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AN OPIAL–TYPE INEQUALITY FOR FRACTIONAL

DERIVATIVES OF TWO FUNCTIONS

M. ANDRIĆ, J. PEČARIĆ AND I. PERIĆ

Abstract. This paper presents improvements of some Opial-type inequalities involving the Riemann-
Liouville, Caputo and Canavati fractional derivatives, and presents some new Opial-type inequal-
ities.

1. Introduction and preliminaries

The paper is motivated by the work of Agarwal, Pang and Alzer [1, 2, 3] and their
study of Opial-type inequalities involving ordinary derivatives. We will present some
fractional versions of known Opial-type inequalities and they will include three main
types of fractional derivatives: Riemann-Liouville, Caputo and Canavati type.

First we survey some facts about fractional derivatives needed in this paper. For
more details see the monographs [9, Chapter 2] and [10, Chapter 1].
By Cn[a,b] we denote the space of all functions on [a,b] which have continuous
derivatives up to order n , and AC[a,b] is the space of all absolutely continuous func-
tions on [a,b] . By ACn[a,b] we denote the space of all functions f ∈Cn−1[a,b] with
f (n−1) ∈ AC[a,b] .

By Lp[a,b] , 1 � p < ∞ , we denote the space of all Lebesgue measurable functions
f for which | f p| is Lebesgue integrable on [a,b] , and by L∞[a,b] the set of all functions
measurable and essentially bounded on [a,b] . Clearly, L∞[a,b]⊂ Lp[a,b] for all p � 1.

Let x ∈ [a,b] , α > 0, n = [α] + 1 ( [·] is the integral part) and Γ is the gamma
function Γ(α) =

∫ ∞
0 e−t tα−1 dt . For f ∈ L1[a,b] the Riemann-Liouville fractional in-

tegral Jα f of order α is defined by

Jα f (x) =
1

Γ(α)

∫ x

a
(x− t)α−1 f (t)dt . (1.1)

This is actually a definition for the left-sided Riemann-Liouville fractional integral. In
the Remark 2 we give an explanation how to apply our results for the right-sided frac-
tional integrals and derivatives.
For f : [a,b] → R the Riemann-Liouville fractional derivative Dα f of order α is de-
fined by

Dα f (x) =
1

Γ(n−α)
dn

dxn

∫ x

a
(x− t)n−α−1 f (t)dt =

dn

dxn Jn−α f (x) .
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In addition, we stipulate J0 f := f =: D0 f and J−α f := Dα f if α > 0.
Next, define n as

n = [α]+1 , for α �∈ N0; n = α , for α ∈ N0 . (1.2)

For n given by (1.2) and f ∈ ACn[a,b] the Caputo fractional derivative CDα f of order
α is defined by

CDα f (x) =
1

Γ(n−α)

∫ x

a
(x− t)n−α−1 f (n)(t)dt = Jn−α f (n)(x).

A third fractional derivative, the Canavati fractional derivative CDα f of order α , is

defined for f ∈Cα [a,b] =
{

f ∈Cn−1[a,b] : Jn−α f (n−1) ∈C1[a,b]
}

by

CDα f (x) =
1

Γ(n−α)
d
dx

∫ x

a
(x− t)n−α−1 f (n−1)(t)dt =

d
dx

Jn−α f (n−1)(x) .

If α ∈ N then Dα f = CDα f = CDα f = f (α) , the ordinary α -order derivatives.

Also, we will use composition identities for fractional derivatives, listed here for
the Riemann-Liouville, Caputo and Canavati fractional derivatives, respectively:

THEOREM 1.1. [7, Theorem 4] Let α > β � 0 , n = [α]+ 1 , m = [β ]+ 1 and
let f ∈ ACn[a,b] be such that Dα f ,Dβ f ∈ L1[a,b] .

(i) If α −β �∈N and f is such that Dα−k f (a) = 0 for k = 1, . . . ,n and Dβ−k f (a) =
0 for k = 1, . . . ,m, then

Dβ f (x) =
1

Γ(α −β )

∫ x

a
(x− t)α−β−1Dα f (t)dt , x ∈ [a,b] . (1.3)

(ii) If α −β = l ∈ N and f is such that Dα−k f (a) = 0 for k = 1, . . . , l , then (1.3)
holds.

COROLLARY 1.2. [7, Corollary 1] Let α > β � 0 , n = [α] + 1 , m = [β ] + 1 .
Composition identity (1.3) is valid if one of the following conditions holds:

(i) f ∈ Jα (L1[a,b]) = { f : f = Jα ϕ ,ϕ ∈ L1[a,b]} .

(ii) Jn−α f ∈ ACn[a,b] and Dα−k f (a) = 0 for k = 1, . . .n.

