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SOME COMPUTATIONAL RESULTS FOR FUNCTIONS

BELONGING TO A FAMILY CONSISTING OF

CAUCHY–EULER TYPE DIFFERENTIAL EQUATION

HÜSEYİN IRMAK

Abstract. In this study, a family concerning fractional calculus of p-valently analytic functions
is first defined and several basic results for the related functions are next given. By making use
of these results, several computational results for functions belonging to the family consisting of
the (non-homogenous) Cauchy Euler type differential equation are then derived.

1. Introduction, definitions and motivation

Fractional calculus (FC), which is fractional integral or derivative, is an important
and also interesting field of mathematics study that qrows out of the traditional defi-
nitions of calculus integral and derivative operators in much the same way fractional
exponents is an outgrowth of exponents with integer value. The concept of FC is not
new and it is generally known that integer order derivatives and integrals have clear
physical and geometric interpretations. However, in case of fractional-order integra-
tion and differentiation, which represent a rapidly qrowing field both in theory and in
applications to real world problems, it is not so. Since the appearance of the idea of
differentiation and integration of arbitrary (not necessary integer) order there was not
any acceptable geometric and physical interpretation of these operations for more than
300 year. In the recent years, its usage has been found in studies of viscoelastic materi-
als, as well as in many fields of sciences and engineering including fluid flow, rheology,
diffusive transport, electerical networks, electromagnetic theory, probability and so on.
In the literature, it considers different definitions of fractional derivatives and integrals
and also differintegrals. For some elementary functions, explicit formula of fractional
drevative and integral are presented. For all of them, one may check the works in [2],
[7], [13–17], [20–21] and see also [22] in the references. We also want to apply, as an
example, some applications of fractional calculus to the certain differential equations
which will be used in certain sciences and also engineering.

After all these information, we again want to focus on some applications of both
fractional calculus and differential equation in mathematics and to show the way to
some researchers who want to use the fractional calculus and Cauchy Euler differential
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110 HÜSEYİN IRMAK

equations in their research fields as novel example. We now begin to investigate nec-
essary definitions for our example consisting of fractional calculus and Cauchy Euler
differential equation.

Let
k = n+ p,n+ p+1,n+ p+2, · · ·; ak � 0

and also let An(p) denote the family of functions f (z) of the form:

f (z) = zp−an+pz
n+p−an+p+1z

n+p+1−·· · (1.1)

which are analytic and p-valent in the open unit disk U = {z ∈ C : |z| < 1}, where
C is the set of complex number, and n, p ∈ N = {1,2,3, · · ·} := N0 −{0}.

Now, a function f (z) ∈ An(p) is said to belong to the family S C n
λ (μ , p;α) , if

and only if,∣∣zD1+μ
z f (z)− (p− μ)Dμ

z f (z)
∣∣ < α

∣∣(1−λ )zD1+μ
z f (z)+ λDμ

z f (z)
∣∣ (1.2)

(0 < α � p;0 � μ < 1;0 � λ � 1; p ∈ N;z ∈ U),

and also a function f (z) ∈ An(p) is said to belong to the family H n
λ (μ , p,α;κ) , if

w = f (z) satisfies the non-homogenous Cauchy-Euler type differential equation:

z2 d2w
dz2 +2(1+ κ)z

dw
dz

+ κ(κ +1)w = (p+ κ)(p+ κ +1)g(z), (1.3)

where g(z) ∈ S C n
λ (μ , p;α), κ > −p, and κ ∈ R.

In (1.2) (and also throughout this paper), D
μ
z {·} denotes an operator of fractional

calculus (that is that fractional integral and derivative(s)), which is defined as follows
(cf., e.g., [11], [12], [18], [19] and (see also) [13]).

DEFINITION 1. (Fractional Integral Operator) The fractional integral of order μ
is defined, for a function f (z), by

D−μ
z f (z) =

1
Γ(μ)

∫ z

0

f (ζ )
(z− ζ )1−μ dζ (μ > 0), (1.4)

where f (z) is an analytic function in a simply-connected region of the z-plane contain-
ing the origin, and the multiplicity of (z−ζ )μ−1 is removed by requiring log(z−ζ ) to
be real when z− ζ > 0.

