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WELL–POSEDNESS AND REGULARITY OF THE CAUCHY PROBLEM

FOR NONLINEAR FRACTIONAL IN TIME AND SPACE EQUATIONS

V. N. KOLOKOLTSOV1 AND M. A. VERETENNIKOVA2

Abstract. The purpose is to study the Cauchy problem for non-linear in time and space pseudo-
differential equations. These include the fractional in time versions of Hamilton-Jacobi-Bellman
(HJB) equations governing the limits of controlled scaled Continuous Time Random Walks
(CTRWs). As a preliminary step which is of independent interest we analyse the corresponding
linear equation proving its well-posedness and smoothing properties.

Introduction

The purpose of this paper is to study well-posedness of the Cauchy problem for
the fractional in time and space pseudo-differential equation

D∗β
0,t f (t,y) = −a(−Δ)α/2 f (t,y)+H(t,y,∇ f (t,y)) (0.1)

where y∈Rd , t � 0, β ∈ (0,1),α ∈ (1,2] , H(t,y, p) is a Lipschitz function in all of its
variables, and f (0,y) = f0(y) is known and bounded, and a is a constant, a > 0. Here
∇ denotes the gradient with respect to the spatial variable. For a function dependent
on several spatial variables, say x,y , we may occasionally indicate the variable with
respect to which the gradient is taken, by a subscript, as in ∇x . The extension of our
results for (0.1) to the case where H = H(t,y, f (t,y),∇ f (t,y)) is straightforward and

we omit it here. We denote by D∗β
0,t the Caputo derivative:

D∗β
0,t f (t,y) =

1
Γ(1−β )

∫ t

0

d f (s,y)
ds

(t− s)−β ds, (0.2)

whilst −(−Δ)α/2 is the fractional Laplacian

−(−Δ)α/2 f (t,y) = p.v. Cd,α

∫
Rd

f (t,y)− f (t,x)
|y− x|d+α dx, (0.3)

where “p.v.” stands for “principal value” and Cd,α is a normalizing constant.
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As a preliminary analysis we establish the regularity properties of the linear equa-
tions of the form

D∗β
0,t f (t,y) = −a(−Δ)α/2 f (t,y)+h(t,y), (0.4)

with a given function h , an initial condition f (0,y) = f0(y) , β ∈ (0,1) , α ∈ (1,2] ,
a constant a > 0 and −(−Δ)α/2 as defined in (0.3). This allows one to reduce the
analysis of (0.1) to a fixed point problem. Section 3 is devoted to the linear problem
(0.4) and in section 4 we formulate and prove our main results for equation (0.1).

As will be shown in [6] the results of this paper are needed for fully justifying
the heuristic derivation of the fractional HJB equation for the limit of controlled scaled
Continuous Time Random Walks (CTRWs) in [5]. Among other researchers who stud-
ied solutions to fractional differential equations (FDEs) are [9], [3], [10], [11], [13],
[1], [12], [16], [21], [31]. More results and reviews can be found in references therein.
FDEs appear for example in modelling processes with memory or with a random time
change, see [28], [27], [30], [29], [4], [5].

Several authors solve FDEs using Laplace transforms in time, see [11], [21] and
[13] for example.

The book [1] covers analysis for Caputo time-fractional differential equations with
the parameter β > 0, for example

D∗β
0,t y(x) = −μy(x)+q(x), (0.5)

with y(0) = y(0)
0 , Dy(0) = y(1)

0 , β ∈ (1,2) , μ > 0.
In [10] the theory for FDEs in Lp spaces is developed. Well-posedness of (0.4) in

Lp may be deduced from there.
In [9] the authors consider classical solutions for fractional Cauchy problems in

bounded domains D ⊂ Rd with Dirichlet boundary conditions.
In [17] one may find the analysis for the non-local Cauchy problem in a Ba-

nach space, where instead of −(−Δ)α/2 there is a general infinitesimal generator of
a strongly continuous semigroup of bounded linear operators. The authors present con-
ditions that should be satisfied to ensure existence of mild forms of the FDE.

The paper [18] establishes asymptotic estimates of solutions to the following frac-
tional equation and its similar versions:

D∗α
0,t u(x,t) = a2 ∂ 2u(x,t)

∂x2 , (0.6)

for t > 0, x ∈ R , α ∈ (0,1) , u(x,0) = φ(x) , lim|x|→+∞ u(x,t) = 0, however the case
of the fractional Laplacian is not included and there is no h(x,t) term on the right hand
side (RHS).

For solvability of linear FDEs in Banach spaces one may see [22], where

D∗α
0,t x(t) = Ax(t), for m−1 < α � m ∈ N, (0.7)

and dk

dtk
x(t)|t=0 = ξk , for k = 0, . . . ,m−1. The authors give sufficient conditions under

which the set of initial data ξk for k = 0, . . . ,m− 1 provides a solution to (0.7) of
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the form ∑m−1
k=0 tkEα ,k+1(Atα)ξk . In particular, these conditions depend on Roumieu,

Gevrey and Beurling spaces related to the operator A .
In [16] there is a construction and investigation of a fundamental solution for the

Cauchy problem with a regularised fractional derivative Dα
0,t,reg , and α ∈ (0,1) defined

by

Dα
0,t,regu(t,x) =

1
Γ(1−α)

[
∂
∂ t

∫ t

0
(t− τ)−αu(τ,x)dτ − t−αu(0,x)

]
. (0.8)

Note that

Dα
0,tu(t,x) =

1
Γ(1−α)

∂
∂ t

∫ t

0
(t− τ)−αu(τ,x)dτ (0.9)

is the definition of the Riemann-Liouville fractional derivative. Since D∗α
0,t f (t,x) =

Dα
0,t f (t,x)− t−α

Γ(1−α) f (0,x) , the regularised derivative in (0.8) is in fact identical to our
definition of the Caputo derivative in (0.2). The problem studied there is

Dα
0,t,regu(t,x)−Bu(t,x) = f (t,x), (0.10)

t ∈ (0,T ],x ∈ Rn , where

B =
n

∑
i, j=1

ai j(x)
∂ 2

∂xi∂x j
+

n

∑
j=1

b j(x)
∂

∂x j
+ c(x) (0.11)

with bounded real-valued coefficients.
Our analysis goes beyond to include B = −a(−Δ)α/2 , with a > 0. Theorems 3,

6 and 7 concerning the case α = 2 are obtainable from the results in [16] by slightly
different arguments.

Denote a bounded domain by D . Taking α ∈ (0,2) , β ∈ (0,1) the paper [25]
develops strong solutions to the equation

D∗β
0,t u(t,x) = Δα/2

x u(t,x), (0.12)

for x ∈ D , t > 0, u(0,x) = f (x) for x ∈ D and u(t,x) = 0 for x ∈ Dc , t > 0.
Our approach to the non-linear FDE seems to be different and includes the frac-

tional Laplacian −(−Δ)α/2 instead of the standard one Δy . We extend this to the
scenario with the RHS term including H(t,y,∇ f (t,y)) . We concentrate on the case

with only one fractional time derivative D∗β
0,t .

