the Grünwald-Letnikov derivatives exist and coincide for any
value inside the interval [0,x] . This fact of fractional calculus ensures the consistency
of both definitions for most physical applications, where the functions are expected to
be sufficiently smooth ([7], [10], [17]).

In this paper, we will study the numerical solution using the fractional WAM of
the following fractional wave differential equation:

utt(x,t) = D2−γ
t uxx(x,t)+ f (x,t), (1)

on a finite domain a < x < b, 0 � t � T, where f (x,t) is the source term and D2−γ
t

is the fractional derivative defined by the Riemann-Liouville operator, with γ ∈ (1,2] .
Under the zero boundary conditions u(a,t) = u(b,t) = 0, and the following initial con-
ditions

u(x,0) = g1(x) and ut(x,0) = g2(x).

In the last few years appeared many papers to study this model (1) ([3], [9], [11],
[13], [23], [24]).

The plan of the paper is as follows; In section 2 some approximate formulae of the
fractional derivatives and numerical finite difference scheme are given. In section 3, we
study the stability and the accuracy of the presented method. In section 4, numerical
solutions and exact solutions of fractional wave problem are compared. The paper ends
with some conclusions in section 5.

2. Finite difference scheme of the fractional wave differential equation

In this section, we will use the finite weighted average method to obtain the dis-
cretization finite difference formula of the wave equation (1). We use the following
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notations Δt and Δx, at time-step length and space-step length, respectively. The co-
ordinates of the mesh points are x j = a + jΔx and tm = mΔt , and the values of the
solution u(x, t) on these grid points are u(x j,tm) ≡ um

j �Um
j .

For more details about discretization in fractional calculus see [11].

In the first step, the ordinary differential operators are discretized as follows ([15],
[18])

∂ 2u
∂ t2

|x j ,tm= δtt u
m
j +O((Δt)2 ) ≡ um−1

j −2um
j +um+1

j

(Δt)2 +O((Δt)2 ), (2)

and
∂ 2u
∂x2 |x j ,tm= δxxu

m
j +O((Δx)2 ) ≡ um

j−1−2um
j +um

j+1

(Δx)2 +O((Δx)2 ). (3)

In the second step, the Riemann-Liouville operator is discretized as follows

D2−γ
t u(x,t) |x j ,tm= δ 2−γ

tt um
j +O((Δt)p), (4)

where

δ 2−γ
tt um

j ≡ 1
(Δt)2−γ

[ tm
Δt ]

∑
k=0

w(2−γ)
k u(x j,tm − kΔt) =

1
(Δt)2−γ

m

∑
k=0

w(2−γ)
k um−k

j ,

where [ tm
Δt ] means the integer part of tm

Δt and p is the order of the approximation which

depends on the choice of w(2−γ)
k . There are many choices of the weights w(α)

k ([11],
[17]) , so the above formula is not unique. Let us denote the generating function of the
weights w(α)

k by w(z,α) , i.e.,

w(z,α) =
∞

∑
k=0

w(α)
k zk.

If

w(z,α) = (1− z)α , (5)

then (4) gives the backward difference formula of the first order, which is called the
Grünwald-Letnikov formula. The coefficients w(α)

k can be evaluated from (5) by the
following formula

w(α)
k = (1− α +1

k
)w(α)

k−1, w(α)
0 = 1. (6)

For γ = 2, the operator D2−γ
t becomes the identity operator so that, the consistency of

Eq.(4) requires w(0)
0 = 1, and w(0)

k = 0 for k � 1, which in turn means that w(z,0) = 1.
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Now, we are going to obtain the finite difference scheme of the fractional wave
equation (1). To achieve this aim we evaluate this equation at the points of the grid
(x j,tm)

[utt (x,t)−D2−γ
t uxx(x,t)]x j ,tm = f (x j,tm).