DEFINITION 2. (Fractional Derivative(s) Operator) The fractional derivative of
order μ is defined, for a function f (z), by

Dμ
z f (z) =

⎧⎨
⎩

1
Γ(1−μ)

d
dz

∫ z
0

f (ζ )
(z−ζ )μ dζ (0 � μ < 1)

dm

dzm {Dμ−m
z f (z)} (m � μ < m+1, m ∈ N0)

, (1.5)

where f (z) is constrained, and the multiplicity of (z− ζ )−μ is removed, as in Defini-
tion 1.
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Noting that the inequalities determined by taking λ := 0 and λ → 1− have very
important role for both analytic and geometric functions theory. Besondersly, the re-
lated functions families (consisting of p-valently starlike functions of order p−α in U

and p-valently convex functions of order p−α in U (0 < α � p; p∈N)), i.e., the fam-
ilies Sn(p,α,λ ) := S C n

λ (0, p;α) and Kn(p,α,λ ) := S C n
1−λ (1, p;α) which were

before defined by Chen et al. and several computational results were obtained in [2]
and see also [3]. Certian computational results in the papers in [1], [3], [5], [7], [8],
[9] and [10], include fractional calculus or differential equations and, for example, thier
results can be also checked.

The main purpose of the this investigation is to apply the computational results
obtained for the functions in S C n

λ (μ , p;α) to the functions in H n
λ (μ , p,α;κ). For

this, certain analytic and geometric characteristics of S C n
λ (μ , p;α) are firstly derived

and these results are then applied to obtain some comptational results for functions
in H n

λ (μ , p,α;κ). Note that all these results and also their consequences are very
important for geometric functions theory. (See, for their details, [4], [6], and see also
[13].)

2. Certain computational results for functions in S C n
λ (μ , p;α)

For the main results, we need to state the following basic computational results for
functions in S C n

λ (μ , p;α).

THEOREM 2.1. A function f (z), given by (1.1), is in the family S C n
λ (μ , p;α) if

and only if

∞

∑
k=n+p

[k− p+ αψ(λ ,μ ;k)]φ(μ ;k)ak � αψ(λ ,μ ; p)φ(μ ; p), (2.1)

where, here and throughout this paper,

ψ(λ ,μ ;k) := λ +(k− μ)(1−λ ) (2.2)

and

φ(μ ;k) :=
Γ(k+1)

Γ(k− μ +1)
(0 � μ < 1;k � n+ p;n, p∈ N). (2.3)

The result (2.1) is sharp for the function f (z) given by

f (z) = zp − αψ(λ ,μ ; p)φ(μ ; p)
[n+ αψ(λ ,μ ;n+ p)]φ(μ ;n+ p)

zn+p (n, p ∈ N). (2.4)

Proof. Let a function f (z) ∈ An(p) defined by (1.1) satisfy the inequality (2.1).
If we let z ∈ ∂U, then on making use of Definition 2 and also (1.2), we then find that
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∣∣zD1+μ
z f (z)− (p− μ)Dμ

z f (z)
∣∣−α

∣∣(1−λ )zD1+μ
z f (z)+ λDμ

z f (z)
∣∣

=
∣∣∣−Σ∞

k=n+p(k− p)akz
k−p
∣∣∣

−α
∣∣∣ψ(λ ,μ ; p)φ(μ ; p)−Σ∞

k=n+pψ(λ ,μ ;k)φ(μ ;k)akz
k−p
∣∣∣

�
[
Σ∞

k=n+p [k− p+ αψ(λ ,μ ;k)]φ(μ ;k)
]−αψ(λ ,μ ; p)φ(μ ; p)

� 0 (0 < α � p;0 � μ < 1;0 � λ � 1;n, p ∈ N;z ∈ ∂U). (2.5)

Hence, by maximum modulus principal, the function f (z) given by (1.1) belongs
to the class S C n

λ (μ , p;α).
Conversely, suppose that a function f (z) given by (1.1) belongs to the class

S C n
λ (μ , p;α). Then, in view of (1.3) together with using Definition 2, we readily

obtain ∣∣∣∣∣ zD1+μ
z f (z)− (p− μ)Dμ

z f (z)

(1−λ )zD1+μ
z f (z)+ λDμ

z f (z)

∣∣∣∣∣
=

∣∣∣∣∣ −Σ∞
k=n+p(k− p)akzk−p

ψ(λ ,μ ; p)φ(μ ; p)−Σ∞
k=n+pψ(λ ,μ ;k)φ(μ ;k)akzk−p

∣∣∣∣∣< α. (2.6)

Finally, by observing the the function f (z) given by (2.4) is indeed an extremal
function for the assertion in (2.1), the desired proof of Theorem 2.1 is completed. �

In view of the basic inequality of Theorem 2.1, the inequalities in the following
threorems (Theorems 2.2 and 2.3 below) are easily proved. The details are ommitted.