1. The mild form for the linear fractional dynamics

Our analysis of equation (0.4) is based on the Fourier transform in space, where
for a function g(y) its Fourier transform will be defined in the following way

ĝ(p) =
∫

Rd
e−ipyg(y)dy. (1.1)
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Applying the Fourier transform in y to (0.4) yields

D∗β
0,t f̂ (t, p) = −a|p|α f̂ (t, p)+ ĥ(t, p). (1.2)

This is a standard linear equation with the Caputo fractional derivative. For con-
tinuous h its solution is given by

f̂ (t, p) = f̂0(p)Eβ ,1(−a|p|αtβ )

+
∫ t

0
(t− s)β−1Eβ ,β (−a(t− s)β |p|α))ĥ(s, p)ds, (1.3)

where Eβ ,1 and Eβ ,β are Mittag-Leffler functions, see formulas (7.3)− (7.4) in [1].
Let us recall that the Mittag-Leffler functions are defined for Re(β )> 0, and γ,z∈

C :

Eβ ,γ(z) =
∞

∑
k=1

zk

Γ(βk+ γ)
. (1.4)

We will use the following connection between Eβ ,β and Eβ ,1 :

xβ−1Eβ ,β (−a|p|αxβ ) = − 1
a|p|α

d
dx

Eβ ,1(−a|p|αxβ ). (1.5)

To prove (1.5) one may use the representation of Eβ ,1(−a|p|αxβ ) in (1.4) and differ-
entiate with respect to x term by term. Now we present two convenient notations for
further analysis. Let us denote

Sβ ,1(t,y) =
1

(2π)d

∫
Rd

eipyEβ ,1(−a|p|αtβ )dp (1.6)

and

Gβ (t,y) =
tβ−1

(2π)d

∫
Rd

eipyEβ ,β (−a|p|αtβ )dp. (1.7)

Using (1.5) we can re-write (1.7) as

Gβ (t,y) = − 1
(2π)d

∫
Rd

eipy 1
a|p|α

d
dt

Eβ ,1(−a|p|αtβ )dp. (1.8)

Applying the inverse Fourier transform to (1.3) we obtain:

f (t,y) =
∫

Rd
Sβ ,1(t,y− x) f0(x)dx

+
∫ t

0

∫
Rd

Gβ (t− s,y− x)h(s,x)dxds. (1.9)

It is natural to call this integral equation the mild form of the fractional linear
equation (0.4). In particular we see that the function Sβ ,1(t,y− y0) is the solution of
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equation (0.4) with f0(y) = δ (y− y0) and h(t,y) = 0. On the other hand the function
Gβ (t − t0,y− y0) is the solution of (0.4) with f0(y) = 0 and h(t,y) = δ (t − t0,y− y0) .
Thus the functions Sβ ,1 and Gβ may be called Green functions of the corresponding
Cauchy problems. Notice the crucial difference with the usual evolution corresponding
to β = 1 where Gβ and Sβ ,1 coincide.

In order to clarify the properties of f in (1.9) we are now going to carefully analyse
the asymptotic properties of the integral kernels Sβ ,1(t,y) and Gβ (t,y) .

2. Regularity properties for Sβ ,1 and Gβ

For d � 1 let us define the symmetric stable density g in Rd as

g(y;α,σ ,γ = 0) =
1

(2π)d

∫
Rd

exp{−ipy−aσ |p|α}dp, (2.1)

where α is the stability parameter, σ is the scaling parameter and γ is the skewness
parameter which is γ = 0 for symmetric stable densities. In d = 1 and α �= 1 we define
the fully skewed density with γ = 1 and without scaling:

w(x;α,1) =
1
2π

Re
∫ ∞

−∞
exp

{
−ipx−|p|α exp

{
−i

π
2

K(α)
}}

dp, (2.2)

where K(α) = α −1+ sign(1−α) . The function w(x;α,1) is infinitely differentiable
and vanishes identically for x < 0, see [8], theorem C.3 and §2.2, equation (2.2.1a).

The starting point of the analysis of Sβ ,1,Gβ is the following representation of
the Mittag-Leffler function due to [8], see chapter 2.10, Theorem 2.10.2, equations
(2.10.8−2.10.9) . For β ∈ (0,1)

Eβ ,1(−aλ ) =
1
β

∫ ∞

0
exp(−aλx)x−1−1/βw(x−1/β ,β ,1)dx. (2.3)

Substitute λ = |p|α tβ :

Eβ ,1(−a|p|αtβ ) =
1
β

∫ ∞

0
exp(−a|p|αtβ x)x−1−1/β w(x−1/β ,β ,1)dx. (2.4)

So then

tβ−1Eβ ,β (−a|p|αtβ ) =
−1

a|p|α
d
dt

Eβ ,1(−a|p|αtβ )

= tβ−1
∫ ∞

0
x−1/β exp(−a|p|αtβ x)w(x−1/β ,β ,1)dx, (2.5)
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implying

Gβ (t,y) =
1

(2π)d

∫
Rd

eipyEβ ,β (−a|p|αtβ )tβ−1dp

=
tβ−1

(2π)d

∫ ∞

0

∫
Rd

eipy exp{−a|p|αtβ x}x−1/β w(x−1/β ,β ,1)dpdx

= tβ−1
∫ ∞

0
x−1/β w(x−1/β ,β ,1)g(−y,α,tβ x)dx, (2.6)

where g is as in (2.1) and w is as in (2.2).
Throughout this paper we shall denote by C various constants that may be different

from formula to formula and line to line.

THEOREM 1. For Gβ defined in (1.7), in the case β ∈ (0,1) and α ∈ (1,2)

∫
Rd

|Gβ (t,y)|dy � Ctβ−1, (2.7)

where C > 0 is a constant.

Proof. Let us split the integral representing Gβ ,1(t,y) in the sum of two, so that

Gβ (t,y) = IA + IB, (2.8)

where

IA =
tβ−1

(2π)d

∫ ∞

|y|α t−β

∫
Rd

eipye−a|p|α tβ xx−1/βw(x−1/β ,β ,1)dpdx

= tβ−1
∫ ∞

|y|α t−β
x−1/β w(x−1/β ,β ,1)g(−y,α,tβ x)dx (2.9)

and

IB =
tβ−1

(2π)d

∫ |y|α t−β

0

∫
Rd

eipye−a|p|αtβ xx−1/β w(x−1/β ,β ,1)dpdx

tβ−1
∫ |y|α t−β

0
x−1/β w(x−1/β ,β ,1)g(−y,α,tβ x)dx. (2.10)

To estimate |IA| and |IB| , let us examine cases |y| > tβ/α and |y|� tβ/α and start
with |y| > tβ/α . Note that the asymptotic expansions for g(y,α,σ) and g(−y,α,σ) ,
namely, (5.2) and (5.6) appearing in the Appendix, are the same, by inspection. Since
x > |y|α t−β in IA we may use the asymptotic for |y|/x1/αtβ/α → 0, see (5.2). We also
use that for x→∞ , x−1/β → 0, so for x→∞ we have w(x−1/β ,β ,1)∼C , where C � 0
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is a constant. Thus we have

|IA| �
∣∣∣∣∣
∫ ∞

|y|α t−β
x−1/β−d/αw(x−1/β ,β ,1)A0t

β−1−dβ/αdx

∣∣∣∣∣
� Ctβ−1−dβ/α|A0| (|y|

α t−β )1−1/β−d/α

|1−1/β −d/α|
� Ctβ−1−dβ/α |A0|

|1−1/β −d/α|(|y|
α t−β )1−1/β−d/α

� Ctβ−1+1−β |y|α−α/β−d. (2.11)

Now, let us study IB in the case |y|> tβ/α . Here we use the asymptotic expansion
for |y|/x1/αtβ/α → ∞ as it appears in (5.6) in the Appendix and take the first term only.
Here we use the change of variables z = x−1/β .

|IB| �
∣∣∣∣∣A1t

β−1
∫ |y|α t−β

0
x−1/βw(x−1/β ,β ,1)|y|−d−αtβ xdx

∣∣∣∣∣
� Ct2β−1|y|−d−α

∫ ∞

|y|−α/β t
z−2β w(z,β ,1)dz. (2.12)

We split this integral into two parts: z ∈ [1,∞) and z ∈ (|y|−α/β t,1) . In the case
z ∈ [1,∞)

t2β−1|y|−d−α
∫ ∞

1
z−2β w(z,β ,1)dz

� t2β−1|y|−d−α
∫ ∞

0
w(z,β ,1)dz � Ct2β−1|y|−d−α , (2.13)

In the case z ∈ (|y|−α/β t,1) we may use that z is small and so

z−2β w(z,β ,1) < Cz−2β+q−3,

for any q > 1. So

t2β−1|y|−d−α
∫ 1

|y|−α/β t
z−2β w(z,β ,1)dz

� Ct2β−1|y|−d−α
∫ 1

|y|−α/β
z−2β+q−3dz

= Ct2β−1|y|−d−α
(
1− (|y|−α/β t)−2β+q−2

)
. (2.14)

