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AN OPIAL-TYPE INEQUALITY FOR FRACTIONAL
DERIVATIVES OF TWO FUNCTIONS

M. ANDRIC, J. PECARIC AND 1. PERIC

Abstract. This paper presents improvements of some Opial-type inequalities involving the Riemann-
Liouville, Caputo and Canavati fractional derivatives, and presents some new Opial-type inequal-
ities.

1. Introduction and preliminaries

The paper is motivated by the work of Agarwal, Pang and Alzer [1, 2, 3] and their
study of Opial-type inequalities involving ordinary derivatives. We will present some
fractional versions of known Opial-type inequalities and they will include three main
types of fractional derivatives: Riemann-Liouville, Caputo and Canavati type.

First we survey some facts about fractional derivatives needed in this paper. For
more details see the monographs [9, Chapter 2] and [10, Chapter 1].
By C"[a,b] we denote the space of all functions on [a,b] which have continuous
derivatives up to order n, and AC[a,b] is the space of all absolutely continuous func-
tions on [a,b]. By AC"[a,b] we denote the space of all functions f € C"~![a,b] with
f=Y € ACla, b).

By L, [a,b], 1 < p < e, we denote the space of all Lebesgue measurable functions
f for which | fP| is Lebesgue integrable on [a,b], and by L..[a,b] the set of all functions
measurable and essentially bounded on [a,b]. Clearly, L..[a,b] C Ly[a,b] forall p > 1.

Let x € [a,b], a >0, n=[o]+ 1 ([] is the integral part) and T is the gamma
function I'(a) = [ e "t* 'dt. For f € Ly[a,b] the Riemann-Liouville fractional in-
tegral J*f of order o is defined by

1 X
J%f(x :—/ x—0)*"1f(t)dr. 1.1
16 = gy [ =010 (.
This is actually a definition for the left-sided Riemann-Liouville fractional integral. In
the Remark 2 we give an explanation how to apply our results for the right-sided frac-
tional integrals and derivatives.

For f :[a,b] — R the Riemann-Liouville fractional derivative D* f of order a is de-
fined by

L
I'(n—o) dx"

Mathematics subject classification (2010): 26A33, 26D15.
Keywords and phrases: Riemann-Liouville fractional derivative; Caputo fractional derivative; Cana-
vati fractional derivative; Opial inequality.
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In addition, we stipulate JOf := f =: D°f and J=%f := D*f if o0 > 0.
Next, define n as

n=lal+1, fora &Ny, n=a, foro €Np. (1.2)
For n givenby (1.2) and f € AC"[a,b] the Caputo fractional derivative “D* f of order
o is defined by

D) = gy [ =i = 100 ),

I'(n—

A third fractional derivative, the Canavati fractional derivative ED“ f of order «, is
defined for f € C%[a,b] = {f e C"Va,b]: Jra -1 ¢ ¢! [a,b]} by

d

Z o (n—1) )
& preeyony)

- 1 d [*
D) = a0 V=

I'n—oa
If @ €N then D*f =D%f = pe f = £\ the ordinary o -order derivatives.

Also, we will use composition identities for fractional derivatives, listed here for
the Riemann-Liouville, Caputo and Canavati fractional derivatives, respectively:

THEOREM 1.1. [7, Theorem 4] Let oe > B >0, n=[a] +1, m= [B]+1 and
let f € AC"[a,b] be such that D*f,DP f € Ly[a,b)].

(i) If a—B &N and f is such that D**f(a) =0 for k=1,...,n and DP~*f(a) =
0 for k=1,...,m, then
1

Dﬁf(x):m/:(x—t)a_ﬁ_lD“f(t)dt7 x€la,b]. (1.3

(ii) If o —B=1€N and f is such that D* X f(a) =0 for k=1,...,1, then (1.3)
holds.

COROLLARY 1.2. [7, Corollary 1] Let « > >0, n=[a] + 1, m = [B] + 1.
Composition identity (1.3) is valid if one of the following conditions holds:

(i) feJ*(Lila,b))={f:f=J%,¢ € Li[a,b]}.
(i) J"%f € AC"[a,b] and D*~*f(a) =0 for k=1,...n.

(iiiy D*"'f € ACla,b], D* X f € Cla,b] and D* *f(a) =0 for k= 1,...n.

)
)
)
(iv) f€AC"a,b], D*f,DPf c Li[a,b], o —B ¢ N, D**f(a)=0fork=1,...,n
and DP~*f(a) =0 for k=1,...,m.