THEOREM 2.2. Let a function f (z) given by (1.1) be in the S C n
λ (μ , p;α). Then,

∞

∑
k=n+p

ak � αψ(λ ,μ ; p)φ(μ ; p)
[n+ αψ(λ ,μ ;n+ p)]φ(μ ;n+ p)

(2.7)

and
∞

∑
k=n+p

kak � α(n+ p− μ)ψ(λ ,μ ; p)φ(μ ; p)
[n+ αψ(λ ,μ ;n+ p)]φ(μ ;n+ p−1)

. (2.8)

THEOREM 2.3. Let a function f (z) given by (1.1) be in the S C n
λ (μ , p;α). Then,

∣∣∣∣∣∣D−δ
z f (z)

∣∣∣−φ(−δ ; p) |z|p+δ
∣∣∣� αψ(λ ,μ ; p)φ(μ ; p)φ(−δ ;n+ p)

[n+ αψ(λ ,μ ;n+ p)]φ(μ ;n+ p)
|z|n+p+δ , (2.9)

∣∣∣∣∣∣Dδ
z f (z)

∣∣∣−φ(δ ; p) |z|p−δ
∣∣∣� αψ(λ ,μ ; p)φ(μ ; p)φ(δ ;n+ p)

[n+ αψ(λ ,μ ;n+ p)]φ(μ ;n+ p)
|z|n+p−δ (2.10)
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and ∣∣∣∣∣∣D1+δ
z f (z)

∣∣∣− pφ(δ ; p−1) |z|p−δ−1
∣∣∣

� α(n+ p− μ)ψ(λ ,μ ; p)φ(μ ; p)φ(δ ;n+ p−1)
[n+ αψ(λ ,μ ;n+ p)]φ(μ ;n+ p−1)

|z|n+p−δ−1. (2.11)

The results in (2.9), (2.10), and (2.11) are sharp for the function f (z) given by (2.4).

THEOREM 2.4. Let a function f (z) given by (1.1) be in the S C n
λ (μ , p;α). Then,

f (z) is p-valently close-to-convex of order β (0 � β < p; p ∈ N) in |z|< r1, p-valently
starlike of order β (0 � β < p; p ∈ N) in |z| < r2, and p-valently convex of order
β (0 � β < p; p ∈ N) in |z| < r3, where

r1 := r1(n, p,α,β ,λ ,μ) = inf
k�n+p

(
p−β

k
·ϕ(k)

) 1
k−p

, (2.12)

r2 := r2(n, p,α,β ,λ ,μ) = inf
k�n+p

(
p−β
k−β

·ϕ(k)
) 1

k−p

(2.13)

and

r3 := r3(n, p,α,β ,λ ,μ) = inf
k�n+p

(
p(p−β )
k(k−β )

·ϕ(k)
) 1

k−p

, (2.14)

where

ϕ(k) := ϕ(n, p,μ ,β ,α,λ ;k) =
[k− p+ αψ(λ ,μ ;k)]φ(μ ;k)

αψ(λ ,μ ; p)φ(μ ; p)
(2.15)

(k = n+ p,n+ p+1, · · · ; n, p ∈ N).

Each of the results in (2.12)-(2.14) is sharp for the function f (z) given by (2.4).

Proof. Let a function f (z) ∈ S C n
λ (μ , p;α). Then, in order to show that f (z) ∈

An(p), given by (1.1), is p-valently close-to-convex of order β (0 � β < p; p ∈ N), it
is sufficient to show that∣∣∣∣ f ′(z)zp−1 − p

∣∣∣∣� p−β (|z| < r1;0 � β < p; p ∈ N). (2.16)

By using (1.1) in (2.27), and in the process taking into account the coefficient bound in
(2.1), one easily infer that a function f (z), given by (1.1), is p-valently close-to-convex
of order β inside the disc |z| < r1, where r1 is stated with (2.12).