Then, we replace the second order time-derivative by the central difference formula (2)
and replace the second order space-derivative by the three-point centered formula (3)
with respect to the weighed average formula (4) at the times tm and tm+1

δtt u
m
j −{λ δ 2−γ

tt δxxu
m
j +(1−λ )δ 2−γ

tt δxxu
m+1
j }− f (x j,tm) = Tm

j , (7)

with λ being the weight factor and Tm
j is the resulting truncation error. The standard

difference formula is given by

δttU
m
j −{λ δ 2−γ

tt δxxU
m
j +(1−λ )δ 2−γ

tt δxxU
m+1
j }− f (x j,tm) = 0. (8)

Now, by substituting from the difference operators given by (2), (3) and (4) in (8), we
can obtain the following scheme

−φUm+1
j−1 +(1+2φ)Um+1

j −φUm+1
j+1 = R, (9)

where

φ = (1−λ )β , β =
(Δt)γ

(Δx)2 , (10)

and

R = 2Um
j −U (m−1)

j + β
m

∑
r=0

[
λw(2−γ)

r +(1−λ )w(2−γ)
r+1

]×
× [Um−r

j−1 −2Um−r
j +Um−r

j+1

]
+(Δt)2 f (x j, tm). (11)

Eq.(9) is the fractional weighted average difference scheme considered in this paper.
Fortunately, Eq.(9) is a tridiagonal system that can be solved using the Thomas al-
gorithm ([15], [18]). In the case of λ = 1 and λ = 1

2 we have the backward Euler
fractional quadrature method and the Crank-Nicholson fractional quadrature method,
respectively, which have been studied, e.g., in [23], but at λ = 0 the scheme is called
fully implicit.

3. Stability analysis and truncation error

3.1. Stability analysis

In this section, we use the John von Neumann method to study the stability analysis
of the weighted average scheme (9) for the force free case.
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THEOREM 1. The fractional weighted average methods derived in (9) are condi-
tionally stable under the following stability criterion

β β× � 1, (12)

where β× = (2λ −1)w(−1,2− γ) .

Proof. By using (11), we can write (9) with free source term in the following form

−φUm+1
j−1 +(1+2φ)Um+1

j −φUm+1
j+1 −2Um

j +Um−1
j

−β
m

∑
r=0

[λw(2−γ)
r +(1−λ )w(2−γ)

r+1 ][Um−r
j−1 −2Um−r

j +Um−r
j+1 ] = 0. (13)

In the fractional John von Neumann stability procedure, the stability of the fractional
weighted average methods is decided by putting Um

j = ξmeiq jΔx . Inserting this expres-
sion into the weighted average difference scheme (13), we obtain

(1+2φ)ξm+1e
iq jΔx + ξm−1e

iq jΔx −2ξmeiq jΔx−φξm+1e
iq( j−1)Δx−φξm+1e

iq( j+1)Δx

−β
m

∑
r=0

[λw(2−γ)
r +(1−λ )w(2−γ)

r+1 ][eiq( j−1)Δx−2eiq jΔx + eiq( j+1)Δx]ξm−r = 0,

(14)

substituting by φ = (1−λ )β and dividing (14) by eiq jΔx , we get

(1+2(1−λ )β )ξm+1 + ξm−1−2ξm− (1−λ )β ξm+1e
−iqΔx − (1−λ )β .

ξm+1e
iqΔx −β

m

∑
r=0

[λw(2−γ)
r +(1−λ )w(2−γ)

r+1 ][e−iqΔx−2+ eiqΔx]ξm−r = 0.

Using the known Euler’s formula eiθ = cosθ + i sinθ , and under some simplifications
we have

[1+4(1−λ )β sin2(
qΔx
2

)]ξm+1 + ξm−1−2ξm

+4β sin2(
qΔx
2

)
m

∑
r=0

[λw(2−γ)
r +(1−λ )w(2−γ)

r+1 ]ξm−r = 0. (15)

In the John von Neumann method, the stability analysis is carried out using the ampli-
fication factor η defined by

ξm+1 = ηξm.
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Sure, η depends on m . But, let us assume that, as in [23], η is independent of time.
Then, inserting this expression into Eq.(15) one gets

[1+4(1−λ )β sin2(
qΔx
2

)]ηξm + η−1ξm −2ξm

+4β sin2(
qΔx
2

)
m

∑
r=0

[λw(2−γ)
r +(1−λ )w(2−γ)

r+1 ]η−rξm = 0,

divided by ξm to obtain the following formula of η

η =
2−η−1−4β sin2( qΔx

2 )∑m
r=0[λw(2−γ)

r +(1−λ )w(2−γ)
r+1 ]η−r

1+4(1−λ )β sin2( qΔx
2 )

.