(iii) Dα−1 f ∈ AC[a,b] , Dα−k f ∈C[a,b] and Dα−k f (a) = 0 for k = 1, . . .n.

(iv) f ∈ ACn[a,b] , Dα f ,Dβ f ∈ L1[a,b] , α −β /∈ N , Dα−k f (a) = 0 for k = 1, . . . ,n
and Dβ−k f (a) = 0 for k = 1, . . . ,m.

(v) f ∈ ACn[a,b] , Dα f ,Dβ f ∈ L1[a,b] , α − β = l ∈ N , Dα−k f (a) = 0 for k =
1, . . . , l .



AN OPIAL-TYPE INEQUALITY FOR FRACTIONAL DERIVATIVES 57

(vi) f ∈ ACn[a,b] , Dα f ,Dβ f ∈ L1[a,b] and f (k)(a) = 0 for k = 0, . . . ,n−2 .

(vii) f ∈ ACn[a,b] , Dα f ,Dβ f ∈ L1[a,b] , α /∈ N and Dα−1 f is bounded in a neigh-
borhood of t = a.

THEOREM 1.3. [6, Theorem 2.1] Let α > β � 0 , n and m given by (1.2) . Let
f ∈ ACn[a,b] be such that f (i)(a) = 0 for i = m,m+ 1, . . . ,n− 1 . Let CDα f ,CDβ f ∈
L1[a,b] . Then

CDβ f (x) =
1

Γ(α −β )

∫ x

a
(x− t)α−β−1CDα f (t)dt , x ∈ [a,b] . (1.4)

THEOREM 1.4. [5, Theorem 2.1] Let α > β > 0 , n = [α]+1 , m = [β ]+1 . Let
f ∈Cα [a,b] be such that f (i)(a) = 0 for i = m−1,m, . . . ,n−2 . Then f ∈Cβ [a,b] and

CDβ f (x) =
1

Γ(α −β )

∫ x

a
(x− t)α−β−1CDα f (t)dt , x ∈ [a,b] . (1.5)

Our goal is to improve an Opial-type inequality involving fractional derivatives
of two functions. For that we will need next Opial-type inequality involving ordinary
derivatives that comes from [3].

TEOREM A. [3, Theorem 1] Let p � 0, q > 0, and r > 1 be real numbers with
r > q , and let n and k be integers with 0 � k � n−1. Let ϕ > 0 and ω � 0 be measur-
able functions on [a,b] . Further, let f ,g ∈ ACn[a,b] be such that f (i)(a) = g(i)(a) = 0
for i = 0, . . . ,n− 1, and let integrals

∫ b
a ϕ(t)| f (n)(t)|r dt and

∫ b
a ϕ(t)|g(n)(t)|r dt exist.

Then we have
∫ b

a
ω(t)

[
|g(k)(t)|p | f (n)(t)|q + | f (k)(t)|p |g(n)(t)|q

]
dt

� M

(∫ b

a
ϕ(t)

[
| f (n)(t)|r + |g(n)(t)|r

]
dt

) p+q
r

,

where

M =
2K

[(n− k−1)!]p

[
q

2(p+q)

] q
r
[∫ b

a
[ω(t)]

r
r−q [ϕ(t)]

q
q−r [P(t)]

p(r−1)
r−q dt

] r−q
r

,

P(t) =
∫ t

a
(t − τ)

r(n−k−1)
r−1 [ϕ(τ)]

1
1−r dτ

and

K =

⎧⎨
⎩
(
1−2−

p
q

) q
r

, p � q ,

2−
p
r , p � q .

(1.6)

It is Alzer’s improvement of an Opial-type inequality involving higher-order deriva-
tives of two functions which is due to Agarawal and Pang [2] (their monograph [1] is
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an excellent survey on Opial inequalities). We will give it’s fractional versions includ-
ing the Riemann-Liouville, Caputo and Canavati fractional derivatives. They actually
improve corresponding theorems from [4] (see Remark 1).
Also, we will give a new inequality, a counterpart of Theorem A for the case r < 0. In
the last section, we will present an application of the observed inequalities, a uniqueness
of solution for a system of fractional differential equations.

2. Opial-type inequalities

Motivated by the Theorem A, we present it’s Opial-type inequality which involves
two functions, but with higher-order fractional derivatives. First we give a theorem
involving the Riemann-Liouville fractional derivatives.

