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EXISTENCE OF THREE POSITIVE SOLUTIONS FOR BOUNDARY VALUE

PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

YUJI LIU

Abstract. In this article, we establish the existence of at least three unbounded positive solu-
tions to a boundary-value problem of the nonlinear singular fractional differential equation. Our
analysis rely on the well known fixed point theorem in a cone.

1. Introduction

Fractional differential equations have many applications in modeling of physical
and chemical processes and in engineering. In its turn, mathematical aspects of studies
on fractional differential equations were discussed by many authors, see the text books
[4, 7, 9], the survey paper [2] and papers [1, 5, 8, 10, 13] and the references therein.

The use of cone theoretic techniques in the study of solutions to boundary value
problems has a rich and diverse history. Recently, E. R. Kaufmann and E. Mboumi
in [11] studied the following boundary value problem for the fractional differential
equations {

Dα
0+u(t)+a(t) f (u(t)) = 0, 0 < t < 1, 1 < α < 2,

u(0) = 0, u′(1) = 0 ,
(1)

by using the properties of the Green’s function of the corresponding BVP, the Leggett-
Williams fixed point theorem and the Krasnoselskii fixed point theorem, where f is
continuous on [0,1]× [0,∞) . Under the assumptions:

(A1) f : [0,1]× [0,+∞)→ [0,∞) is continuous;

(A2) a ∈ L∞[0,1] ;

(A3) there exists a constant m > 0 such that a(t) � m a.e. t ∈ [0,1] ,

The authors in [11] proved that BVP(2) has at least one or three positive solutions.
We note that the Green’s function of the corresponding BVP{

Dα
0+u(t) = 0, 0 < t < 1, 1 < α < 2,

u(0) = 0, u′(1) = 0 ,
(2)
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is as follows:

G(t,s) =
1

Γ(α)

{
tα−1(1− s)α−2− (t− s)α−1, t � s,

tα−1(1− s)α−2, t � s.

It satisfies

β sG(s,s) � G(t,s) � G(s,s) for all t ∈ [β ,1], s ∈ [0,1]. (3)

One sees that (4) plays an important role in the proof of the theorems in [11].
In this paper, we discuss the existence of three positive solutions to the boundary

value problem of the nonlinear fractional differential equation of the form⎧⎪⎪⎨
⎪⎪⎩

Dα
0+u(t)+ f (t,u(t)) = 0, t ∈ (0,∞), 1 < α < 2,

limt→0 t2−αu(t) = 0,

Dα−1
0 u(1) = 0 ,

(4)

where Dα
0+ (Dα for short) is the Riemann-Liouville fractional derivative of order α ,

and f : (0,1]× [0,∞)→ [0,∞) is continuous. We obtain the existence results for two and
three unbounded positive solutions about this boundary-value problem, respectively, by
using the fixed point theorems in a cones.

It is different from [11] that f may be singular at zero and the positive solutions of
BVP(4) may be unbounded ones since limt→0 t2−αx(t) = 0 for solution x of BVP(4).

2. Preliminary results

For the convenience of the reader, we present here the necessary definitions from
fixed point theory and fractional calculus theory. These definitions and properties can
be found in the literatures [3, 4, 6, 7, 9].

DEFINITION 2.1. Let X be a real Banach space. The nonempty convex closed
subset P of X is called a cone in X if ax ∈ P for all x ∈ P and a � 0, x ∈ X and
−x ∈ X imply x = 0.

DEFINITION 2.2. A map ψ : P → [0,+∞) is a nonnegative continuous concave
or convex functional map provided ψ is nonnegative, continuous and satisfies

ψ(tx+(1− t)y) � tψ(x)+ (1− t)ψ(y),

or
ψ(tx+(1− t)y) � tψ(x)+ (1− t)ψ(y),

for all x,y ∈ P and t ∈ [0,1] .

DEFINITION 2.3. An operator T : X → X is completely continuous if it is con-
tinuous and maps bounded sets into pre-compact sets.
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Let ψ be a nonnegative functional on a cone P of a real Banach space X . Define
the sets by

Pr = {y ∈ P : ||y|| < r},
P(ψ ;a,b) = {y ∈ P : a � ψ(y), ||y|| < b},
P(ψ ,d) := {x ∈ P : ψ(x) < d}.