(v) f €AC"[a,b], D*f,DBf € Li[a,b], a—B =1€N, D**f(a) =0 for k =
1,....L.

geeey
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(vi) f€AC"[a,b], D*f,DPf € Li[a,b] and f¥)(a) =0 for k=0,...,n—2.

(vii) f€AC"[a,b], D*f,DPf € Ly[a,b], a ¢ N and D*~'f is bounded in a neigh-
borhood of t = a.

THEOREM 1.3.  [6, Theorem 2.1] Let o > B > 0, n and m given by (1.2). Let
f € AC"[a,b] be such that f9)(a) =0 for i=m,m+1,....n—1. Let “D*f,“DPf
Li[a,b]. Then

DP f(x) = ﬁ/:(x—t)“‘ﬁ‘lcﬂ"f(t)dn x € [a,b]. (1.4)

THEOREM 1.4. [5, Theorem 2.1] Let o« > >0, n=[a]+ 1, m=[B] + 1. Let
f € C%a,b] be such that fO(a)=0fori=m—1,m,....n—2. Then fECﬁ[a,b] and
= 1 X _
Cnp _ 7/ _ Na—B-1Cha
DP f(x) = x—t DYf(t)dt, x¢€ |a,b]. 1.5
10 = =gy L =0 £0) @bl (19)
Our goal is to improve an Opial-type inequality involving fractional derivatives

of two functions. For that we will need next Opial-type inequality involving ordinary
derivatives that comes from [3].

TEOREM A. [3, Theorem 1] Let p >0, g > 0, and r > 1 be real numbers with
r>q,and let n and k be integers with 0 <k <n—1. Let ¢ >0 and ® > 0 be measur-
able functions on [a,b]. Further, let f,g € AC"[a,b] be such that ) (a) = g (a) =0
for i =0,...,n— 1, and let integrals [”@(1)|f™ (t)]"dr and [’ @(t)|g™ (1)|"dr exist.
Then we have

/ o) [0 1 0+ O @ 16 0] ar

ptq
r

< ([ o0 [0 +1g"wrar) "

[/uh ()77 [p(1)] 7 [P()] d,] ,

and

_r
K= <1—2 q) P >4 (1.6)
- <

Itis Alzer’s improvement of an Opial-type inequality involving higher-order deriva-
tives of two functions which is due to Agarawal and Pang [2] (their monograph [1] is
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an excellent survey on Opial inequalities). We will give it’s fractional versions includ-
ing the Riemann-Liouville, Caputo and Canavati fractional derivatives. They actually
improve corresponding theorems from [4] (see Remark 1).
Also, we will give a new inequality, a counterpart of Theorem A for the case r < 0. In
the last section, we will present an application of the observed inequalities, a uniqueness
of solution for a system of fractional differential equations.

2. Opial-type inequalities

Motivated by the Theorem A, we present it’s Opial-type inequality which involves
two functions, but with higher-order fractional derivatives. First we give a theorem
involving the Riemann-Liouville fractional derivatives.

THEOREM 2.1. Let oo > B > 0. Suppose that one of the conditions (i) — (vii) in
Corollary 1.2 holds for {a,B,f} and {a,B,8}. Let ¢ >0 and ® > 0 be measurable
functions on |a,x]. Let r > 1, r>¢q>0and p > 0. Let D*f,D%g € L,[a,b]. Then

| ow[IDs) o)+ D8 )17 1D (e)

<o ( [owiperor +psor]ar) " e

where K is defined by (1.6) and

r—=q

_ 2 q s = L plr-) -
My = T(o—B) {2(p+q)} Ua ()= [@(t)] 7 [P1(1)] dt] . (22)

P(t) = / " — 1) ()] . 2.3)

Proof. Let t € [a,x]. Using composition identity (1.3), the triangle inequality and

Holder’s inequality for {-X5,7}, we have

DPg(0)]

< o | = 0% P 9] fo()]* Do ()] de

" T(a=B) Ja

1 ! rle=p=1) L a

< o ([0 oo ae) ([ otprscer dr)

= Fra =g IO 00 24)
where

/<P 7)|D%g(7)|"dT. (2.5)
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Let .
= [omiperyar.
Then F'(t) = @(¢) |D*f(2)|", that is
D% f(1)|? = [F'(1)]
Now (2.4) and (2.7) imply

SR

o) |DPg(0)| (D F(0)| < h(t) [G(0))7 [F'(0)] 7,
where | e
h(t) = W@U) [p()] 7 [P1(2)]
Integrating (2.8) and applying Holder’s inequality for {r 77

[ o DPglo D% )7as

/h [F'(1)]" dr
TS —

| 010?01 Ip%g(o)ta

r—q

<([mona) " ( [[F(z)ﬁG’(r)dr)z.