Now let us study the case |y| � tβ/α . For IA we use that x is large, so x−1/β is

small, and that for q � 4 we have x−d/α−1/βw(x−1/β ) <Cx
−d/α−( q−2

β ) . Here |y|α � tβ
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and we obtain

|IA| � Ctβ−1−dβ/α

∣∣∣∣∣
∫ ∞

|y|α t−β
A0x

−d/α− q−2
β dx

∣∣∣∣∣
� tβ−1−βd/α

(
yα t−β

)−d/α− q−2
β +1

C

� tβ−1−dβ/αt−dβ/α−(q−2)+β+dβ/α+(q−2)−βC

� tβ−1−dβ/αC. (2.15)

As for IB in yhe case |y| � tβ/α ,

|IB| � C
∫ |y|α t−β

0
x1−1/βw(x−1/β ,β ,1)t2β−1|y|−d−αdx

� C|y|−d−αt2β−1
∫ |y|α t−β

0
x1−1/β (x−1/β )−1−β dx

� C|y|2α−dt−β−1. (2.16)

Integrating (2.11) in polar coordinates gives
∫
|y|>tβ/α

|IA|dy � C
∫
|r|>tβ/α

|r|α−α/β−d+d−1d|r|

� (tβ/α)α−α/βC = tβ−1C, (2.17)

Integration of (2.14) in polar coordinates gives
∫
|y|>tβ/α

|IB|dy � Ct2β−1
∫
|r|>tβ/α

|r|−d−α+d−1dr

+Ct2β−1
∫
|r|>tβ/α

|r|d−1−d−α |r|2α t−2βdr

= Ct2β−1(tβ/α)−α +Ct2β−1−2β(tβ/α)α = Ctβ−1. (2.18)

Integration of (2.15) gives
∫
|y|�tβ/α

|IA|dy � Ctβ−1−dβ/α
∫
|r|�tβ/α

|r|d−1d|r|

� tdβ/α−dβ/α+β−1C|A0|
|d| � tβ−1 |A0|C

d
. (2.19)

Integration of (2.16) yields
∫
|y|�tβ/α

|IB|dy � C
∫
|r|�tβ/α

t−β−1|r|−d+2α+d−1dr

� Ct−β−1(tβ/α)2α = Ctβ−1. (2.20)

Combining (2.17)–(2.20) yields (2.7). �
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THEOREM 2. For Gβ defined in (1.7) in the case β ∈ (0,1) and for α ∈ (1,2)
∫

Rd
|∇Gβ (t,y)|dy � tβ−1−β/αC. (2.21)

Proof. In the case |y| > tβ/α , we have |y|−1 < t−β/α and so differentiation with
respect to y yields

|∇IA| � Ct−β/α |IA| (2.22)

and

|∇IB| � Ct−β/α |IB|. (2.23)

In the case |y| � tβ/α we need to take into account the second term of the asymptotic
expansion, since the first term is independent of |y| . Consequently,

|∇IA| � C
∫ ∞

|y|α t−β
x−d/αt−dβ/α |y|(xtβ )−2/αx−1/β tβ−1dx

� C
∫ ∞

|y|α t−β
x−d/α−2/α−1/β t−dβ/α−2β/α+β−1dx

� Ct−dβ/α−2β/α+β−1|y|−C(|y|αt−β )−d/α−2/α−1/β+1tβ/α

= Ct−dβ/α−2β/α+β−1|y|−Ctβ/α|y|−d−2−α/β+α. (2.24)

Integration of the first term in (2.24) yields

C
∫
|r|<tβ/α

t−dβ/α−2β/α+β−1|r|d−1+1dr

� Ct−dβ/α−β/α+β−1+dβ/α � Ctβ−1−β/α. (2.25)

Integration of the second term in (2.24) gives∫
|y|<tβ/α

tβ/α |y|−d+d−3−α/β+αdy

� tβ/α(tβ/α)−2−α/β+α � tβ−1−β/α. (2.26)

Combining (2.25) and (2.26)∫
|y|�tβ/α

|∇IA|dy � Ctβ−1−β/α. (2.27)

As for IB for |y| � tβ/α

|∇IB| � Ct2β−1|y|−d−α−1
∫ |y|α t−β

0
ξ 1−1/βw(ξ−1/β ,β ,1)dξ

� Ct2β−1|y|−d−α−1
∫ |y|α t−β

0
ξ 1−1/β(ξ−1/β )−1−β dξ

� Ct2β−1|y|−d−α−1(|y|α t−β )3 � Ct−β−1|y|−d+2α−1. (2.28)
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Integration gives
∫
|y|�tβ/α

|∇IB|dy � C
∫
|y|�tβ/α

t−β−1|y|−d+d+2α−2dy � Ct−β−1−β/α. (2.29)

So ∫
|y|�tβ/α

|∇IB|dy � Ctβ−1−β/α. (2.30)

Since ∫
Rd

|∇Gβ (t,y)|dy �
∫

Rd
|∇IA|dy+

∫
Rd

|∇IB|dy (2.31)

combining results (2.22), (2.23), (2.27) and (2.30) we obtain
∫

Rd
|∇Gβ (t,y)|dy � Ctβ−1−β/α. (2.32)

which proves (2.21). �

Now let us consider the case α = 2.

THEOREM 3. Let Gβ ,1(t,y) be as in (1.7) and (2.6). For α = 2 and any β ∈
(0,1):

•
∫ t

0

∫
Rd

|Gβ (t,y)|dyds � Ctβ ,

•
∫ t

0

∫
Rd

|∇Gβ (t,y)|dyds � Ctβ/2 .

Proof. Note that

∫
Rd

exp{−aσ p2− iyp}dp =
(√

π√
σ

)d

exp

{
− y2

4aσ

}
, (2.33)

where in our case σ = xtβ . Substitute this into (2.6) to obtain

Gβ (t,y) =
tβ−1−βd/2πd/2

(2π)d

∫ ∞

0
x−1/β−d/2w(x−1/β ,β ,1)e−y2/4atβ xdx (2.34)

where y2 = y2
1 + y2

2 + . . .+ y2
d . We are interested in

∫ t
0

∫
Rd |Gβ (t,y)|dyds . Integrating

y-dependent terms in Gβ with respect to y gives
∫

Rd
exp

{
−|y|2/4axtβ

}
dy = (4πxtβ )d/2 = Cxd/2tβd/2. (2.35)

The term xd/2tβd/2 cancels out with
(

1√
tβ x

)d
and we obtain

I(t) :=
∫

Rd
|Gβ (t,y)|dy = C

∫ ∞

0
x−1/β w(x−1/β ,β ,1)tβ−1dx. (2.36)
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Now we split the integral I(t) into 2 parts: Ia(t) for x > 1 and Ib(t) for 0 � x � 1. In
Ia(t) , x > 1 and so x−1/β < 1 and w(x−1/β ,β ,1) ∼C , so we have

Ia(t) =
∫ ∞

1
Ctβ−1x−1/β w(x−1/β ,β ,1)dx

� tβ−1
∫ ∞

1
x−1/βCdx � C11−1/β tβ−1 = Ctβ−1. (2.37)

Integrating with respect to s gives

∫ t

0
|Ia(t− s)|ds � C

∫ t

0
C(t − s)β−1ds = Ctβ . (2.38)

For Ib(t) , x � 1, so x−1/β � 1 and w(x−1/β ,β ,1) ∼ (x−1/β )−1−β = x1+1/β and

Ib(t) =
∫ 1

0
Cx−1/β w(x−1/β ,β ,1)tβ−1dx

� Ctβ−1
∫ 1

0
x−1/β+1/β+1dx � C. (2.39)

with a constant C2 > 0. Now we integrate with respect to s

∫ t

0
|Ib(t − s)|ds =

∫ t

0
C(t − s)β−1ds = Ctβ . (2.40)

Together with (2.37) and (2.38) this yields the first statement of the theorem.
Differentiating Gβ with respect to y gives us