THEOREM 2.1. Let α > β � 0 . Suppose that one of the conditions (i)− (vii) in
Corollary 1.2 holds for {α,β , f} and {α,β ,g} . Let ϕ > 0 and ω � 0 be measurable
functions on [a,x] . Let r > 1 , r > q > 0 and p � 0 . Let Dα f ,Dαg ∈ Lr[a,b] . Then

∫ x

a
ω(t)

[
|Dβ g(t)|p |Dα f (t)|q + |Dβ f (t)|p |Dαg(t)|q

]
dt

� K M1

(∫ x

a
ϕ(t)

[
|Dα f (t)|r + |Dαg(t)|r

]
dt

) p+q
r

, (2.1)

where K is defined by (1.6) and

M1 =
2

[Γ(α −β )]p

[
q

2(p+q)

] q
r
[∫ x

a
[ω(t)]

r
r−q [ϕ(t)]

q
q−r [P1(t)]

p(r−1)
r−q dt

] r−q
r

, (2.2)

P1(t) =
∫ t

a
(t − τ)

r(α−β−1)
r−1 [ϕ(τ)]

1
1−r dτ . (2.3)

Proof. Let t ∈ [a,x] . Using composition identity (1.3) , the triangle inequality and
Hölder’s inequality for { r

r−1 ,r} , we have

|Dβ g(t)|
� 1

Γ(α −β )

∫ t

a
(t − τ)α−β−1 [ϕ(τ)]−

1
r [ϕ(τ)]

1
r |Dαg(τ)|dτ

� 1
Γ(α −β )

(∫ t

a
(t − τ)

r(α−β−1)
r−1 [ϕ(τ)]

1
1−r dτ

) r−1
r
(∫ t

a
ϕ(τ) |Dαg(τ)|r dτ

) 1
r

=
1

Γ(α −β )
[P1(t)]

r−1
r [G(t)]

1
r , (2.4)

where

G(t) =
∫ t

a
ϕ(τ) |Dαg(τ)|r dτ . (2.5)
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Let

F(t) =
∫ t

a
ϕ(τ) |Dα f (τ)|r dτ . (2.6)

Then F ′(t) = ϕ(t) |Dα f (t)|r , that is

|Dα f (t)|q =
[
F ′(t)

] q
r [ϕ(t)]−

q
r . (2.7)

Now (2.4) and (2.7) imply

ω(t) |Dβ g(t)|p |Dα f (t)|q � h(t) [G(t)]
p
r
[
F ′(t)

] q
r , (2.8)

where

h(t) =
1

[Γ(α −β )]p
ω(t) [ϕ(t)]−

q
r [P1(t)]

p(r−1)
r . (2.9)

Integrating (2.8) and applying Hölder’s inequality for { r
r−q , r

q} , we obtain

∫ x

a
ω(t) |Dβ g(t)|p |Dα f (t)|q dt

�
∫ x

a
h(t) [G(t)]

p
r
[
F ′(t)

] q
r dt

�
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r
(∫ x

a
[G(t)]

p
q F ′(t)dt

) q
r

. (2.10)

Similarly we get ∫ x

a
ω(t) |Dβ f (t)|p |Dαg(t)|q dt

�
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r
(∫ x

a
[F(t)]

p
q G′(t)dt

) q
r

. (2.11)

Now we need simple inequalities

cε(A+B)ε � Aε +Bε � dε(A+B)ε , (A,B � 0) , (2.12)

where

cε =
{

1 , 0 � ε � 1 ,
21−ε , ε � 1 ,

, dε =
{

21−ε , 0 � ε � 1 ,
1 , ε � 1 .

Therefore, from (2.10), (2.11) and (2.12), with r > q , we conclude∫ x

a
ω(t)

[
|Dβ g(t)|p |Dα f (t)|q + |Dβ f (t)|p |Dαg(t)|q

]
dt

�
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r
[(∫ x

a
[G(t)]

p
q F ′(t)dt

) q
r

+
(∫ x

a
[F(t)]

p
q G′(t)dt

) q
r
]

�
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r

21− q
r

(∫ x

a

[
[G(t)]

p
q F ′(t)+ [F(t)]

p
q G′(t)

]
dt

) q
r

. (2.13)
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Since G(a) = F(a) = 0, then with (2.12) follows∫ x

a

[
[G(t)]

p
q F ′(t)+ [F(t)]

p
q G′(t)

]
dt

=
∫ x

a

[
[G(t)]

p
q +[F(t)]

p
q

][
G′(t)+F ′(t)

]
dt

−
∫ x

a

[
[G(t)]

p
q G′(t)+ [F(t)]

p
q F ′(t)

]
dt

� d p
q

∫ x

a
[G(t)+F(t)]

p
q [G(t)+F(t)]′ dt− q

p+q

[
G(x)

p
q +1 +F(x)

p
q +1
]

=
q

p+q
d p

q
[G(x)+F(x)]

p
q +1− q

p+q

[
G(x)

p
q +1 +F(x)

p
q +1
]

� q
p+q

(
d p

q
−2−

p
q

)
[G(x)+F(x)]

p
q +1 . (2.14)

Hence, from (2.13) and (2.14) we conclude∫ x

a
ω(t)

[
|Dβ g(t)|p |Dα f (t)|q + |Dβ f (t)|p |Dαg(t)|q

]
dt

� 21− q
r

(
d p

q
−2−

p
q

) q
r
(

q
p+q

) q
r
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r

[G(x)+F(x)]
p+q
r ,

which is equivalent to inequality (2.1) �

The following result deals with the extreme case of the preceding theorem when
r = ∞ .