Now we need simple inequalities

\Iﬁ

Similarly we get

ce(A+B)F <A +B° <de(A+B)®, (A,B>0),

where

{ 1,0<e<, {215,0<£<1,
Ce = £ =

2= e>1, l,e>1.
Therefore, from (2.10), (2.11) and (2.12), with r > g, we conclude

e

[ o[ IDPete)r %01+ 108 )7 1D510)

< (/j[h(z)}r’qdrﬁ [(/j[G( W()d)g

£}, we obtain

+ (/ F() G’(t)dt)

< (/ ok d’) N (/ (G F6)+[F(0)7 60| d’) -

T

59

(2.6)

2.7

(2.8)

(2.9)

(2.10)

2.11)

2.12)

(2.13)
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a r+aq
_ 49 Liy q byt +1
= - dp [G0) + F(2)] P [G(x) +F(x) }
q - 24
< (dg ) ) (G(x) + F(x)] 1" (2.14)

Hence, from (2.13) and (2.14) we conclude

| ow[IDPer 10 o)+ 1D )7 10 (0)7)

=3 (ds _z*5>% (ﬁ)g (/X [h(1)] 7 dt) B (Gx) +F(x)] "

which is equivalent to inequality (2.1) O

The following result deals with the extreme case of the preceding theorem when

=00,

THEOREM 2.2.  Let o> f1, 32 > 0. Suppose that one of the conditions (i) — (vii)
in Corollary 1.2 holds for { o, B, f} and {ct,Bi,g}, i=1,2. Let w > 0 be measurable
function on |a,x]. Let p,q1,q2 > 0 and let D*f,D%g € Lu[a,b]. Then

[ w051 (D] D% p(e) -+ [P (e D g o) (D)

<M [ D20 4 D% 128 1 D% 22 + g2 P)] @as)
where
s (x— a)( —B1)+ax( l32+1Hw|| '
2[C(o = Br+ D] [T = Bo+ 1] [q1 (o = Br) + g2 — o) + 1]

Proof. Let t € [a,x]. Using identity (1.3), the triangle inequality and Holder’s in-
equality, for i = 1,2 we have

t qi
D5 ()17 < ;)] ([ =0 esio)iar)

(2.16)

[T(a—Bi
a Bi—1 o o i
< T ( dr) D i
( ) a—p;

)
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By analogy, for i = 1,2 we get

. . t — a)ti(@—Bi) .
Dﬁl t ’hg(—. DO‘ ‘11.
DRI < o= gy 101
Also,

IDYf()|” < [[D*fIIZ, |D%g(1)P < [|D%g|I%.
Hence

[DPL (1) | [DP2g (1)]92 |D* £ (1) P
(t —a)n(e=B)+a(o—p)

S @B D7 [Pt D=

D fl| 4P || D%gl|22, (2.17)

|DP2 £ (1) | [DPrg(1)[41 [D” g (1)
(t —a)2le—B)tai (=)
<
Tla—Bi+ D" @Bt D"
Form (2.17) and (2.18) follows

D f||Z |[D%g|| 4P (2.18)

| w1051 (D0 1D p(e) 1 -+ [P0 D gle) 2 D)

< 1

S (a— B+ D Mo — B+ 1
[IDe p12 [Dog e + 1D 12 D147

IE /xw(t) (t — ) (@BUFa(a=B) gy

_ il
S Ma—Bi+ D))" T (o—Br+1

1
5 1D A 4 || D% |22 + || D] |22 + | Dg |2+ .

NG /:(t — q)eButa(a=B) 4

O

Now we present a counterpart of the Theorem 2.1 for the case r < 0. Conditions
on r and g allow us to apply reverse Holder’s inequalities, first with parameters {5 €
(0,1),r <0}, then with {;=- € (0,1), 7 < 0}. Apart from using inequalities (2.12),
we have to require similar inequalities for negative power, that is (2.25). Hence, instead
of constant factor K we get L. We sketch a proof for the reader’s convenience.