LEMMA 2.1. Let T : Pc → Pc be a completely continuous operator and let ψ
be a nonnegative continuous concave functional on P such that ψ(y) � ||y|| for all
y ∈ Pc . Suppose that there exist 0 < a < b < d � c such that

(E1) {y ∈ P(ψ ;b,d)|ψ(y) > b} �= /0 and ψ(Ty) > b for y ∈ P(ψ ;b,d);

(E2) ||Ty|| < a for ||y|| � a;

(E3) ψ(Ty) > b for y ∈ P(ψ ;b,c) with ||Ty|| > d .

Then T has at least three fixed points y1 , y2 and y3 such that ||y1||< a, b < ψ(y2)
and ||y3|| > a with ψ(y3) < b.

LEMMA 2.2. Suppose P is a cone in a real Banach space X , α,γ : P → I0 be
two continuous increasing functionals, θ : P → I0 be a continuous functional and there
exist positive numbers M,c > 0 such that

(i) T : P(γ,c) → P is a completely continuous operator;

(ii) θ (0) = 0 and γ(x) � θ (x) � α(x) , ||x|| � Mγ(x) for all x ∈ P(γ,c);

(iii) there exist constants 0 < a < b < c such that θ (λx) � λ θ (x) for all λ ∈ [0,1]
and x ∈ ∂P(θ ,b);

(iv) γ(Tx) > c for all x ∈ ∂P(γ,c); θ (Tx) < b for all x ∈ ∂P(θ ,b); P(α,a) �= /0
and α(Tx) > a for all x ∈ ∂P(α,a);

then T has two fixed points x1,x2 in P(γ,c) such that

α(x1) > a, θ (x1) < b < θ (x2), γ(x2 < c.

LEMMA 2.3. Suppose P is a cone in a real Banach space X , α,γ : P → I0 be
two continuous increasing functionals, θ : P → I0 be a continuous functional and there
exist positive numbers M,c > 0 such that (i), (ii) and (iii) in Lemma 2.4 hold and

(iv) γ(Tx) < c for all x ∈ ∂P(γ,c); θ (Tx) > b for all x ∈ ∂P(θ ,b); P(α,a) �= /0
and α(Tx) < a for all x ∈ ∂P(α,a);

then T has two fixed points x1,x2 in P(γ,c) such that

α(x1) > a, θ (x1) < b < θ (x2), γ(x2 < c.
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DEFINITION 2.4. The Riemann-Liouville fractional integral of order α > 0 of a
function f : (0,∞) → R is given by

Iα
0+ f (t) =

1
Γ(α)

∫ t

0
(t − s)α−1 f (s)ds,

provided that the right-hand side exists.

DEFINITION 2.5. The Riemann-Liouville fractional derivative of order α > 0 of
a continuous function f : (0,∞) → R is given by

Dα
0+ f (t) =

1
Γ(n−α)

dn+1

dtn+1

∫ t

0

f (s)
(t− s)α−n+1 ds,

where n−1 < α � n , provided that the right-hand side is point-wise defined on (0,∞) .

LEMMA 2.4. Let n−1 < α � n, u ∈C0(0,1)
⋂

L1(0,1) . Then

Iα
0+Dα

0+u(t) = u(t)+C1t
α−1 +C2t

α−2 + . . .+Cnt
α−n,

where Ci ∈ R, i = 1,2, . . .n.

LEMMA 2.5. The relations

Iα
0+Iβ

0+ϕ = Iα+β
0+ ϕ , Dα

0+Iα
0+ = ϕ

are valid in following case

Reβ > 0, Re(α + β ) > 0, ϕ ∈ L1(0,1).