I1(t) =
∫

Rd
|∇Gβ (t,y)|dy

=
∫ ∞

0

∫
Rd

t−1−βd/2x−1−1/β−d/2|y|e−|y|2/4axtβ
w(x−1/β ,β ,1)dydx. (2.41)

Since
∫

Rd
|y|exp{−|y|2/4axtβ}dy = Cxtβ (

√
xtβ )d−1 = Cx

d+1
2 t

β(d+1)
2 , (2.42)

we have

I1(t) =
∫ ∞

0

∫
Rd

t−1−βd/2x−1−1/β−d/2|y|e−|y|2/4axtβ
w(x−1/β ,β ,1)dydx

= C
∫ ∞

0
t−1+β/2x−1/2−1/βw(x−1/β ,β ,1)dx. (2.43)

Now we split the integral I1(t) into parts corresponding to x ∈ (0,1) and x ∈ [1,∞) :

I2(t) =
∫ 1

0
t−1+β/2x−1/2−1/βw(x−1/β ,β ,1)dx (2.44)
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and

I3(t) =
∫ ∞

1
t−1+β/2x−1/2−1/βw(x−1/β ,β ,1)dx. (2.45)

Let us examine I2(t) . Since x ∈ (0,1) , we have w(x−1/β ,β ,1) ∼ (x−1/β )−1−β ,
so

I2(t) =
∫ 1

0
t−1+β/2x−1/2−1/βw(x−1/β ,β ,1)dx

=
∫ 1

0
t−1+β/2x−1/2−1/β+1+1/βdx = 2t−1+β/2/3. (2.46)

Integrating
∫ t

0
|I2(t− s)|ds � C

∫ t

0
(t− s)−1+β/2ds = Ctβ/2. (2.47)

Now, for I3(t) we use that x−1/β � 1 and so w(x−1/β ,β ,1) ∼C .

|I3(t)| �
∣∣∣∣∣
∫ ∞

1
t−1+β/2x−1/2−1/βw(x−1/β ,β ,1)dx

∣∣∣∣∣
� Ct−1+β/2

∣∣∣∣∣
∫ ∞

1
x−1/2−1/βdx

∣∣∣∣∣ = Ct−1+β/2. (2.48)

Integrating with respect to s
∫ t

0
|I3(t− s)|ds �

∫ t

0
(t− s)β/2−1ds = Ctβ/2. (2.49)

Note that β/2 = β −β/α for α = 2. So for α = 2 the form of the estimate is the
same as for α ∈ (1,2) . �

The following corollary is a consequence of the previous theorem.

COROLLARY 1. For Gβ as defined in (1.7) in the case α = 2 and β ∈ (0,1)
∫ t

0

∫
Rd

(|∇Gβ (t,y)|+ |Gβ (t,y)|)dyds � Ctβ/2. (2.50)

Proof. Since β/2 < β , we take the minimum power, β/2, to write the common
estimate of the terms

∫
Rd |∇Gβ (t,y)|dy and

∫
Rd |Gβ (t,y)|dy , obtaining

∫
Rd

(|∇Gβ (t,y)|+ |Gβ (t,y)|)dy � Ctβ/2−1, (2.51)

substitute t by t− s and we use that
∫ t

0
(t − s)β/2−1ds = Ctβ/2, (2.52)

which yields the result (2.50). �



WELL-POSEDNESS AND REGULARITY OF THE CAUCHY PROBLEM 13

Here we present several theorems regarding Sβ ,1(t,y) which are particularly useful
for the well-posedness analysis of (0.4) and (0.1).

THEOREM 4. For α ∈ (1,2) , β ∈ (0,1) the first term from the RHS of (1.9)
satisfies

∣∣∣∣
∫

Rd
Sβ ,1(t,y− x) f0(x)dx

∣∣∣∣ � Ct0. (2.53)

Proof. Using (1.6) and (2.4) we represent Sβ ,1(t,y) as

I =
1

β (2π)d

∫
Rd

∫ ∞

0
eipye−a|p|αtβ ξ ξ−1−1/βw(ξ−1/β ,β ,1)dξdp (2.54)

and use the assumption | f0(y)| < C . We split the integral I into two parts: IA for
ξ ∈ [|y|α t−β ,∞) and IB for ξ ∈ (0, |y|α tβ ) . There are 2 cases for each of the integrals:
|y| � tβ/α and |y| > tβ/α . Let us study |IB| in the case |y| � tβ/α .

|IB| � C
∫ |y|α t−β

0
ξ−1−1/βw(ξ−1/β ,β ,1)|y|−d−α tβ ξdξ

� C
∫ |y|α t−β

0
ξ−1/β (ξ−1/β )−1−β tβ |y|−d−αdξ

� C
∫ |y|α t−β

0
ξ tβ |y|−d−αdξ

= C(|y|α t−β )2|y|−d−αtβ = Ct−β |y|−d+α . (2.55)

Now, integrating gives
∫
|y|�tβ/α

|IB|dy � C
∫
|y|�Ctβ/α

t−β |y|−d+α+d−1dy = Ct−β (tβ/α)α = Ct0. (2.56)

Let us study |IB| in the case |y| > tβ/α . Here we split the integral IB into 2 parts:
when ξ ∈ (0,1] and when ξ ∈ (1, |y|α t−β ) .

|IB| � C
∫ |y|α t−β

0
ξ−1/βw(ξ−1/β ,β ,1)tβ |y|−d−αdξ , (2.57)

so since for ξ � 1, w(ξ−1/β ,β ,1) ∼ (ξ−1/β )−1−β , we have

∫ 1

0
ξ−1/βw(ξ−1/β ,β ,1)tβ |y|−d−αdξ � C|y|−d−α tβ . (2.58)

Integration yields
∫
|y|>tβ/α

tβ |y|−d−α+d−1dy = Ctβ (tβ/α)−α = Ct0. (2.59)
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When ξ ∈ (1, |y|α t−β )

∫ |y|α t−β

1
ξ−1/βw(ξ−1/β ,β ,1)tβ |y|−d−αdξ

=
∫ |y|α t−β

1
ξ−1/β ξ−q/β tβ |y|−d−αdξ

= tβ |y|−d−α
(
(|y|α t−β )−1/β−q/β+1−1

)

= t1+q+β−β |y|−d−α−α/β−qα/β+α − tβ |y|−d−α . (2.60)

Integration gives

∫
|y|>tβ/α

t1+q|y|−α/β−qα/β−1dy = t1+q(tβ/α)−α/β−qα/β = t0, (2.61)

and
∫
|y|>tβ/α

|y|−d−α+d−1tβ dy = tβ (tβ/α)−α = Ct0. (2.62)

Combining (2.59), (2.61) and (2.62) gives

∫
Rd

|IB|dy � Ct0. (2.63)

Let us study |IA| case |y| > tβ/α . Here ξ−1/β is small, so w(ξ−1/β ,β ,1) ∼ C ,
where C is a constant.

|IA| � C
∫ ∞

|y|α t−β
ξ−1−1/βw(ξ−1/β ,β ,1)t−dβ/αξ−d/αdξ

= C
∫ ∞

|y|α t−β
ξ−1−1/β t−βd/αξ−d/αdξ

� Ct−βd/α(|y|α t−β )−1/β−d/α � C|y|−α/β−dt, (2.64)

Integrating gives

∫
|y|>tβ/α

|IA|dy � C
∫
|y|>tβ/α

|y|−d−α/β+d−1tdy

= Ct(tβ/α)−α/β =Ct0. (2.65)

Let us study |IA| , case |y| � tβ/α . Here we need to split the integral IA into 2
parts. The first one is

∫ ∞

1
ξ−d/αξ−1−1/β t−βd/αw(ξ−1/β ,β ,1)dξ . (2.66)
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Here ξ is large, so ξ−1/β is small, so w(ξ−1/β ,β ,1)∼ (ξ−1/β )q , for all q > 1, which
enables us to write

∫ ∞

1
ξ−d/αt−βd/αξ−1−1/β ξ−q/βdξ

= t−βd/α
∫ ∞

1
ξ−d/α−1−1/β−q/βdξ

� Ct−βd/α
(

lim
K→∞

K−d/α−1/β−q/β −1
)