The mode will be stable as long as | η |� 1, i.e.,

−1 �
2−η−1−4β sin2( qΔx

2 )∑m
r=0[λw(2−γ)

r +(1−λ )w(2−γ)
r+1 ]η−r

1+4(1−λ )β sin2( qΔx
2 )

� 1,

considering the time-independent limit value η = −1 and since

1+4(1−λ )β sin2(
qΔx
2

) > 0,

then

−4−4(1−λ )β sin2(
qΔx
2

)+4β sin2(
qΔx
2

)
m

∑
r=0

[λw(2−γ)
r +(1−λ )w(2−γ)

r+1 ](−1)−r � 0.

From the above equation we can obtain

(2λ −1)
m

∑
r=0

(−1)rw(2−γ)
r +(−1)m(λ −1)w(2−γ)

m+1 � 1

β sin2( qΔx
2 )

,

put

β×
m = (2λ −1)

m

∑
r=0

(−1)rw(2−γ)
r +(−1)m(λ −1)w(2−γ)

m+1 , (16)

one finds that the mode is stable when

β×
m � 1

β sin2( qΔx
2 )

,

β×
m depends on m , it turns out that β×

m tends towards its limit value

β× = lim
m→∞

β×
m .

In this limit, the stability condition is

1
β

� β× sin2(
qΔx
2

). (17)
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When λ �= 1
2 , one can write β× in terms of the generating function w(z,2− γ) of the

coefficients w(2−γ)
m

β× = (2λ −1)w(−1,2− γ). (18)

Note that w(−1,2−γ) is always positive (see section 2). Because (18) is negative when
λ < 1

2 , then (17) holds for all β (β is always positive, see (10)). Therefore, any WA
method with λ < 1

2 is stable. However, β× is positive and finite when λ > 1
2 , so that

Eq.(17) tell us that, for any WA method with λ > 1
2 , there always exist values of β for

which this WA method is unstable. Finally, from Eq.(16), if λ = 1
2 (Crank-Nicholson

method) then
β×

m = (−1)m(λ −1)w(2−γ)
m+1 .

But w(2−γ)
m+1 → 0 for m → ∞ so that β× = 0, and one concludes from Eq.(17) that the

fractional method is stable for all β .
Proceeding as usual in the John von Neumann method, one can write a simpler

and more conservative stability criterion than that given by Eq.(17) replacing sin2( qΔx
2 )

by its highest value, i.e., making sin2( qΔx
2 ) → 1. Then the stability conditions for

the fractional WA difference scheme (9) can be summarized in the following way: A
weighted average method with weight factor 0 � λ � 1

2 is always stable; when 1
2 <

λ � 1, the method is stable if 1
β � β× , with β× given by Eq.(18). Because β is always

positive and (2λ − 1) is negative for 0 � λ � 1
2 , therefore we find that the sufficient

condition for the presented method is stable and this completes the proof of the theorem.

3.2. Truncation error

THEOREM 2. Assuming that u is sufficiently smooth at the origin t = 0 and the
initial boundary data for u are consistent, then the truncation error in Eq.(7) for the

free source term (i.e., f (x,t) = 0 ) is defined by

Tm
j = O((Δt)p)+ (

1
2
−λ )O(Δt)+O((Δx)2 )+

1
(Δt)2−γ w(2−γ)

m+1 δxxu
(0)
j .