THEOREM 2.3.  Letr o > 3 > 0. Suppose that one of the conditions (i) — (vii) in
Corollary 1.2 holds for {o,B, f} and {o,,8}. Let ¢ >0 and @ > 0 be measurable
functions on [a,x]. Let r <0, ¢ >0 and p > 0. Let D*f,D%g € L,[a,b], each of
which is of fixed sign a.e. on |a,b], with 1/D*f,1/D%g € L.[a,b] . Then

| 0@ ID s 0 pe)pr -+ D8 1017 1D (e) 1

> s [ o) 05001 +1D%s(0r]ar) @.19



62 M. ANDRIC, J. PECARIC AND I. PERIC

where M, is defined with (2.2) and

2%, p=q,
L= N (2.20)
(1-279)" . p<a.

Proof. Let t € |a,x]. Using identity (1.3), fixed sign of D*g on [a,b] and reverse

Holder’s inequality for {7, 7}, we have

IDPg(r)]

- ﬁ / (6 —1)* P (1)) 7 (7)) [D(7)|d7

> gy (60 o as) (([[oprcorar)

- ﬁ[ﬂ 017 601 (221)

where G is defined by (2.5). Let F be defined with (2.6). Then (2.7) holds, and by
(2.21) and (2.7) follows

P q
o(1)|DPg(t)P D F(1)]* = h(t) [G(1)] " [F'(1)] ", (2.22)
where & is defined by (2.9). Integrating (2.22) and applying reverse Holder’s inequality
for {-*, L1, follows
q’q
X
[ o) DPe)r D% f(e)
’ r—q q
X r r X P r
> ( / h(1)] 7 dt) ( / G()] F’(t)dt) (2.23)
a a
and

[ oD s g n)ar

> (/ [h(z)]r'th) g (/ [F ()] G’(t)dt) . (2.24)

For negative power we use inequality

AS+ B >2"9(A4+B)® (6§ <0;A,B>0), (2.25)

~

since x% is convex function on (0,00) for 6 < 0. Using (2.25) for 4 <0, (2.23) and
(2.24), we conclude

[ 01D g7 107 pte) 1+ 1D £0) 7 10701 a

> </ h(1)] dt) s (/ [GO)" F(1)+ [F(0)7 G ()] ‘”) g
(2.26)
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For ‘;—’ >0 we use (2.12), and with G(a) = F(a) = 0 we get

* r o, 2, q _p P
/a ([G@)]7 F'(6)+ [F(0)]7 G'(1)| de > - (c2—277) G+ F)a™.
(2.27)

Now from (2.26) and (2.27) follows

[ o[ IDPee)7 107 p(e) 1+ 1D £0) 7 107 1)1

> 214 (e -2t (ﬁ) ( [ dr) TG +

The same results, under different assumptions, follows for the Caputo fractional
derivatives. The proofs are similar to the previous ones, using composition identity
(1.4), and are omitted.

THEOREM 2.4. Let o> f3 >0 with n and m given by (1.2). Let f,g € AC"[a,b]
be such that f(a) = g (a) =0 for i=m,....n—1. Let >0 and @ >0 be
measurable functions on |a,x]. Let r > 1, r>q >0 and p > 0. Let “D*f,“D%g €
L.[a,b]. Then

[ o [[ D] [0 o)+ | D0 ro)|” D% t0)|"]

< KM, ( [ oo [[Der@)] + D% dt) o (2.28)

where K and My are defined by (1.6) and (2.2), respectively.

THEOREM 2.5.  Let o > 1,2 > 0 with n, my and my given by (1.2). Let m =
min{m;,my} and f,g € AC"[a,b] be such that f¥)(a) =g')(a) =0 fori=m,...,n—
1. Let w > 0 be measurable function on |a,x). Let p,qy,q> > 0 and let “D* f,“D%g €
Leo[a,b]. Then

Lroleotsof” [o*sof” om0

a

+ 'CDﬁzf )‘ 'CDﬁl

]CD“ 0" }dt
<My [[[ DALY + |2 + D 27 + D 2
(2.29)

where M, is defined by (2.16).