= Ct−βd/α . (2.67)

Integrating gives

∫
|y|�tβ/α

t−βd/α |y|d−1dy = t−βd/α(tβ/α)d = t0. (2.68)

The second part of IA is

∫ 1

|y|α t−β
ξ−1−1/βw(ξ−1/β ,β ,1)ξ−d/αt−βd/αdξ . (2.69)

Since ξ < 1, ξ−1/β > 1, so w(ξ−1/β ,β ,1) ∼ (ξ−1/β )−1−β , so we re-write (2.69) as

∫ 1

|y|α t−β
ξ−d/αt−βd/αξ−1−1/β+1+1/βdξ

�
∫ 1

|y|α t−β
ξ−d/αt−βd/αdξ = Ct−βd/α(1−|y|αt−β ). (2.70)

Integrating (2.70) in polar coordinates

C
∫
|y|�tβ/α

|y|d−1
(
t−βd/α −|y|αt−β t−βd/α

)
dy

� Ct−βd/αtβd/α −Ctβ+dβ/α−β−βd/α = Ct0. (2.71)

Combining (2.71) and (2.68) gives that for |y| � tβ/α

∫
Rd

|IA|dy � Ct0. (2.72)

Using the assumption | f0(y)| < C and putting together estimates (2.63) and (2.72)
yields the theorem statement (2.53). �

THEOREM 5. For α ∈ (1,2) , β ∈ (0,1)

∫
Rd

∇Sβ ,1(t,y) f0(x− y)dy � Ct−β/α . (2.73)
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Proof. We differentiate Sβ ,1(t,y) defined in (1.6) with respect to y :

|∇Sβ ,1(t,y)| =
∣∣∣∣∣

1
β (2π)d ∇

∫
Rd

∫ ∞

0
eipye−a|p|α tβ xx−1−1/βw(x−1/β ,β ,1)dxdp

∣∣∣∣∣
=

1
β (2π)d

∫
Rd

∫ ∞

0
|ip|eipye−a|p|α tβ xx−1−1/βw(x−1/β ,β ,1)dxdp

=
1

β (2π)d

∫
Rd

∫ ∞

0
|p|eipye−a|p|α tβ xx−1−1/βw(x−1/β ,β ,1)dxdp. (2.74)

Here we use the asymptotic expansions from Theorems 7.2.1 and 7.2.2 and Theorem
7.3.2, which are in the appendix as equations (5.2) and (5.6), and we use the inequality
(7.40) in [2], which also appears in the appendix for reader’s convenience, as (5.11)
and (5.12). For IA in the case |y| > tβ/α we use that for ξ > 1, ξ−1/β < 1 and
w(ξ−1/β ,β ,1) < (ξ−1/β )q , for any q > 1. Then

|∇IA| � C
∫ ∞

|y|α t−β
ξ−1/α−1−1/β−d/αw(ξ−1/β ,β ,1)t−β/α−dβ/αdξ

� Ct−β/α−dβ/α(|y|α t−β )−1/α−d/α−1/β−q/β

� Ct1+q|y|−1−qα/β−α/β−d. (2.75)

Integrating gives

∫
|y|>tβ/α

|∇IA|dy � C
∫
|y|>tβ/α

t1+q|y|−d+d−1−1−qα/β−α/βdy

= Ct1+q−β/α−q−1 = Ct−β/α . (2.76)

Now, let us look at IB in the case |y| > tβ/α . Proposition 1 in the Appendix and the
change of variables ξ−1/β = z yield

|∇IB| � C
∫ |y|α t−β

0
ξ−1−1/βw(ξ−1/β ,β ,1)t−β+β |y|−α−1−d−αtβ dξ

� C|y|−d−1
∫ ∞

|y|−α/β t
w(z,β ,1)dz � C|y|−d−1. (2.77)

Integration gives

∫
|y|>tβ/α

|∇IB|dy � C
∫
|y|>tβ/α

|y|−d+d−1−1dy � Ct−β/α . (2.78)

Now, let us look at IA in the case |y| < tβ/α .

|∇IA| � C
∫ ∞

|y|α t−β
ξ−1−1/β−1/α−d/αw(ξ−1/β ,β ,1)t−β/α−βd/αdξ . (2.79)
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We split this integral into cases ξ ∈ (|y|α t−β ,1) and ξ ∈ [1,∞) . For ξ ∈ (|y|α t−β ,1) ,
ξ−1/β > 1 and we may use that w(ξ−1/β ,β ,1) ∼ (ξ−1/β )−1−β . So

|∇IA| � C
∫ 1

|y|α t−β
ξ−1−1/βw(ξ−1/β ,β ,1)t−β/α−βd/αξ−1/α−d/αdξ

� C
∫ ∞

|y|α t−β
t−β/α−βd/αξ−1/α−d/αdξ

= Ct−β/α−βd/α −Ct−β |y|−1−d+α . (2.80)

Integration yields∫
|y|�tβ/α

|∇IA|dy � C
∫
|y|�tβ/α

yd−1t−β/α−βd/αdy

+C
∫
|y|<tα/β

t−β |y|−1−α−1−d+ddy

� Ct−β/α +Ct−β (tβ/α)−1+α � Ct−β/α . (2.81)

As for ξ ∈ [1,∞) , then ξ−1/β < 1 and so w(ξ−1/β ,β ,1) ∼C and∫ ∞

1
ξ−2−1/βCξ−d/αt−β/α−βd/αdξ

� t−β/α−βd/αC
∫ ∞

1
ξ−2−1/β−d/αdξ

� t−β/α−βd/αC

(
1− lim

K→∞

1
K

)

= Ct−β/α−βd/α. (2.82)

Integration yields∫
|y|<tβ/α

t−β/α−βd/α|y|d−1dy � Ct−β/α−βd/αtβd/α = Ct−β/α . (2.83)

Finally, IB in the case |y| � tβ/α

|∇IB| � C
∫ |y|α t−β

0
ξ−1−1/βw(ξ−1/β ,β ,1)ξ−1t−β |y|α−1|y|−d−αtβ ξdξ

� C
∫ |y|α t−β

0
ξ−1−1/βw(ξ−1/β ,β ,1)|y|−1−ddξ

� C
∫ |y|α t−β

0
ξ−1−1/β (ξ−1/β )−1−β |y|−1−ddξ

� C|y|−1−d−αt−β . (2.84)

Integration yields ∫
|y|�tβ/α

|∇IB|dy � C
∫
|y|�tβ/α

|y|α−1−1−d+dt−β dy

= Ct−β (tβ/α)α−1 = Ct−β/α . (2.85)
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Hence (2.76), (2.78), (2.81), (2.83) and (2.85) together with the assumption | f0(y)|<C
yield (2.73). �

THEOREM 6. For Sβ ,1 defined in (1.6), in the case α = 2 and assuming | f0(y)|<
C ∫

Rd
Sβ ,1(t,y− x) f0(x)dx � Ct0. (2.86)

Proof. Using (2.35)
∫

Rd
Sβ ,1(t,y)dy =

∫ ∞

0

∫
Rd

(xtβ )−d/2e−y2/(4axtβ )x−1−1/βw(x−1/β ,β ,1)dydx

= C
∫ ∞

0
x−1−1/βw(x−1/β ,β ,1)dx. (2.87)

We split this integral into two parts: x ∈ [0,1] and x ∈ (1,∞) . In the first case
x � 1 and x−1/β > 1 so we may use w(x−1/β ,β ,1) ∼ (x−1/β )−1−β . In the case x > 1
we may use that w(x−1/β ,β ,1) ∼C . So we obtain

∫ 1

0
x−1−1/βw(x−1/β ,β ,1)dx =

∫ 1

0
dx = 1, (2.88)

and ∫ ∞

1
x−1−1/βw(x−1/β ,β ,1)dx =

∫ ∞

1
x−1−1/βCdx

= C
(

lim
K→∞

K−1/β −1−1/β
)

= C. (2.89)