THEOREM 2.2. Let α > β1,β2 � 0 . Suppose that one of the conditions (i)−(vii)
in Corollary 1.2 holds for {α,βi, f} and {α,βi,g} , i = 1,2 . Let w � 0 be measurable
function on [a,x] . Let p,q1,q2 � 0 and let Dα f ,Dαg ∈ L∞[a,b] . Then∫ x

a
w(t)

[
|Dβ1 f (t)|q1 |Dβ2g(t)|q2 |Dα f (t)|p + |Dβ2 f (t)|q2 |Dβ1g(t)|q1 |Dαg(t)|p

]
dt

� M2

[
‖Dα f‖2(q1+p)

∞ +‖Dα f‖2q2
∞ +‖Dαg‖2q2

∞ +‖Dαg‖2(q1+p)
∞

]
, (2.15)

where

M2 =
(x−a)q1(α−β1)+q2(α−β2)+1 ‖w‖∞

2 [Γ(α −β1 +1)]q1 [Γ(α −β2 +1)]q2 [q1(α −β1)+q2(α −β2)+1]
. (2.16)

Proof. Let t ∈ [a,x] . Using identity (1.3), the triangle inequality and Hölder’s in-
equality, for i = 1,2 we have

|Dβi f (t)|qi � 1
[Γ(α −βi)]

qi

(∫ t

a
(t− τ)α−βi−1 |Dα f (τ)|dτ

)qi

� 1
[Γ(α −βi)]

qi

(∫ t

a
(t− τ)α−βi−1 dτ

)qi

‖Dα f‖qi
∞

=
(t−a)qi(α−βi)

[Γ(α −βi +1)]qi
‖Dα f‖qi

∞ .
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By analogy, for i = 1,2 we get

|Dβig(t)|qi � (t −a)qi(α−βi)

[Γ(α −βi +1)]qi
‖Dαg‖qi

∞ .

Also,
|Dα f (t)|p � ‖Dα f‖p

∞ , |Dαg(t)|p � ‖Dαg‖p
∞ .

Hence

|Dβ1 f (t)|q1 |Dβ2g(t)|q2 |Dα f (t)|p

� (t −a)q1(α−β1)+q2(α−β2)

[Γ(α −β1 +1)]q1 [Γ(α −β2 +1)]q2
‖Dα f‖q1+p

∞ ‖Dαg‖q2
∞ , (2.17)

|Dβ2 f (t)|q2 |Dβ1g(t)|q1 |Dαg(t)|p

� (t −a)q2(α−β2)+q1(α−β1)

[Γ(α −β1 +1)]q1 [Γ(α −β2 +1)]q2
‖Dα f‖q2

∞ ‖Dαg‖q1+p
∞ . (2.18)

Form (2.17) and (2.18) follows∫ x

a
w(t)

[
|Dβ1 f (t)|q1 |Dβ2g(t)|q2 |Dα f (t)|p + |Dβ2 f (t)|q2 |Dβ1g(t)|q1 |Dαg(t)|p

]
dt

� 1
[Γ(α −β1 +1)]q1 [Γ(α −β2 +1)]q2

∫ x

a
w(t)(t −a)q1(α−β1)+q2(α−β2) dt

·
[
‖Dα f‖q1+p

∞ ‖Dαg‖q2
∞ +‖Dα f‖q2

∞ ‖Dαg‖q1+p
∞

]
� ‖w‖∞

[Γ(α −β1 +1)]q1 [Γ(α −β2 +1)]q2

∫ x

a
(t−a)q1(α−β1)+q2(α−β2) dt

·1
2

[
‖Dα f‖2(q1+p)

∞ +‖Dα f‖2q2
∞ +‖Dαg‖2q2

∞ +‖Dαg‖2(q1+p)
∞

]
.

�

Now we present a counterpart of the Theorem 2.1 for the case r < 0. Conditions
on r and q allow us to apply reverse Hölder’s inequalities, first with parameters { r

r−1 ∈
(0,1),r < 0} , then with { r

r−q ∈ (0,1), r
q < 0} . Apart from using inequalities (2.12),

we have to require similar inequalities for negative power, that is (2.25). Hence, instead
of constant factor K we get L . We sketch a proof for the reader’s convenience.