Similarly, by applying the following inequalities∣∣∣∣ z f ′(z)
f (z)

− p

∣∣∣∣� p−β (|z| < r2;0 � β < p; p ∈ N) (2.17)

and ∣∣∣∣
(

1+
z f ′′(z)
f ′(z)

)
− p

∣∣∣∣� p−β (|z| < r3;0 � β < p; p ∈ N), (2.18)
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and proceeding in the same manner as mentioned above, we conclude that a function
f (z), given by (1.1), respectively, is p-valently starlike of order β inside the disc |z| <
r2, and p-valently convex of order β inside the disc |z|< r3, where r2 and r3 are given
by (2.13) and (2.14). �

REMARK 2.1. By selecting the parameters μ and/or λ in all theorems above,
one can be obtained several computational results. Some of them are comparable with
the earlier results generated by Chen et al. in [3].

3. Certain computational results for functions in H n
λ (μ , p,α,κ)

By applying the basic results obtained in Section 2 to the function, which is the so-
lution of the (non-homogenous) Cauchy Euler type equation given in H n

λ (μ , p,α;κ),
we now derive several results. The first result is given by the following theorem.

THEOREM 3.1. Let a function f (z) given by (1.1) be in the H n
λ (μ , p,α;κ).

Then,

|| f (z)|− |z|p| � αψ(λ ,μ ;n+ p)φ(μ ; p)θ (n, p;κ)
[n+ αψ(λ ,μ ;n+ p)]φ(μ ;n+ p)

|z|n+p (3.1)

and ∣∣∣∣∣ f ′(z)∣∣− p |z|p−1
∣∣∣� α(n+ p− μ)ψ(λ ,μ ; p)φ(μ ; p)θ (n, p;κ)

[n+ αψ(λ ,μ ; p)]φ(μ ;n+ p−1)
|z|n+p−1, (3.2)

where

θ (n, p;κ) :=
(1+ κ)(2+ κ)

n+ p+ κ
(3.3)

(κ ∈ R
∗ := R−{−n− p,−n− p−1, · · · : n, p ∈ N}).

The results in (3.1) and (3.2) are sharp for the function f (z) given by

f (z) = zp − αψ(λ ,μ ; p)φ(μ ; p)
[n+ αψ(λ ,μ ;n+ p)]φ(μ ;n+ p)θ (n, p;κ)

zn+p (n, p ∈ N). (3.4)

Proof. Assume that f (z) is given by (1.1). Also, let a function g(z)∈S C n
λ (μ , p;α),

occurring in the non-homogenous Cauchy-Euler differential type equation (1.3) be of
the form:

g(z) = zp −bn+pz
n+p−bn+p+1z

n+p+1 − ·· · (∀k ∈ N; bk � 0). (3.5)

Then, we readily find from (1.3) that

ak =
(1+ κ)(2+ κ)

(k+ κ)(k+ κ +1)
bk (k � n+ p;n, p∈ N), (3.6)

so that

f (z) = zp−
∞

∑
k=n+p

akz
k = zp−

∞

∑
k=n+p

(1+ κ)(2+ κ)
(k+ κ)(k+ κ +1)

bkz
k. (3.7)



SOME COMPUTATIONAL RESULTS FOR p -VALENT FUNCTIONS... 115

The result (3.7) immediately yields that

|| f (z)|− |z|p| � |z|n+p
∞

∑
k=n+p

(1+ κ)(2+ κ)
(k+ κ)(k+ κ +1)

bk (z ∈ U). (3.8)

Next, because of g(z)∈S C n
λ (μ , p;α), therefore, on using the assertion (2.7), we

then get the following inequality:

bk � αψ(λ ,μ ;n+ p)φ(μ ; p)
[n+ αψ(λ ,μ ;n+ p)]φ(μ ;n+ p)

(k � n+ p;n, p∈ N),

which in conjunction with (3.7) and (3.8) yield that

|| f (z)|− |z|p| � αψ(λ ,μ ;n+ p)φ(μ ; p)
[n+ αψ(λ ,μ ;n+ p)]φ(μ ;n+ p)

· |z|n+p
∞

∑
k=n+p

(1+ κ)(2+ κ)
(k+ κ)(k+ κ +1)