Together with the assumption | f0(y)| < C , the result (2.86) follows. �

THEOREM 7. For Sβ ,1 defined as in (1.6), in the case α = 2 , β ∈ (0,1) and
assuming | f0(y)| < C

∫
Rd

∇Sβ ,1(t,y) f0(x− y)dy � Ct−β/2. (2.90)

Proof. We use the representation of Sβ ,1(t,y) in (2.54) and write
∫

Rd
∇Sβ ,1(t,y)dy =

∫ ∞

0
x−3/2−1/β t−β/2w(x−1/β ,β ,1)dx. (2.91)

We split the above integral into two: for x ∈ [0,1] and for x > 1. In the case
x ∈ [0,1] we use that w(x−1/β ,β ,1) ∼ (x−1/β )−1−β . In the case x > 1 we use that
w(x−1/β ,β ,1) ∼C . So we get

t−β/2
∫ 1

0
x−3/2−1/βw(x−1/β ,β ,1)dx

= Ct−β/2
∫ 1

0
x−1/2dx = Ct−β/2/2 (2.92)
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and

t−β/2
∫ ∞

1
x−3/2−1/βw(x−1/β ,β ,1)dx = Ct−β/2. (2.93)

So from (2.92) and (2.93) and that | f0(y)| < C and we obtain (2.90). �

3. Smoothing properties for the linear equation

Let us denote by Cp(Rd) the space of p times continuously differentiable func-
tions. By C1

∞ we shall denote functions f in C1(Rd) such that f and ∇ f are rapidly
decreasing continuous functions on Rd , with the sum of sup-norms of the function and
all of its derivatives up to and including the order p as the corresponding norm. The
sup-norm is ‖ f‖ = supt∈[0,T ] ‖ f (t)‖ . Let us denote by Hp

1 the Sobolev space of func-

tions with generalised derivatives up to and including p , being in L1(Rd) . Here and
in what follows we often identify the function f0(y) with the function f (t,y) = f0(y) ,
∀t � 0.

THEOREM 8. (Solution regularity) For α ∈ (1,2] and β ∈ (0,1) the resolving
operator

Ψt( f0) =
∫

Rd
Sβ ,1(t,y− x) f0(x)dx+

∫ t

0

∫
Rd

Gβ (t − s,y− x)h(s,x)dxds (3.1)

satisfies the following properties

• Ψt : Cp(Rd) �→Cp(Rd) , and ‖Ψt‖Cp < C(t) ,

• Ψt : Hp
1 (Rd) �→ Hp

1 (Rd) and ‖Ψt‖Hp
1

< C(t) .

Proof. We look at the Cp norm of Ψt f0 and use Theorem 1

‖Ψt( f0)‖Cp(Rd) �
∫

Rd
Sβ ,1(t,y)| f (p)

0 |dy+Ctβ sup
s∈[0,t]

‖h(s, ·)‖Cp(Rd)

� C‖ f0‖Cp(Rd) +Ctβ sup
s∈[0,t]

‖h(s, ·)‖Cp(Rd), (3.2)

for some constant C > 0. Analogously,

‖Ψt f0‖Hp
1 (Rd) �

∫
Rd

Sβ ,1(t,y)| f (p)
0 |dy+Ctβ sup

s∈[0,t]
‖h(s, ·)‖Hp

1 (Rd)

� C‖ f0‖Hp
1 (Rd) +Ctβ sup

s∈[0,t]
‖h‖Hp

1 (Rd). (3.3)

�

THEOREM 9. (Solution smoothing) For α ∈ (1,2] and β ∈ (0,1) the resolving
operator (3.1) satisfies the following smoothing properties
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• If f0,h ∈Cp(Rd) uniformly in time, then f ∈Cp+1(Rd) and for any s ∈ (0,t]

‖Ψt( f0)‖Cp+1(Rd) � Ct−β/α‖ f0‖Cp(Rd) +Ctβ−β/α‖h‖Cp(Rd) (3.4)

• If f0,h ∈ Hp
1 (Rd) uniformly in time, then f ∈ Hp+1

1 (Rd) and for any s ∈ (0,t]

‖Ψt( f0)‖Hp+1
1 (Rd) � Ct−β/α‖ f0‖Hp

1 (Rd) +Ctβ−β/α‖h‖Hp
1 (Rd). (3.5)

In particular we may choose p = 0 , when H0
1 (Rd) = L1(Rd) .

Proof. We study the Cp+1(Rd) norm of Ψt( f0) and use theorems 1 and 2

‖Ψt( f0)‖Cp+1 � sup
x∈Rd

∫
Rd

∣∣∣∣∣∇xSβ ,1(t,x− y) f (p)
0 (y)

∣∣∣∣∣dy

+ sup
x∈Rd

∫ t

0

∫
Rd

∣∣∣∣∣∇xGβ (t− s,x− y)h(p)
y (s,y)

∣∣∣∣∣dyds

� Ct−β/α sup
x∈Rd

| f (p)
0 (x)|+C sup

x∈Rd
|h(p)(s,x)|

∫ t

0
(t − s)β−β/α−1ds

� Ct−β/α‖ f0‖Cp +Ctβ−β/α‖h‖Cp . (3.6)

The proof for (3.5) is analogous. �

Similar results apply for the non-linear equation (0.1).

4. Well-posedness

Now we study well-posedness of the full non-linear equation (0.1):

D∗β
0,t f (t,y) = −a(−Δ)−α/2 f (t,y)+H(t,y,∇ f (t,y)), (4.1)

with the initial condition f (0,y) = f0(y) , and a > 0 is a constant. This FDE has the
following mild form:

f (t,y) =
∫

Rd
f0(x)Sβ ,1(t,y− x)dx

+
∫ t

0

∫
Rd

Gβ (t− s,y− x)H(s,x,∇ f (s,x))dxds, (4.2)

which follows from (1.3).

LEMMA 1. Let us define by C([0,T ],C1
∞(Rd)) the space of functions f (t,y) , de-

fined for t ∈ [0,T ],y ∈Rd , such that f (t,y) is continuous in t and f (t, ·) ∈C1
∞(Rd) for

all t ∈ [0,T ] . Denote by BT
f0

the closed convex subset of C([0,T ],C1
∞(Rd)) consisting
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of functions with f (0, ·) = f0(·) = S0(·) for some given function S0 . Let us define a
non-linear mapping f →{Ψt( f )} defined for f ∈ BT

f0
:

Ψt( f )(y) =
∫

Rd
f0(x)Sβ ,1(t,y− x)dx

+
∫ t

0

∫
Rd

Gβ (t − s,y− x)H(s,x,∇ f (s,x))dxds. (4.3)

Suppose H(s,y, p) is Lipschitz in p with the Lipschitz constant L. Let us take f1, f2 ∈
BT

f0
. Then for any t ∈ [0,T ]:

‖Ψn
t ( f1)−Ψn

t ( f2)‖C1 � (β −β/α)Ln((β −β/α)−1t(β−β/α))n

nnβ−nβ/α+1
sup

s∈[0,t]
‖ f1 − f2‖C1 .

(4.4)

Proof. Due to regularity estimates for Sβ ,1 and Gβ :

‖Ψt( f1)−Ψt( f2)‖C1 � CLtβ−β/α sup
s∈[0,t]

‖ f1 − f2‖C1 . (4.5)

and

‖Ψ2
t ( f1)−Ψ2

t ( f2)‖C1 � C2L2 sup
s∈[0,t]

‖ f1 − f2‖C1

∫ t

0
(t− s)β−β/α−1sβ−β/αds. (4.6)

We calculate the integral above using the change of variables z = s/t :

∫ t

0
(t− s)β−β/α−1sβ−β/αds

=
∫ 1

0
tβ−β/α−1(1− z)β−β/α−1zβ−β/αtβ−β/α+1dz

= t2β−2β/αB(β −β/α +1,β −β/α). (4.7)

Now, when we estimate ‖Ψ3
t ( f1)−Ψ3

t ( f2)‖C1 we calculate

∫ t

0
s2β−2β/α(t− s)β−β/α−1ds

= tβ−β/α−1
∫ 1

0
t2β−2β/α+1z2β−2β/α(1− z)β−β/α−1dz

= t3(β−β/α)B(2β −2β/α +1,β −β/α). (4.8)

This yields

‖Ψ3
t ( f1)−Ψ3

t ( f2)‖C1

� C3L3t3β−3β/αB(2β −2β/α +1,β −β/α) sup
s∈[0,t]

‖ f1− f2‖C1 . (4.9)
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As the inductive step, assume that the following is true for some n ∈ N :

‖Ψn
t ( f1)−Ψn

t ( f2)‖C1 � Rn,α ,β sup
s∈[0,t]

‖ f1 − f2‖C1 . (4.10)

where

Rn,α ,β = CnLntnβ−nβ/α (Γ(β −β/α))n−1Γ(β −β/α +1)
Γ(nβ −nβ/α +1)

(4.11)

Let us check that then (4.10) holds for k = n+1.