Proof. From the definition of the truncation error which given in Eq.(7), one gets

Tm
j = δtt u

m
j −{λ δ 2−γ

tt δxxu
m
j +(1−λ )δ 2−γ

tt δxxu
m+1
j },

i.e.,

Tm
j = δtt u

m
j −

1
(Δt)2−γ

m

∑
r=0

w(2−γ)
r [(1−λ )δxxu

m+1−r
j + λ δxxu

m−r
j ]

− 1
(Δt)2−γ (1−λ )w(2−γ)

m+1 δxxu
(0)
j . (19)
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But

δxxu
m+1−r
j = uxx +

(Δx)2

12
uxxxx +

Δt
2

[uxxt +
(Δx)2

12
uxxxxt + ...]+

(Δt)2

8
uxxtt + ...,

and

δxxu
m−r
j = uxx +

(Δx)2

12
uxxxx − (Δt)

2
[uxxt +

(Δx)2

12
uxxxxt + ...]+

(Δt)2

8
uxxtt + ...,

where the partial derivatives are evaluated at the point (x j,tm−k) . Inserting these ex-
pressions into Eq.(19) and taking into account Eq.(1) with free force, (4), one gets

Tm
j = O((Δt)p)− (

1
2
−λ )ΔtD2−γ

τ uxxt − (Δx)2

12
D2−γ

τ uxxxx

− (Δt)2

8
D2−γ

τ uxxtt − 1
(Δt)2−γ (1−λ )w(2−γ)

m+1 δxxu
(0)
j + ...,

with τ = tm + Δt
2 , i.e.,

Tm
j = O((Δt)p)+ ( 1

2 −λ )O(Δt)+O((Δx)2 )+ 1
(Δt)2−γ w(2−γ)

m+1 δxxu
(0)
j ,

where the terms of order O[(Δt)a+p(Δx)b] with a+b+ p > 2 have not been included.
This completes the proof of the theorem.

From this result, we can conclude that the truncation error is of first order in the
time step if γ = 2 and p � 1. For γ = 2, λ = 0.5, and p � 2 the method is of second
order.

4. Numerical results

In this section, we will test the proposed method by considering a numerical test
example. Consider the fractional wave equation (1) with the following source term

f (x,t) = 2sin(πx)+
π2

Γ(γ +1)
[2tγ − γtγ−1]sin(πx),

and the initial conditions

u(x,0) = 0, ut(x,0) = −sin(πx).

The exact analytical solution of Eq.(1) in this case is

u(x,t) = sin(πx)(t2− t).

Tables 1 and 2 show the numerical solution using the fractional WAM, the exact
solution and the relative error.
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x uexact uFDM relative error

0.1 -0.0772542485 -0.0768635765 0.0051
0.2 -0.1469463130 -0.1462032106 0.0051
0.3 -0.2022542485 -0.2012314559 0.0051
0.4 -0.2377641290 -0.2365617641 0.0051
0.5 -0.2500000000 -0.2487357587 0.0051
0.6 -0.2377641290 -0.2365617641 0.0051
0.7 -0.2022542485 -0.2012314559 0.0051
0.8 -0.1469463130 -0.1462032106 0.0051
0.9 -0.0772542485 -0.0768635765 0.0051

Table 1: Comparison of the numerical solution, the exact solution, and the relative error of the

fractional wave problem (1) by means of the fractional WAM for λ = 1
2 , γ = 1.75, Δx = 1

20 ,

Δt = 1
200 , β = 0.0376, and the final time T = 0.5.

x uexact uFDM relative error

0.1 -0.0579406864 -0.0593982540 0.0252
0.2 -0.1102097348 -0.1129821931 0.0252
0.3 -0.1516906864 -0.1555066480 0.0252
0.4 -0.1783230968 -0.1828090286 0.0252
0.5 -0.1875000000 -0.1922167879 0.0252
0.6 -0.1783230968 -0.1828090286 0.0252
0.7 -0.1516906864 -0.1555066480 0.0252
0.8 -0.1102097348 -0.1129821931 0.0252
0.9 -0.0579406864 -0.0593982540 0.0252

Table 2: Comparison of the numerical solution, the exact solution, and the relative error of the

fractional wave problem (1) by means of the fractional WAM for λ = 0, γ = 1.8, Δx = 1
50 ,

Δt = 1
400 , β = 0.05178, and the final time T = 0.25.