THEOREM 2.3. Let α > β � 0 . Suppose that one of the conditions (i)− (vii) in
Corollary 1.2 holds for {α,β , f} and {α,β ,g} . Let ϕ > 0 and ω � 0 be measurable
functions on [a,x] . Let r < 0 , q > 0 and p � 0 . Let Dα f ,Dαg ∈ Lr[a,b] , each of
which is of fixed sign a.e. on [a,b] , with 1/Dα f ,1/Dαg ∈ Lr[a,b] . Then∫ x

a
ω(t)

[
|Dβ g(t)|p |Dα f (t)|q + |Dβ f (t)|p |Dαg(t)|q

]
dt

� LM1

(∫ x

a
ϕ(t)

[
|Dα f (t)|r + |Dαg(t)|r

]
dt

) p+q
r

, (2.19)
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where M1 is defined with (2.2) and

L =

⎧⎨
⎩

2−
p
r , p � q ,(

1−2−
p
q

) q
r
, p � q .

(2.20)

Proof. Let t ∈ [a,x] . Using identity (1.3), fixed sign of Dαg on [a,b] and reverse
Hölder’s inequality for { r

r−1 ,r} , we have

|Dβ g(t)|
=

1
Γ(α −β )

∫ t

a
(t − τ)α−β−1 [ϕ(τ)]−

1
r [ϕ(τ)]

1
r |Dαg(τ)|dτ

� 1
Γ(α −β )

(∫ t

a
(t − τ)

r(α−β−1)
r−1 [ϕ(τ)]

1
1−r dτ

) r−1
r
(∫ t

a
ϕ(τ) |Dαg(τ)|r dτ

) 1
r

=
1

Γ(α −β )
[P1(t)]

r−1
r [G(t)]

1
r , (2.21)

where G is defined by (2.5) . Let F be defined with (2.6) . Then (2.7) holds, and by
(2.21) and (2.7) follows

ω(t) |Dβ g(t)|p |Dα f (t)|q � h(t) [G(t)]
p
r
[
F ′(t)

] q
r , (2.22)

where h is defined by (2.9) . Integrating (2.22) and applying reverse Hölder’s inequality
for { r

r−q , r
q} , follows∫ x

a
ω(t) |Dβ g(t)|p |Dα f (t)|q dt

�
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r
(∫ x

a
[G(t)]

p
q F ′(t)dt

) q
r

(2.23)

and ∫ x

a
ω(t) |Dβ f (t)|p |Dαg(t)|q dt

�
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r
(∫ x

a
[F(t)]

p
q G′(t)dt

) q
r

. (2.24)

For negative power we use inequality

Aδ +Bδ � 21−δ (A+B)δ , (δ < 0; A,B > 0) , (2.25)

since xδ is convex function on (0,∞) for δ < 0. Using (2.25) for q
r < 0, (2.23) and

(2.24), we conclude∫ x

a
ω(t)

[
|Dβ g(t)|p |Dα f (t)|q + |Dβ f (t)|p |Dαg(t)|q

]
dt

�
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r

21− q
r

(∫ x

a

[
[G(t)]

p
q F ′(t)+ [F(t)]

p
q G′(t)

]
dt

) q
r

.

(2.26)
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For p
q > 0 we use (2.12), and with G(a) = F(a) = 0 we get

∫ x

a

[
[G(t)]

p
q F ′(t)+ [F(t)]

p
q G′(t)

]
dt � q

p+q

(
c p

q
−2−

p
q

)
[G(x)+F(x)]

p
q +1 .

(2.27)

Now from (2.26) and (2.27) follows∫ x

a
ω(t)

[
|Dβ g(t)|p |Dα f (t)|q + |Dβ f (t)|p |Dαg(t)|q

]
dt

� 21− q
r

(
c p

q
−2−

p
q

) q
r
(

q
p+q

) q
r
(∫ x

a
[h(t)]

r
r−q dt

) r−q
r

[G(x)+F(x)]
p+q
r .

�

The same results, under different assumptions, follows for the Caputo fractional
derivatives. The proofs are similar to the previous ones, using composition identity
(1.4), and are omitted.

THEOREM 2.4. Let α > β � 0 with n and m given by (1.2) . Let f ,g∈ACn[a,b]
be such that f (i)(a) = g(i)(a) = 0 for i = m, . . . ,n− 1 . Let ϕ > 0 and ω � 0 be
measurable functions on [a,x] . Let r > 1 , r > q > 0 and p � 0 . Let CDα f ,CDαg ∈
Lr[a,b] . Then

∫ x

a
ω(t)

[∣∣∣CDβ g(t)
∣∣∣p ∣∣CDα f (t)

∣∣q +
∣∣∣CDβ f (t)

∣∣∣p ∣∣CDαg(t)
∣∣q]dt

� K M1

(∫ x

a
ϕ(t)

[∣∣CDα f (t)
∣∣r +

∣∣CDαg(t)
∣∣r]dt

) p+q
r

, (2.28)

where K and M1 are defined by (1.6) and (2.2) , respectively.