‖Ψn+1
t ( f1)−Ψn+1

t ( f2)‖C1

=

∣∣∣∣∣
∣∣∣∣∣
∫ t

0

∫
Rd

Gβ (t− s,x− y)(H(s,y,∇Ψn
t ( f1))−H(s,y,∇Ψn

t ( f2)))

∣∣∣∣∣
∣∣∣∣∣
C1

� CL
∫ t

0
(t − s)β−β/α−1ds‖Ψn

t ( f1)−Ψn
t ( f2)‖C1

� Cn+1Ln+1tnβ−nβ/αMn

∫ t

0
(t − s)β−β/α−1snβ−nβ/αds sup

s∈[0,t]
‖ f1 − f2‖C1

� Cn+1Ln+1tnβ−nβ/αMnBn sup
s∈[0,t]

‖ f1− f2‖C1

� Cn+1Ln+1tnβ−nβ/αMn+1 sup
s∈[0,t]

‖ f1− f2‖C1 , (4.12)

where

Mn =
(Γ(β −β/α))n−1Γ(β −β/α +1)

Γ(nβ −nβ/α +1)
, (4.13)

Mn+1 is as in (4.13) with n replaced by n+1, and Bn is the Beta function

Bn = B(nβ −nβ/α +1,β −β/α). (4.14)

The inequality (4.12) is (4.10) with k = n replaced by k = n+1. We have shown
(4.10) is true for k = 1 and k = 2. So by induction on k we obtain (4.10) for any
k ∈ N . Using that g(x) = xn is a convex function for n ∈ N it may be shown by
Jensen’s inequality that

(Γ(β −β/α))n � Γ(nβ −nβ/α −n+1)
nnβ−nβ/α−n+1

. (4.15)

Using Stirling’s formula we now obtain the quotient approximation

Γ(n(β −β/α)+B)
Γ(n(β −β/α)+A)

≈ (n(β −β/α))B−A . (4.16)



WELL-POSEDNESS AND REGULARITY OF THE CAUCHY PROBLEM 23

Let us substitute A = 1 and B = −n+1. Then

‖Ψn
t ( f1)−Ψn

t ( f2)‖C1

� Γ(1+ β −β/α)tnβ−nβ/α

nnβ−nβ/α+1(β −β/α)nΓ(β −β/α)
sup

s∈[0,t]
‖ f1− f2‖C1

� tnβ−nβ/α

nnβ−nβ/α+1(β −β/α)n−1
sup

s∈[0,t]
‖ f1− f2‖C1 , (4.17)

so (4.4) holds. �

THEOREM 10. Assume α ∈ (1,2] , β ∈ (0,1) and that

• H(s,y, p) is Lipschitz in p with the Lipschitz constant L independent of y .

• |H(s,y,0)| � h, for a constant h independent of y .

• f0(y) ∈C1
∞(Rd) .

Then the equation (4.2) has a unique solution S(t,y) ∈C1
∞(Rd) .

Proof. Let us denote by C([0,T ],C1
∞(Rd)) and BT

f0
as in Lemma 1. Let Ψt( f ) be

defined as in (4.3). Take f1(s,x), f2(s,x) ∈ BT
f0

. Note that due to our choice of f1, f2 ,

∫
Rd

f1(0,x)Sβ ,1(t,y− x)dx =
∫

Rd
f2(0,x)Sβ ,1(t,y− x)dx. (4.18)

We would like to prove the existence and uniqueness result for all t � T and any
T � 0. For this we use (4.4) in Lemma 1. As n → ∞ , nn grows faster than mn for any
fixed m > 0. Hence for any t � 0

‖Ψn
t ( f1)−Ψn

t ( f2)‖C1 � Ln(tβ−β/α(β −β/α)−1)n(β −β/α)
nnβ−nβ/α+1

sup
s∈[0,t]

‖ f1− f2‖C1 .

(4.19)

The sum
∞

∑
n=1

(tβ−β/α(β −β/α)−1)n

nn(β−β/α)+1

is convergent by the ratio test. By Weissinger’s fixed point theorem, see [1] Theorem
D.7, Ψt has a unique fixed point f ∗ such that for any f1 ∈ BT

f0

‖Ψn
t ( f1)− f ∗‖C1 �

∞

∑
k=n

(tβ−β/α(β −β/α)−1)n(β −β/α)
nnβ−nβ/α+1

‖Ψt( f1)− f1‖C1 . (4.20)

So S(t,y) = f ∗ is the solution of (4.2) of class C1
∞(Rd) . �
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THEOREM 11. Assume α ∈ (1,2] , β ∈ (0,1) and that

• H(s,y, p) is Lipschitz in p with the Lipschitz constant L1 independent of y .

• H is Lipschitz in y independently of p , with a Lipschitz constant L2

|H(s,y1, p)−H(s,y2, p)| � L2|y1− y2|(1+ |p|) (4.21)

• |H(s,y,0)| � h, for a constant h independent of y .

• f0(y) ∈C2
∞(Rd) .

Then there exists a unique solution f ∗(t,y) of the FDE equation (4.1) for β ∈
(0,1) and α ∈ (1,2] , and f ∗ satisfies

ess sup
y
|∇2( f ∗(t,y))| < C. (4.22)

Proof. First, we work with the mild form of the equation (4.1). Let BT,2
f0

denote the

subset of BT
f0

which is twice continuously differentiable in y and with f (0,y) = S0(y) ,

for all y ∈ Rd . Let the mapping Ψt on BT,2
f0

be defined as in (4.3). Take f0 ∈ BT,2
f0

,
which continues f0(y) = S0(y) to all t � 0. Then

‖Ψt( f0)‖C2 � Ctβ−β/α‖H(s,x,∇ f0(x))‖C1

+‖
∫

Rd
Sβ ,1(t,y− x) f0(x)dx‖C2

� Ctβ−β/αL1‖ f0‖C2 +Ctβ−β/αL2‖ f0‖C1

+Ctβ−β/α‖∇ f0(x)‖C0 +C3

� Ltβ−β/α‖ f0‖C2 +Ctβ−β/α‖ f0(x)‖C1 +C3

� Ctβ−β/α (‖ f0‖C2 +1)+C3. (4.23)

Iterations and induction yield

‖Ψn
t ( f0)‖C2 � C3

n

∑
m=1

tmβ−mβ/αKm +
n

∑
m=1

tm(β−β/α)Cm (1+‖ f0‖C2) , (4.24)

for constants Km = B2×·· ·×Bm−1 and Cm = B2×·· ·×Bm , where

Bk = B(kβ − kβ/α +1, β −β/α),

for any k ∈ N . We use that for x large and y fixed B(x,y) ∼ Γ(y)x−y to obtain
that Bm+1 < Bm , for all m ∈ N which yields that the sums ∑n

m=1 tmβ−mβ/αKm and
∑n

m=1 tmβ−mβ/αCm are convergent as n → ∞ . So for some constants A1 , A2 , Cf0 > 0,

‖Ψn
t f0‖C2 < A1 +A2‖ f0‖C2 <Cf0 . (4.25)
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Hence, ∀n ∈ N

‖∇(Ψn
t f0)‖Lip < Cf0 . (4.26)

Hence, we obtain

‖ lim
n→∞

∇(Ψn
t f0)‖Lip < 2Cf0 . (4.27)

By Rademacher’s theorem it follows that limn→∞(∇2(Ψn
t ( f0)) exists almost ev-

erywhere. We invite the reader to see [26] for the Rademacher’s theorem and its proof.
From the previous theorem limn→∞ Ψn

t ( f0) = f ∗ . The limit is understood in the sense
of convergence in C1

∞(Rd) . Therefore f ∗ satisfies (4.22). �

THEOREM 12. Assume α ∈ (1,2],β ∈ (0,1) and that

• H(s,y, p) is Lipschitz in p with the Lipschitz constant L independent of y .