THEOREM 2.6.  Let o> 3 >0 with n and m given by (1.2). Let f,g € AC"[a,b]
be such that f(a) = gD (a) =0 for i=m,....n—1. Let ¢ >0 and w >0 be
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measurable functions on |a,x]. Let r <0, ¢ >01i p>0. Let “D*f,“D%g € L,[a,b],
each of which is of fixed sign a.e. on [a,b] with 1/°D*f,1/°D%g € L,[a,b]. Then

[ oo [lDrsw] 1Dl <[ Do |Det0 ] a

> LM, (/uxgo(t) [|CDaf(t)|r+ |CDag(z)|’} dt> ' , (2.30)

where L and M are defined by (2.20) and (2.2), respectively.

Finally, we give corresponding theorems involving the Canavati fractional deriva-
tives and composition identity (1.5).

THEOREM 2.7. Leto.>f >0, n= [a]+1 and m=[B]+1. Let f,g € C“[a b]
be such that f9(a) =g (a) =0 fori=m—1,....n—2. Let >0 and ® >0 be
measurable functions on [a,x]. Let r > 1, r>¢g >0 and p > 0. Let CDO‘f, CDO‘g €
L,[a,b]. Then

[ o [ D] [ 0|+ | D ro)|” [D%gte)|]ar

Pty
r

< KM, (/:q;(t) HéDo‘f(t)‘r+ )%ag(t)ﬂ dt) , 231)

where K and M, are defined by (1.6) and (2.2), respectively.

THEOREM 2.8. Let 00> 1,52 >0, n=[o]+ 1 and m=min{[B1]+ 1, [B2] +1}.
Let f,g € C%[a,b] be such that f¥)(a) =g (a)=0fori=m—1,....n—2. Let w>0

be measurable function on [a,x]. Let p,q1,q2 > 0 and let CDo‘f CDO‘g € Ls[a,b]. Then
x F q1 | & 2 | 14
[ [P " [DPeo)]” (D% s0)
a

+ [P f(z)’q2 ‘CDﬁlg(t)‘ql ’EDO‘g(t)’p]dt

‘2(111+p
)

= 2qp 2qp
<o |07 A A

HCDOCf

n HCDO‘

+HC D%

‘ (q1+p)}

(2.32)

where M, is defined by (2.16).

THEOREM 2.9. Letoo>f >0, n= [a]+1 and m=[B]+1. Let f,g € C%[a,b]
be such that 9 (a) =g (a) =0 fori=m—1,....n—2. Let ¢ >0 and ® >0 be
measurable functions on [a,x]. Let r <0, ¢ >0 and p > 0. Let Cpef Cplgel, [a,b],
each of which is of fixed sign a.e. on [a,b] with l/CDO‘f, I/CDO‘g € Ly[a,b]. Then

[ o [0 [0+ [P ro)|” [D%et0)[] ar

rtaq
r

>LM1</ax(p()HCD°‘f ‘+‘CD°‘ )Hd:) , (2.33)
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where L and M\ are defined by (2.20) and (2.2), respectively.

REMARK 1. Comparing these theorems with ones from [4] we conclude:

With relaxed restrictions and smaller constant K, defined by (1.6), Theorem 2.1
improves [4, Theorem 7.5], Theorem 2.4 improves [4, Theorem 16.31] and Theorem
2.7 improves [4, Theorem 6.6]. In theorems from [4] the role of constant K has

q

; (2§_I>r
63’2 , P
p

L,

)

q
q.

NNV

6;1/ "> 1, while K < 1. Since lim 6’1/ = oo, for all sufficiently large p we

p—roo

Obviously,

obtain a substantial improvement of inequality.
Further, with relaxed restrictions Theorem 2.2 improves [4, Theorem 7.18], Theo-
rem 2.5 improves [4, Theorem 16.38] and Theorem 2.8 improves [4, Theorem 6.18].
Theorems 2.3, 2.6 and 2.9 are newly presented.

REMARK 2. In this paper we consider left-sided fractional integrals and deriva-
tives. A common notation for the left-sided Riemann-Lioville fractional integral is
JZ_f, defined by (1.1). For the right-sided we have

b
JEf(x) = ﬁ [a=x= pwyar.