LEMMA 2.6. Suppose that Γ(α �= β ηα−1 . Given h∈C[0,1], the unique solution
of ⎧⎪⎪⎨

⎪⎪⎩
Dαu(t)+h(t) = 0, 0 < t < 1,

limt→0 t2−αu(t) = 0,

Dα−1u(1) = 0 ,

(5)

is

u(t) =
∫ 1

0
G(t,s)h(s)ds, (6)

where

G(t,s) =

⎧⎨
⎩

− (t−s)α−1

Γ(α) + tα−1

Γ(α) , s � t,

tα−1

Γ(α) , t � s.
(7)

Proof. We may apply Lemma 2.4 to reduce BVP(5) to an equivalent integral equa-
tion

u(t) = −
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds+ c1t

α−1 + c2t
α−2
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for some ci ∈ R, i = 1,2. We get

t1−αu(t) = −t2−α
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds+ c1t + c2

and

Dα−1u(t) = −
∫ t

0
h(s)ds+ c1Γ(α).

From the boundary conditions in (5), since lims→0 Γ(s) = ∞ , we get

c2−βc1Γ(α) = 0,

−
∫ 1

0
h(s)ds+ c1Γ(α) = 0.

It follows that

c1 =
1

Γ(α)

∫ 1

0
h(s)ds,

and
c2 = 0.

Therefore, the unique solution of BVP(3) is

u(t) = −
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds+

tα−1

Γ(α)

∫ 1

0
h(s)ds =

∫ 1

0
G(t,s)h(s)ds.

Here G is defined by (7). Reciprocally, let u satisfy (6). Then

lim
t→0

t2−αu(t) = 0,Dα−1u(1) = 0 ,

furthermore, we have Dαu(t) = −h(t) . The proof is complete. �

LEMMA 2.6. Let β ∈ (0,1) . G(t,s) satisfies the following properties:

(i) G(t,s) � 0 for all t,s ∈ [0,1];

(ii) G(t,s) � G(s,s) for all t,s ∈ [0,1];

(iii) mint∈[β ,1] G(t,s) � βG(s,s) for all s ∈ [0,1] .

Proof. One sees from (7) that G(t,s) � 0 for all t,s ∈ [0,1] .
It is easy to see that G(t,s) � G(s,s) for t � s . When t � s , since

[tα−1− (t− s)α−1]′ = (α −1)tα−2
[
1−

(
1− s

t

)α−2
]

� 0

Then G(t,s) � G(s,s) for t � s . Hence G(t,s) � G(s,s) for all t,s ∈ [0,1] .
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Let F(s) = 1− (1− s)α−1−β sα−1 . It is easy to see that F(0) = 0 and F(1) =
1−β > 0. Since

F ′(s) = (α −1)sα−2

[(
1
s
−1

)α−2

−β

]⎧⎪⎪⎨
⎪⎪⎩

� 0,s ∈
(

0, 1

β
1

α−2 +1

]
,

� 0,s ∈
[

1

β
1

α−2 +1
,1

]
,

we get that 1− (1− s)α−1 � β sα−1 .
For 1 � t � s , we have

G(t,s) � G(1,s) = − (1− s)α−1

Γ(α)
+

1
Γ(α)

� β
sα−1

Γ(α)

For β � t � s , we have

G(t,s) � G(β ,s) =
β α−1

Γ(α)
� β

sα−1

Γ(α)

mint∈[β ,1] G(t,s) � βG(s,s) for all s ∈ [0,1] . The proof is completed.

For our construction, we let X = C(0,1] and ‖u‖ = supt∈(0,1] t
2−α |u(t)| which is

a Banach space. We seek solutions of (4) that lie in the cone

P =
{

u ∈ X : u(t) � 0, 0 < t � 1, min
t∈[η,1]

u(t) � β α ||u||
}

.

Define the operator T : P → X , by

Tu(t) =
∫ 1

0
G(t,s) f (s,u(s))ds .

One sees from Lemma 2.7 that

||Tu|| = max
t∈(0,1]

t2−α(Tu)(t) �
∫ 1

0
G(s,s) f (s,u(s))ds

and

min
t∈[η,1]

t2−α(Tu)(t) = min
t∈[η,1]

β 2−β
∫ 1

0
G(t,s) f (s,u(s))ds � β α

∫ 1

0
G(s,s) f (s,u(s))ds.

Hence
min

t∈[η,1]
t2−α(Tu)(t) � β α ||u||.