THEOREM 2.5. Let α > β1,β2 � 0 with n, m1 and m2 given by (1.2) . Let m =
min{m1,m2} and f ,g ∈ ACn[a,b] be such that f (i)(a) = g(i)(a) = 0 for i = m, . . . ,n−
1 . Let w � 0 be measurable function on [a,x] . Let p,q1,q2 � 0 and let CDα f ,CDαg ∈
L∞[a,b] . Then

∫ x

a
w(t)

[∣∣∣CDβ1 f (t)
∣∣∣q1
∣∣∣CDβ2g(t)

∣∣∣q2 ∣∣CDα f (t)
∣∣p

+
∣∣∣CDβ2 f (t)

∣∣∣q2
∣∣∣CDβ1g(t)

∣∣∣q1 ∣∣CDαg(t)
∣∣p ]dt

� M2

[∥∥CDα f
∥∥2(q1+p)

∞ +
∥∥CDα f

∥∥2q2

∞ +
∥∥CDαg

∥∥2q2

∞ +
∥∥CDαg

∥∥2(q1+p)
∞

]
,

(2.29)

where M2 is defined by (2.16) .

THEOREM 2.6. Let α > β � 0 with n and m given by (1.2) . Let f ,g∈ACn[a,b]
be such that f (i)(a) = g(i)(a) = 0 for i = m, . . . ,n− 1 . Let ϕ > 0 and ω � 0 be
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measurable functions on [a,x] . Let r < 0 , q > 0 i p � 0 . Let CDα f ,CDαg ∈ Lr[a,b] ,
each of which is of fixed sign a.e. on [a,b] with 1/CDα f ,1/CDαg ∈ Lr[a,b] . Then∫ x

a
ω(t)

[∣∣∣CDβ g(t)
∣∣∣p ∣∣CDα f (t)

∣∣q +
∣∣∣CDβ f (t)

∣∣∣p ∣∣CDαg(t)
∣∣q]dt

� LM1

(∫ x

a
ϕ(t)

[∣∣CDα f (t)
∣∣r +

∣∣CDαg(t)
∣∣r]dt

) p+q
r

, (2.30)

where L and M1 are defined by (2.20) and (2.2) , respectively.

Finally, we give corresponding theorems involving the Canavati fractional deriva-
tives and composition identity (1.5).

THEOREM 2.7. Let α > β � 0 , n = [α]+1 and m = [β ]+1 . Let f ,g∈Cα [a,b]
be such that f (i)(a) = g(i)(a) = 0 for i = m− 1, . . . ,n− 2 . Let ϕ > 0 and ω � 0 be

measurable functions on [a,x] . Let r > 1 , r > q > 0 and p � 0 . Let CDα f ,CDαg ∈
Lr[a,b] . Then ∫ x

a
ω(t)

[∣∣∣CDβ g(t)
∣∣∣p ∣∣∣CDα f (t)

∣∣∣q +
∣∣∣CDβ f (t)

∣∣∣p ∣∣∣CDαg(t)
∣∣∣q]dt

� K M1

(∫ x

a
ϕ(t)

[∣∣∣CDα f (t)
∣∣∣r +

∣∣∣CDαg(t)
∣∣∣r]dt

) p+q
r

, (2.31)

where K and M1 are defined by (1.6) and (2.2) , respectively.

THEOREM 2.8. Let α > β1,β2 � 0 , n = [α]+1 and m = min{[β1]+1, [β2]+1} .
Let f ,g∈Cα [a,b] be such that f (i)(a) = g(i)(a) = 0 for i = m−1, . . . ,n−2 . Let w � 0

be measurable function on [a,x] . Let p,q1,q2 � 0 and let CDα f ,CDαg∈ L∞[a,b] . Then∫ x

a
w(t)

[∣∣∣CDβ1 f (t)
∣∣∣q1
∣∣∣CDβ2g(t)

∣∣∣q2
∣∣∣CDα f (t)

∣∣∣p
+
∣∣∣CDβ2 f (t)

∣∣∣q2
∣∣∣CDβ1g(t)

∣∣∣q1
∣∣∣CDαg(t)

∣∣∣p ]dt

� M2

[∥∥∥CDα f
∥∥∥2(q1+p)

∞
+
∥∥∥CDα f

∥∥∥2q2

∞
+
∥∥∥CDαg

∥∥∥2q2

∞
+
∥∥∥CDαg

∥∥∥2(q1+p)

∞

]
,

(2.32)

where M2 is defined by (2.16) .