(z ∈ U). (3.9)

By also noting the following special result:(
∞

∑
k=n+p

(1+ κ)(2+ κ)
(k+ κ)(k+ κ +1)

)
= θ (n, p;κ), (3.10)

where θ (n, p;κ) is given by (3.3).
The assertion (3.1) of Theorem 3.1 immediately follows from (3.9) and (3.10). The

second assertion (3.2) of Theorem 3.1 can be easily established by similarly applying
(2.8), (3.6), and (3.10). �

THEOREM 3.2. Let a function f (z) given by (1.1) be in the H n
λ (μ , p,α;κ).

Then, f (z) is p-valently close-to-convex of order β (0 � β < p; p ∈ N) in |z| < r4,
p-valently starlike of order β (0 � β < p; p ∈ N) in |z| < r5, and p-valently convex of
order β (0 � β < p; p ∈ N) in |z| < r6, where

r4 := r4(n, p,α,β ,λ ,μ ,κ) = inf
k�n+p

(
p−β

k
· τ(κ) ·ϕ(k)

) 1
k−p

, (3.11)

r5 := r5(n, p,α,β ,λ ,μ ,κ) = inf
k�n+p

(
p−β
k−β

· τ(κ) ·ϕ(k)
) 1

k−p

(3.12)

and

r6 := r6(n, p,α,β ,λ ,μ ,κ) = inf
k�n+p

(
p(p−β )
k(k−β )

· τ(κ) ·ϕ(k)
) 1

k−p

, (3.13)

where ϕ(k) is given by (2.22), and τ(κ) is defined by

τ(κ) :=
(k+ κ)(k+ κ +1)

(1+ κ)(2+ κ)
; k = n+ p,n+ p+1, · · ·;n, p ∈ N;κ ∈ R

∗.
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Each of those results in (3.11)-(3.13) is sharp for the function f (z) given by (3.4).

Proof. Suppose that f (z) ∈ An(p) is given by (1.1), and also let a function g(z) ∈
S C n

λ (μ , p;α), occurring in the non-homogenous differential type equation in (1.3).
Then, it is sufficient to show that∣∣∣∣ f ′(z)zp−1 − p

∣∣∣∣� p−β f or |z| < r4.

Indeed, we have ∣∣∣∣ f ′(z)zp−1 − p

∣∣∣∣� ∞

∑
k=n+p

kak|z|k−1,

and by using the coefficient relation (3.6) between the functions f (z) and g(z), we
arrive at: ∣∣∣∣ f ′(z)zp−1 − p

∣∣∣∣� ∞

∑
k=n+p

(1+ κ)(2+ κ)
(k+ κ)(k+ κ +1)

kbk|z|k−1 � p−β . (3.14)

Since g(z) ∈ S C n
λ (μ , p;α) and in view of (2.1) of Theorem 2.1, we also have that

∞

∑
k=n+p

[k− p+ αψ(λ ,μ ;k)]φ(μ ;k)
αψ(λ ,μ ; p)φ(μ ; p)

ak � 1.

Hence, the inequality (3.14) is true if

k
p−β

· (1+ κ)(2+ κ)
(k+ κ)(k+ κ +1)

· |z|k−p � ϕ(k), (3.15)

where ϕ(k) is given by (2.22).
If we solve (3.15) for |z|, we easily arrive at the desired result in (3.11). Thus, the

proof of (3.11) of Theorem 3.2 is completed. �
For the proofs of (3.12) and (3.13) of Theorem 3.2, by suitable invoking inequal-

ities in (2.17) and (2.18) concerning geometric properties (i.e., p-valently starlikeness
and p-valently convexity) of a function f (z), given by (1.1), belonging to the family
H n

λ (μ , p,α;κ), and making use of (1.1), (3.6), and also the coefficient bound in the
inequality (2.1) of Theorem 2.1, appropriately in the process, the given results in (3.12)
and (3.13) can be easily proved by similar steps as we used in the proof of (3.11) of
Theorem 3.2. We skip further details.

We conclude this paper by remarking that by selecting suitable values of the pa-
rameters n, p, μ , and/or λ in all theorems of both sections, one can infer several
special and computational results concerning functions in the related families. These
obvious considerations are omitted here.
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