A connection between left-sided and right-sided Riemann-Liouville fractional integrals
is given by a simple relation
Q-Ing :J}(LQ» ij +Q»

where Q is the “reflection operator™: (Q@)(x) = @(a+b—x).
For the Riemann-Liouville, Caputo and Canavati fractional derivatives we have analo-
gous relations

0Dz, =Dy Q, 0ODj =Dg,0,
QCD3+ = CDZX—Q» QCDb— = CDngQv
0%, =D 0. 0Dy =D 0.
Using this operator, it’s easy to prove composition identity for the right-sided fractional
derivatives, e.g. for the Riemann-Liouville fractional derivatives

: >/h<f—x>°‘ﬁ1D2‘_f<>dr P f(x),

b

follows
f f=o(enfr) = o(pior) = o (s *nt or)
=P o(pgof) = 1Py = s D s
Now we have all we need for Opial-type inequalities involving right-sided fractional

integral and derivatives, and right-sided versions of our theorems could be analogously
done.
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3. Applications

Opial’s inequality and its several generalizations, extensions and discretizations,
play a fundamental role in establishing the existence and uniqueness of initial and
boundary value problems for ordinary and partial differential equations. As an ex-
ample for fractional calculus, we present a uniqueness of solution for a system of frac-
tional differential equations involving Riemann-Liouville fractional derivatives. With
relax conditions, it actually improve Theorem 7.26 form [4]. We sketch a proof for the
reader’s convenience.

THEOREM 3.1. Let o> f3; >0, i=1,...,r € N. Suppose that one of the condi-
tions (i) — (vii) in Corollary 1.2 holds for {a, Bi, fi} and {o.,Bi, fo}, i=1,...,r. Let
D*f,D* f> € Ly|a,x]. For j=1,2, let

D%f(s) = F; (s ADP AW ADP L9V ), s€ladd, G

where Fj: [a,x] X R" x R" — R are continuous, bounded for s € |a,x], and satisfy the
Lipschitz condition

|F( 85,215 ,Zr,)’h---a}’r) _Fj(s7zll7'"’Z;’yll""7y;)|

)
Z [q1,0,5(9)1zi — 2l + q2,i,5(8) lyi = ¥il ] (3.2)

J=1,2, with q1,(s),q2,,;(s) = 0 bounded on [a,x], 1 <i<r.
Further, assume that

* - - & M2,i xa_ﬁi
o2 (% +ﬁ><r<a—ﬁi>¢a—ﬂi¢za—zﬁi—1><1’ o

)y My =max (||g2, 1l |q1.i2]l) -

M, i =max ([[q1i1l,
Then the system (3.1) has at most one solution on |a,x|.

Proof. Assume there are two pairs of solutions (fi, f2), (ff,f;) to system (3.1).
Set g;=fj—f;,j=1,2. Then

D" *gi(a)=0, k=1,...[a]+1; j=1,2. (3.4)
It holds
D,(s) = F; (s ADP i)}y ADP fo(o) Vi )
= F (s ADP 6 ADPF ()} )
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By (3.2) we have

< 3 [P0 + g2, (DP00)]

Therefore,

97 < X [191,51=1DP1(5)] D78 (5) + 12,1 D ()] D5
=1

Now follows
I:= /ux ((Dagl(s))2+ (Dagz(s))z)ds
- r M; ; X Dﬁi )| D% s Dﬁi | |D% O ds
< St ([ [P0+ D] 107 s )

# 3t ([ %) 10619+ D519 10205 )

i=1 a

r xa—ﬁil
< M <2r<a B~ /2~ 2pi - 1) >

xoBig
+Z (fra B)v/o— Pin/20— 2[31_1) (3.6)
=¢(),

where (3.6) follows by Theorem 2.1 for p=w =1, p=¢g=1 and r =2, while (3.5)
is obtain similarly. We have established that

1< o (x)]1.

If 10 then ¢*(x) > 1, a contradiction by the assumption (3.3) that ¢*(x) < 1.
Therefore I = 0, implying that

(D%g1(s))? + (D%ga(s))> =0, a.e. in [a,x].

That is,
D%g1(s) =0, D%gy(s) =0, a.e. in [a,x].

By (3.4) and Theorem 1.1 (applying (1.3) for § =0), we find g;(s) = g2(s) =0 over
[a,x]. This implies f; = f},j = 1,2, over [a,x], thus proving the uniqueness of the
solution to the initial value problem of this theorem. [J

For more applications, such as upper bounds on D”f; and solutions f; included
in a system of fractional differential equations involving Riemann-Liouville fractional
derivatives see Section 7.4 in [4]. Also, similar applications in fractional differential
equations involving Canavati fractional derivatives can be find in [4, Section 6.4], and
for Caputo fractional derivatives in [4, Section 16.6].
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