THEOREM 2.9. Let α > β � 0 , n = [α]+1 and m = [β ]+1 . Let f ,g∈Cα [a,b]
be such that f (i)(a) = g(i)(a) = 0 for i = m− 1, . . . ,n− 2 . Let ϕ > 0 and ω � 0 be

measurable functions on [a,x] . Let r < 0 , q > 0 and p � 0 . Let CDα f ,CDαg∈ Lr[a,b] ,
each of which is of fixed sign a.e. on [a,b] with 1/CDα f ,1/CDαg ∈ Lr[a,b] . Then∫ x

a
ω(t)

[∣∣∣CDβ g(t)
∣∣∣p ∣∣∣CDα f (t)

∣∣∣q +
∣∣∣CDβ f (t)

∣∣∣p ∣∣∣CDαg(t)
∣∣∣q]dt

� LM1

(∫ x

a
ϕ(t)

[∣∣∣CDα f (t)
∣∣∣r +

∣∣∣CDαg(t)
∣∣∣r]dt

) p+q
r

, (2.33)
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where L and M1 are defined by (2.20) and (2.2) , respectively.

REMARK 1. Comparing these theorems with ones from [4] we conclude:
With relaxed restrictions and smaller constant K , defined by (1.6) , Theorem 2.1

improves [4, Theorem 7.5], Theorem 2.4 improves [4, Theorem 16.31] and Theorem
2.7 improves [4, Theorem 6.6]. In theorems from [4] the role of constant K has

δ
q
r

3 =

{(
2

p
q −1

) q
r

, p � q ,

1 , p � q .

Obviously, δ q/r
3 � 1, while K � 1. Since lim

p→∞
δ q/r

3 = ∞ , for all sufficiently large p we

obtain a substantial improvement of inequality.
Further, with relaxed restrictions Theorem 2.2 improves [4, Theorem 7.18], Theo-

rem 2.5 improves [4, Theorem 16.38] and Theorem 2.8 improves [4, Theorem 6.18].
Theorems 2.3, 2.6 and 2.9 are newly presented.

REMARK 2. In this paper we consider left-sided fractional integrals and deriva-
tives. A common notation for the left-sided Riemann-Lioville fractional integral is
Jα
a+ f , defined by (1.1) . For the right-sided we have

Jα
b− f (x) =

1
Γ(α)

∫ b

x
(t− x)α−1 f (t)dt .

A connection between left-sided and right-sided Riemann-Liouville fractional integrals
is given by a simple relation

QJα
a+ = Jα

b−Q , QJα
b− = Jα

a+Q ,

where Q is the ”reflection operator”: (Qϕ)(x) = ϕ(a+b− x) .
For the Riemann-Liouville, Caputo and Canavati fractional derivatives we have analo-
gous relations

QDα
a+ = Dα

b−Q , QDα
b− = Dα

a+Q ,

QCDα
a+ = CDα

b−Q , QCDα
b− = CDα

a+Q ,

QCDα
a+ = CDα

b−Q, QCDα
b− = CDα

a+Q .

Using this operator, it’s easy to prove composition identity for the right-sided fractional
derivatives, e.g. for the Riemann-Liouville fractional derivatives

Dβ
b− f (x) =

1
Γ(α −β )

∫ b

x
(t− x)α−β−1Dα

b− f (t)dt = Jα−β
b− Dα

b− f (x) ,

follows

Dβ
b− f = Q

(
QDβ

b− f
)

= Q
(
Dβ

a+Qf
)

= Q
(
Jα−β
a+ Dα

a+Qf
)

= Jα−β
b− Q

(
Dα

a+Qf
)

= Jα−β
b− Dα

b−Q(Qf ) = Jα−β
b− Dα

b− f .

Now we have all we need for Opial-type inequalities involving right-sided fractional
integral and derivatives, and right-sided versions of our theorems could be analogously
done.
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3. Applications

Opial’s inequality and its several generalizations, extensions and discretizations,
play a fundamental role in establishing the existence and uniqueness of initial and
boundary value problems for ordinary and partial differential equations. As an ex-
ample for fractional calculus, we present a uniqueness of solution for a system of frac-
tional differential equations involving Riemann-Liouville fractional derivatives. With
relax conditions, it actually improve Theorem 7.26 form [4]. We sketch a proof for the
reader’s convenience.