It follows that Tu ∈ P . Then T : P → P is well defined. �



PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS 61

LEMMA 2.8. Suppose that f (t,x) is continuous on (0,1]×R and satisfies that
for each r > 0 there exists φr ∈ L1(0,1] such that | f (t, tα−2x)|� φr(t) for all t ∈ (0,1]
and |x| � r . Then T is completely continuous.

Proof. We divide the proof into three steps.

Step 1. T is continuous.
Let {yn} be a sequence such that yn → y in X . Let

r = max

{
sup

t∈(0,1]
t2−αyn(t), sup

t∈(0,1]
t2−αy(t)

}
.

Then for t ∈ (0,1] , we have

t2−α |(Tyn)(t)− (Ty)(t)| =
∣∣∣∣
∫ 1

0
t2−αG(t,s) f (s,yn(s))ds−

∫ 1

0
t2−αG(t,s) f (s,y(s))ds

∣∣∣∣
�

∫ 1

0
t2−αG(t,s)| f (s,yn(s))− f (s,y(s))|ds

� 1
Γ(α)

∫ 1

0
| f (s,sα−222−αyn(s))− f (s,sα−222−αy(s))|ds

� 2
1

Γ(α)

∫ 1

0
φr(s)ds.

Since f (t,sα−2x) is continuous in x , we have ||Tyn−Ty|| → 0 as n → ∞ .

Step 2. T maps bounded sets into bounded sets in X .
It suffices to show that for each l > 0, there exists a positive number L > 0 such

that for each x ∈ M = {y ∈ X : ||y|| � l} , we have ||Ty|| � L . By the definition of T ,
we get

t2−α |(Ty)(t)| =
∫ 1

0
t2−αG(t,s) f (s,y(s))ds

� 1
Γ(α)

∫ 1

0
f (s,sα−222−αy(s))ds

� 1
Γ(α)

∫ 1

0
φl(s)ds.

It follows that

||Ty|| � 1
Γ(α)

∫ 1

0
φl(s)ds for each y ∈ {y ∈ X : ||y|| � l}.

So T maps bounded sets into bounded sets in X .

Step 3. T maps bounded sets into equicontinuous sets in X .
Firstly, we prove that T is equicontinuous on compact sub interval of (0,1] . Let

t1,t2 ∈ (0,1] with t1 < t2 and y ∈ M = {y ∈ X : ||y|| � l} defined in Step 2. We have
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|t2−α
1 (Ty)(t1)− t2−α

2 (Ty)(t2)|
=

∣∣∣∣
∫ 1

0
t2−α
1 G(t1,s) f (s,y(s))ds−

∫ 1

0
t2−α
2 G(t2,s) f (s,y(s))ds

∣∣∣∣
�

∫ 1

0
|t2−α

1 G(t1,s)− t2−α
2 G(t2,s)| f (s,sα−2s2−αy(s))ds

�
∫ t1

0

[∣∣∣∣∣ t
2−α
1 (t1 − s)α−1− t2−α

2 (t2 − s)α−1

Γ(α)

∣∣∣∣∣+ |t1− t2|
Γ(α)

]
f (s,sα−2s2−αy(s))ds

+
∫ t2

t1
|t2−α

1 G(t1,s)− t2−α
2 G(t2,s)| f (s,sα−2s2−αy(s))ds

+
∫ 1

t2

∣∣∣∣∣t2−α
1

tα−1
1

Γ(α)
− t2−α

2
tα−1
2

Γ(α)

∣∣∣∣∣ f (s,sα−2s2−αy(s))ds

�
∫ 1

0

[∣∣∣∣∣ t
2−α
1 (t1 − s)α−1− t2−α

2 (t2 − s)α−1

Γ(α)

∣∣∣∣∣+ |t1 − t2|
Γ(α)

]
φl(s)ds

+
2

Γ(α)

∫ t2

t1
φl(s)ds+

|t1 − t2|
Γ(α)

∫ 1

0
φl(s)ds.

G(t,s) =

⎧⎨
⎩

− (t−s)α−1

Γ(α) + tα−1

Γ(α) , s � t,

tα−1

Γ(α) , t � s.