From these tables, we can conclude that the proposedmethod gives accurate results
and stable solution, which satisfies the theoretical results, where for the values in table
1, we found that the stability bound (12), β β× = 0 � 1, and in table 2, we found that
the stability bound β β× = −0.05949 � 1.

Tables 3 and 4 show the magnitude of the maximum error between the numerical
solution and the exact solution obtained by using the fractional WAM discussed above
with different values of Δx and Δt and also show the stability bound.
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Δx Δt maximum error stability bound
1
5

1
50 0.011494 0

1
10

1
50 0.010766 0

1
10

1
100 0.003611 0

1
20

1
100 0.003308 0

1
20

1
150 0.001205 0

1
30

1
150 0.001151 0

1
30

1
200 0.000212 0

1
40

1
200 0.000194 0

1
40

1
210 0.000069 0

1
45

1
220 0.000046 0

Table 3: This table shows the maximum error and the stability bound with different values of Δx

and Δt for λ = 0.5, γ = 1.5, and the final time T = 0.2.

Δx Δt maximum error stability bound
1
10

1
50 0.013961 -0.159242

1
20

1
100 0.010640 -0.196050

1
20

1
150 0.008519 -0.098404

1
30

1
200 0.007364 -0.135768

1
50

1
250 0.006538 -0.258078

1
50

1
300 0.005869 -0.189296

1
60

1
400 0.004946 -0.167151

1
60

1
450 0.004602 -0.136820

1
65

1
470 0.004483 -0.149131

1
70

1
480 0.004430 -0.166876

Table 4: This table shows the maximum error and the stability bound with different values of

Δx , Δt for λ = 0, γ = 1.7, and the final time T = 0.4.

From the Figure 1, we can see that the numerical solution is unstable, since the
stability condition β β× � 1 (i.e., β β× = 33.27 > 1) is not satisfy.

All the numerical calculations in this paper were carried out using BDF1 formula
for the coefficients w(α)

k . There are three reasons for this: first, in contrast with other
formulae, BDF1 coefficients can be easily computed using the recursive relation (6);
second, although this formula is only of order 1, this is not relevant because the trun-
cation error has (except for λ = 1

2 ) a term of order (Δt)2 (see Eq.(19)); and, third,
because higher-order BDF formulae involve practical problems that in some cases may
lead to completely useless results [6].
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Figure 1. The behavior of the numerical solution of the proposed problem (1) by means of the

fractional WAM for λ = 1, γ = 1.54, Δx = 1
100 , Δt = 1

50 , β = 24.1873, and the final time

T = 2.

The stability limit β× adopts an especiall simple form when BDF1 coefficients
are used β× = (2λ −1)22−γ, because from Eq.(5), w(−1,2− γ) = 22−γ .

5. Conclusion

This paper presented a class of numerical methods for solving the fractional wave
differential equations. This class of methods is very close to the weighted average finite
difference method. Special attention is given to study the stability of proposed meth-
ods. To execute this aim we have resorted to the kind of fractional John von Neumann
stability analysis. From the theoretical study we can conclude that, this procedure is
suitable for the fractional weighted averages methods and lead to very good predic-
tions for the stability bounds. The presented stability criterion of the fractional WAM
depends strongly on the value of the weighting parameter λ ; they are unconditionally
stable for 0 < λ � 1

2 and conditionally stable for 1
2 < λ � 1.

Numerical solutions and exact solutions of the proposed problem are compared
and the derived stability condition is checked numerically. From this comparison, we
can see that, the numerical solutions are in excellent agreement with the exact solutions.
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This work can be extended to solve numerically the multi dimensional fractional
wave equation using the same procedure with the non-uniform meshes or use other
weighted coefficient w(α)

k . Although we expect to accure some difficults.
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