THEOREM 3.1. Let α > βi � 0 , i = 1, . . . ,r ∈ N . Suppose that one of the condi-
tions (i)− (vii) in Corollary 1.2 holds for {α,βi, f1} and {α,βi, f2} , i = 1, . . . ,r . Let
Dα f1,Dα f2 ∈ L2[a,x] . For j = 1,2 , let

Dα f j(s) = Fj

(
s,{Dβi f1(s)}r

i=1,{Dβi f2(s)}r
i=1

)
, s ∈ [a,x], (3.1)

where Fj : [a,x]×R
r ×R

r → R are continuous, bounded for s ∈ [a,x] , and satisfy the
Lipschitz condition ∣∣Fj(s,z1, . . . ,zr,y1, . . . ,yr)−Fj(s,z′1, . . . ,z

′
r,y

′
1, . . . ,y

′
r)
∣∣

�
r

∑
i=1

[
q1,i, j(s)|zi − z′i|+q2,i, j(s)|yi − y′i|

]
, (3.2)

j = 1,2 , with q1,i, j(s),q2,i, j(s) � 0 bounded on [a,x] , 1 � i � r .
Further, assume that

φ∗(x) :=
r

∑
i=1

(
M1,i

2
+

M2,i√
2

)(
xα−βi

Γ(α −βi)
√

α −βi
√

2α −2βi−1

)
< 1 , (3.3)

where

M1,i = max(‖q1,i,1‖∞,‖q2,i,2‖∞) , M2,i = max(‖q2,i,1‖∞,‖q1,i,2‖∞) .

Then the system (3.1) has at most one solution on [a,x] .

Proof. Assume there are two pairs of solutions ( f1, f2) , ( f ∗1 , f ∗2 ) to system (3.1) .
Set g j = f j − f ∗j , j = 1,2. Then

Dα−kg j(a) = 0 , k = 1, . . . [α]+1; j = 1,2. (3.4)

It holds

Dαg j(s) = Fj

(
s,{Dβi f1(s)}r

i=1,{Dβi f2(s)}r
i=1

)
− Fj

(
s,{Dβi f ∗1 (s)}r

i=1,{Dβi f ∗2 (s)}r
i=1

)
.
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By (3.2) we have

|Dαg j(s)| �
r

∑
i=1

[
q1,i, j(s)|Dβi g1(s)|+q2,i, j(s)|Dβig2(s)|

]
.

Therefore,

(Dαg j(s))2 �
r

∑
i=1

[
‖q1,i, j‖∞|Dβig1(s)| |Dαg j(s)|+‖q2,i, j‖∞|Dβig2(s)| |Dαg j(s)|

]
.

Now follows

I :=
∫ x

a

(
(Dαg1(s))2 +(Dαg2(s))2)ds

�
r

∑
i=1

M1,i

(∫ x

a

[
|Dβig1(s)| |Dαg1(s)|+ |Dβig2(s)| |Dαg2(s)|

]
ds

)

+
r

∑
i=1

M2,i

(∫ x

a

[
|Dβig2(s)| |Dαg1(s)|+ |Dβig1(s)| |Dαg2(s)|

)
ds

)

�
r

∑
i=1

M1,i

(
xα−βi I

2Γ(α −βi)
√

α −βi
√

2α −2βi−1

)
(3.5)

+
r

∑
i=1

M2,i

(
xα−βi I√

2Γ(α −βi)
√

α −βi
√

2α −2βi−1

)
(3.6)

= φ∗(x) I ,

where (3.6) follows by Theorem 2.1 for ϕ = ω ≡ 1, p = q = 1 and r = 2, while (3.5)
is obtain similarly. We have established that

I � φ∗(x) I .

If I �= 0 then φ∗(x) � 1, a contradiction by the assumption (3.3) that φ∗(x) < 1.
Therefore I = 0, implying that

(Dαg1(s))2 +(Dαg2(s))2 = 0 , a.e. in [a,x] .

That is,
Dαg1(s) = 0 , Dαg2(s) = 0 , a.e. in [a,x] .

By (3.4) and Theorem 1.1 (applying (1.3) for β = 0), we find g1(s) ≡ g2(s) ≡ 0 over
[a,x] . This implies f j = f ∗j , j = 1,2, over [a,x] , thus proving the uniqueness of the
solution to the initial value problem of this theorem. �

For more applications, such as upper bounds on Dα f j and solutions f j included
in a system of fractional differential equations involving Riemann-Liouville fractional
derivatives see Section 7.4 in [4]. Also, similar applications in fractional differential
equations involving Canavati fractional derivatives can be find in [4, Section 6.4], and
for Caputo fractional derivatives in [4, Section 16.6].
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[6] M. ANDRIĆ, J. PEČARIĆ AND I. PERIĆ, Composition identities for the Caputo fractional derivatives

and applications to Opial-type inequalities, Math. Inequal. Appl., (2013), to appear.
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