As t1 → t2 , the right-hand side of the above inequality tends to zero. Therefore, T is
equicontinuous on compact sub interval of (0,1] .

Secondly, we prove that T is equicontinuous at zero point. Since

∫ 1

0
t2−αG(t,s) f (s,y(s))ds � 1

Γ(α)

∫ 1

0
φl(s)ds,

we get

lim
t→0

t2−α(Ty)(t) =
∫ 1

0
t2−αG(t,s) f (s,y(s))ds = 0

uniformly. Then for each ε > 0, there exists δ > 0 such that

|t2−α
1 (Ty)(t1)− t2−α

2 (Ty)(t2)| < ε.

holds for each 0 < t1,t2 < δ . Hence T is equicontinuous at zero point.
From above discussion, T is completely continuous. The proof is complete. �
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3. Main Results

In this section, we prove the main results. Let

M =
1

Γ(α)
,

and

W =
β 3(1−β α)
αWΓ(α)

.

THEOREM 3.1. Suppose that f : (0,1]× [0,∞) → [0,∞) is continuous and satis-
fies that for each r > 0 there exists φr ∈ L1(0,1] such that | f (t, tα−2x)| � φr(t) for all
t ∈ (0,1] and |x| � r . Furthermore, there exist constants e1,e2 and c such that

0 < e1 < e2 <
e2

β α < c, Wc > Me2,

and

(D1) f (t, tα−2u) � c
M for t ∈ (0,1] , u ∈ [0,c];

(D2) f (t, tα−2u) � e1
M for t ∈ (0,1] and u ∈ [0,e1];

(D3) f (t, tα−2u) � e2
W for t ∈ [η ,1] and u ∈

[
e2,

e2
β α

]
;

then BVP(4) has at least three positive solutions x1 , x2 and x3 satisfying

sup
t∈(0,1]

t2−αx1(t) < e1, min
t∈[η,1]

t2−αx2(t) > e2 (8)

and
sup

t∈(0,1]
t2−αx3(t) > e1, min

t∈[η,1]
t2−αx3(t) < e2. (9)

Proof. Define the functional ψ by

ψ(x) min
t∈[η,1]

t2−αx(t) for x ∈ P.

It is easy to see that ψ is a nonnegative convex continuous functional on the cone P .
ψ(y) � ||y|| for all y ∈ P . For x ∈ P , it follows from Lemma 2.8 that TP ⊆ P and
T : P → P is completely continuous.

Corresponding to Lemma 2.1, choose

d =
e2

β α , b = e2, a = e1.

Then 0 < a < b < d < c . We divide the remainder of the proof into four steps.
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Step 1. Prove that T (Pc) ⊂ Pc .
For x ∈ Pc , one has ||x|| � c . Then

0 � t2−αx(t) � c, t ∈ (0,1].

It follows from (D1) that

f (t,x(t)) = f (t,tα−2t2−αx(t)) � c
M

,t ∈ (0,1].

Then Tx ∈ P implies that

||Tx|| = sup
t∈(0,1]

t2−α(Tx)(t)

= sup
t∈(0,1]

∫ 1

0
t2−αG(t,s) f (s,x(s))ds

� sup
t∈(0,1]

∫ 1

0
t2−αG(t,s)

c
M

ds

� 1
Γ(α)

c
M

= c.

Then Tx ∈ Pc , Hence T (Pc) . This completes the proof of Step 1.

Step 2. Prove that

{y ∈ P(ψ ;b,d)|ψ(y) > b} = {y ∈ P(ψ ;e2,e2/β α)|ψ(y) > e2} �= /0

and ψ(Ty) > b = e2 for y ∈ P(ψ ;e2,e2/β α).
It is easy to see that {x∈P(ψ ,e2,e2/β α),ψ(x)> e2} �= /0 . For x∈P(ψ ,e2,e2/β α) ,

then ψ(x) � e2 and ||x|| � e2/β α . Then

min
t∈[η,1]

t2−αx(t) � e2, sup
t∈(0,1]

x(t) � e2/β α .