• H is Lipschitz in y independently of p , with a Lipschitz constant L2

|H(s,y1, p)−H(s,y2, p)| � L2|y1− y2|(1+ |p|) (4.28)

• |H(s,y,0)| � h, for a constant h independent of y .

• f0(y) ∈C2
∞(Rd) .

Then a solution to the mild form

f (t,y) =
∫

Rd
Sβ ,1(t,x− y) f0(y)dy

+
∫ t

0

∫
Rd

Gβ (t− s,x− y)H(s,y,∇ f (s,y))dsdy (4.29)

which satisfies (4.22), is a classical solution to

D∗β
0,t f (t,y) = −(−Δ)α/2 f (t,y)+H(t,y,∇ f (t,y)). (4.30)

Proof. Let us define Ψt( f ) as in (4.3). By [1]

f̂ (t, p) = f̂0(p)Eβ ,1(−a|p|αtβ )

+
∫ t

0
(t − s)β−1Eβ ,β (−a(t− s)β |p|α))Ĥ(s,y, p)ds, (4.31)

is equivalent to

D∗β
0,t f̂ (t, p) = −a|p|α f̂ (t, p)+ Ĥ(t,y,∇ f (t,y)), (4.32)

which in turn is equivalent to (4.30) as its Fourier transform. Also, (4.29) is equiva-
lent to (1.3) as its inverse Fourier transform. Therefore (4.29) is equivalent to (4.30).
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We may carry out these equivalence procedures when D∗β
0,t Ψt( f ) and −(−Δ)α/2 f are

defined for f satisfying (4.22).
Due to theorem assumptions:

|H(s,y,∇ f (s, ·))| � h+L|∇ f (s, ·)| < ∞. (4.33)

So

D∗β
0,t

(∫ t

0

∫
Rd

Gβ (t,y)H(s,y,∇ f (t,y))dyds

)

� C
Γ[1−β ]

∫ t

0
(t− s)−β sβ ds � C1

∫ 1

0
(t− tz)−β β (tz)β−1tdz

� C1β
∫ 1

0
(1− z)1−β−1zβ−1dz

� C1βB(1−β ,β ) < ∞. (4.34)

Similarly

D∗β
0,t

∫
Rd

Sβ ,1(t,x− y) f0(y)dy (4.35)

exists when f0(y) gives dependence of
∫
Rd Sβ ,1(t,x−y) f0(y)dy on t such as tk , where

k > −1. This is because
∫ t

0
(t− s)−β

(
d
ds

sk
)

ds = tk+1−β
∫ 1

0
(1− z)−β zk−1dz

= tk+1−βB(1−β ,k+1), (4.36)

where for any β ∈ (0,1) the Beta function B(1− β ,k + 1) is defined for k + 1 > 0.

Hence, due to (4.33), (4.34) and (4.35), D∗β
0,t Ψt( f ) is defined for the solution f for

(4.30). For f satisfying (4.22), when α ∈ (1,2] , −(−Δ)α/2 f is defined. Now, let us
study the solution f ∗(t,y)

f ∗(t,y) =
∫ t

0

∫
Rd

Gβ (t− s,y− x)H(s,x,∇ f ∗(t,x))dxds

+
∫

Rd
Sβ ,1(t,y− x) f0(x)dx. (4.37)

Differentiating twice w.r.t. y gives:

∇2
∫ t

0

∫
Rd

Gβ (t − s,y− x)H(s,x,∇ f ∗(t,x))dxds

=
∫ t

0

∫
Rd

∇yGβ (t − s,y− x)∇xH(s,x,∇ f ∗(s,x))dxds. (4.38)

From the representations of Gβ (t,y) and ∇Gβ (t,y) used in theorems (1), (2) it
is clear that ∇Gβ (t,y) exists and is continuous in t and in y . From theorem 10 we
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know ∇ f ∗ exists and is Lipschitz continuous. Since we assumed H to be Lipschitz,
it follows from Rademacher’s theorem that ∇xH(s,x,∇ f ∗(s,x)) is almost everywhere
defined and bounded. Hence (4.38) represents a continuous function in y and in t .
Since f0 ∈C2

∞(Rd) and due to theorem (4)

∇2
∫

Rd
Sβ ,1(t,y− x) f0(x)dx =

∫
Rd

Sβ ,1(t,x)∇2 f0(y− x)dx < ∞. (4.39)

Thus, ∇2 f ∗(t,y) exists and so f ∗(t,y) ∈ C2
∞(Rd) . This completes the necessary re-

quirements for the solution of the mild form (4.29) to be the solution of (4.30) of class
C2

∞(Rd) , i.e. a solution in the classical sense. �

5. Appendix

Let us recall the asymptotic properties of stable densities defined in (2.1)

g(y,α,σ) =
1

(2π)d

∫
Rd

exp{−σ |p|α}e−ipydp, (5.1)

see [2] for details. For |y|/σ1/α → 0 the following asymptotic expansion for g holds

g(y,α,σ) ∼ |Sd−2|
(2πσ1/α)d

∞

∑
k=0

(−1)k

(2k)!
ak

( |y|
σ1/α

)2k

, (5.2)

where

ak = α−1Γ
(

2k+d
α

)
B

(
k+

1
2
,
d−1

2

)
, (5.3)

where

B(q, p) =
∫ 1

0
xp−1(1− x)qdx =

Γ(p)Γ(q)
Γ(p+q)

(5.4)

is the Beta function, and

|Sd−2| = 2
π (d−1)/2

Γ( d−1
2 )

(5.5)

and |S0| = 2, see [2] for the proof.

For |y|/σ1/α → ∞ the following asymptotic expansion holds

g(y;α,σ) ∼ (2π)−(d+1)/2 2
|y|d

∞

∑
k=1

ak

k!
(σ |y|−α)k (5.6)

where

ak = (−1)k+1 sin

(
kπα

2

)∫ ∞

0
ξ αk+(d−1)/2W0, d

2−1(2ξ )dξ (5.7)
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and W0,n(z) is the Whittaker function

W0,n(z) =
e−z/2

Γ(n+1/2)

∫ ∞

0
[t(1+ t/z)]n−1/2e−t dt, (5.8)

see [2] for the proof.

In the case d = 1 the stable density function w(x,β ,1) defined in (2.2) is infinitely
smooth for x = 0 and w(x,β ,1) = 0 for x < 0. Hence w grows at 0 slower than any
power. This gives rise to the inequalities such as w(x,β ,1) <Cqxq−1 for any q > 1, for
x < 1. The property w(x) ∼ x−1−β for x  1, may be found for example in [2]. This
may be deduced from the asymptotic expansions in equations 7.7 and 7.9 in [2] with
γ = 1.

The following result is part of the proposition 7.3.2 from [2]:

PROPOSITION 1. Let

φ(y,α,β ,σ) =
1

(2π)d

∫
Rd

|p|β exp{−i(p,y)−σ |p|−α}dp, (5.9)

so that

∂φ
∂β

(y,α,β ,σ) =
1

(2π)d

∫
Rd

|p|β log |p|exp{−i(p,y)−σ |p|−α}dp. (5.10)

Then if |y|
σ1/α � K

|φ(y,α,β ,σ)| � cσ−β/αg(y,α,σ) (5.11)

and if |y|
σ1/α > K

|φ(y,α,β ,σ)| � cσ−1|y|α−β g(y,α,σ), (5.12)

where g is as in (5.1) and (2.1).
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