Hence

e2 � t2−αx(t) � e2

β α , t ∈ [η ,1].

Hence (D3) implies that

f (t,x(t)) = f (t,tα−2t2−αx(t) � e2

W
,t ∈ [η ,1].

Since Ty ∈ P , we get ψ(Ty) = mint∈[η,1] t
2−α(Ty)(t) � β α supt→(0,1] t

2−α(Tx)(t) . We
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get

ψ(Tx) � β α sup
t→(0,1]

∫ 1

0
t2−αG(t,s) f (s,x(s))ds

> β α sup
t→(0,1]

∫ 1

β
t2−αG(t,s) f (s,x(s))ds

� β 3 sup
t→(0,1]

∫ 1

β
G(s,s) f (s,x(s))ds

� β 3
∫ 1

β

sα−1

Γ(α)
e2

W
ds

� e2.

This completes the proof of Step 2.

Step 3. Prove that ||Ty|| < a = e1 for y ∈ P with ||y|| � a .
For x ∈ Pe1 , we have

sup
t∈(0,1]

t2−αx(t) � e1 = a.

It follows from (D2) and Tx ∈ P that

f (t,x(t)) = f (t,tα−2t2−αx(t)) � e1

M
, t ∈ (0,1].

The proof is similar to that of Step 1. Then ||Ty|| < e1 for ||y|| � e1 . This completes
that proof of Step 3.

Step 4. Prove that ψ(Ty) > b for y ∈ P(ψ ;b,c) with ||Ty|| > d .
For x ∈ P(ψ ;b,c) = P(ψ ,e2,c) and ||Tx|| > d = e2

β α , then

min
t∈[η,1]

t2−αx(t) � e2, sup
t∈(0,1]

t2−α(Tx)(t) � e2

β α and ||x|| = sup
t∈(0,1]

t2−αx(t) � c.

Hence we have from Tx ∈ P that

ψ(Tx) = min
t∈[η,1]

t2−α(Tx)(t)

= β α sup
t∈(0,1]

t2−α(Tx)(t)

� β α e2

β α

= b.

This completes the proof of Step 4.
From above steps, (E1), (E2) and (E3) of Lemma 2.1 are satisfied. Then, by

Lemma 2.1, T has three fixed points x1 , x2 and x3 ∈ Pc such that

||x1|| < a, ψ1(x2) > b, ||x3|| � a, ψ1(x3) � b,
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i.e., x1 , x2 and x3 satisfy (8) and (9). Hence BVP(4) has at least three positive solutions
that may be unbounded positive solutions since limt→0 t2−αx(t) = 0. The proof is
complete. �

THEOREM 3.2. Let W = β 3(1−β α)
αWΓ(α) and M = 1

Γ(α) . Suppose that f : (0,1]× [0,∞)→
[0,∞) is continuous and satisfies that for each r > 0 there exists φr ∈ L1(0,1] such that
| f (t,tα−2x)| � φr(t) for all t ∈ (0,1] and |x| � r . Furthermore, there exist positive
numbers a < b < c such that Wb > Ma, and

(E1) f (t, tα−2u) � c
W for t ∈ [η ,1] , u ∈ [c,c/β α ];

(E2) f (t, tα−2u) � b
M for t ∈ (0,1] and u ∈ [0,b];

(E3) f (t, tα−2u) � a
W for t ∈ [η ,1] and u ∈ [β αa,a] .

Then BVP(4) has at least two positive solutions x1 and x2 satisfying

sup
t∈(0,1]

tα−2x1(t) > a, sup
t∈(0,1]

tα−2x1(t) < b, sup
t∈(0,1]

tα−2x2(t) > b, min
t∈[η,1]

tα−2x2(t) < c.

(10)

Proof. Define the nonnegative, increasing and continuous functionals γ,θ ,α :
P → I by

γ(x) = min
t∈[η,1]

tα−2x(t), x ∈ P,

θ (x) = sup
t∈(0,1]

tα−2x(t), x ∈ P,

α(x) = sup
t∈(0,1]

tα−2x(t), x ∈ P.

It is easy to see that θ (0) = 0 and

γ(x) � θ (x) � α(x), x ∈ P

and for x ∈ P we have γ(x) � β α ||x|| , θ (νx) � νθ (x) for all ν ∈ [0,1] and x ∈ P .
From Lemma 2.8, we have TP ⊂ P and T is completely continuous. Hence (i)–(iii) in
Lemma 2.2 hold. To obtain two positive solutions of BVP(4), it suffices to show that
the condition (iv) in Lemma 2.2 holds.

First, we verify that

γ(Tx) > c for alll x ∈ ∂P(γ,c). (11)

Since x ∈ ∂P(γ,c) , we get mint∈[η,1] t
2−αx(t) = c . Then ||x|| � 1

β α γ(x) � c
β α . Then

c � t2−αx(t) � c
β α for all t ∈ [η ,1] . Hence (E1) implies

f (t,x(t)) = f (t,tα t2−αx(t)) � c
W

, t ∈ [η ,1] .
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So we get from Tx ∈ P that

γ(Tx) = min
t∈[η,1]

t2−α(Tx)(t) � β α sup
t∈(0,1]

t2−α(Tx)(t).

We find

γ(Tx)(t) � β α
∫ 1

0
t2−αG(t,s) f (s,x(s))ds

> β 2
∫ 1

β
β

sα−1

Γ(α)
f (s,x(s))ds

� β 3
∫ 1

β

sα−1

Γ(α)
c
W

ds

� c.

Secondly, we prove that

θ (Tx) < b for all x ∈ ∂P(θ ,b). (12)

Since θ (x) = b , we get supt∈(0,1] t
2−αx(t) = b . Then

t2−αx(t) � b for all t ∈ (0,1].

Hence (E2) implies

f (t,x(t)) = f (t,tα−2t2−αx(t)) � b
M

,t ∈ (0,1].

So the definition of T imply

θ (Tx) = sup
t∈(0,1]

t2−α(Tx)(t)

� sup
t∈(0,1]

∫ 1

0
t2−αG(t,s) f (s,x(s))ds

� 1
Γ(α)

b
M

= b.

Finally, we prove that

P(α,a) �= /0, α(Tx) > a for all x ∈ ∂P(α,a). (13)

It is easy to see that P(α,a) �= /0 . For x ∈ ∂P(α,a) , we have supt∈(0,1] t
2−αx(t) = a .

Then
β αa � t2−αx(t) � a for all t ∈ [η ,1] .

Then (E3) implies

f (t,x(t)) = f (t,2α−2t2−αx(t)) � a
W

,t ∈ [η ,1] .
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Similarly to the first step, we can prove that α(Tx) > a . It follows from above discus-
sion that all conditions in Lemma 2.2 are satisfied. Then T has two fixed points x1,x2

in P . So BVP(4) has two positive solutions x1 and x2 satisfying (10). The proof is
complete. �

THEOREM 3.3. Let W,M be defined in Theorem 3.2. Suppose that f : (0,1]×
[0,∞) → [0,∞) is continuous and satisfies that for each r > 0 there exists φr ∈ L1(0,1]
such that | f (t, tα−2x)| � φr(t) for all t ∈ (0,1] and |x| � r . Furthermore, there exist
positive numbers a < β αb < b < c such that Wc > Mb, and

(E4) f (t, tα−2u) � c
M for t ∈ (0,1] , u ∈ [0,c/β α ];

(E5) f (t, tα−2u) � b
W for t ∈ [η ,1] and u ∈ [β αb,b];

(E6) f (t, tα−2u) � a
M for t ∈ (0,1] and u ∈ [0,a] .

Then BVP(4) has at least two positive solutions x1 and x2 satisfying

sup
t∈(0,1]

tα−2x1(t) > a, sup
t∈(0,1]

tα−2x1(t) < b, sup
t∈(0,1]

tα−2x2(t) > b, min
t∈[η,1]

tα−2x2(t) < c.

(14)

Proof. Let the nonnegative, increasing and continuous functionals γ,θ ,α : P → I
be defined in the proof of Theorem 3.2. The remainder of the proof is similar to that of
the proof of Theorem 3.2 and is omitted. �
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