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EXISTENCE OF AN UNBOUNDED SOLUTION FOR MULTI-POINT
BOUNDARY VALUE PROBLEMS OF FRACTIONAL
DIFFERENTIAL EQUATIONS ON AN INFINITE DOMAIN

YOUSEF GHOLAMI

Abstract. In this paper, considering the fractional boundary value problem
DS u(r) +a(t) f(t,u(r),u (1)) =0; ¢ e (0,00), a€(2,3),
u(0) =/ (0) =0, llimmngglu 2 B:DY  u(t) ‘,-g.’
0<é <& <<y <on, B,eR -

where D, represents Riemann-Liouville fractional derivative of order o and using famous
Leray-Schauder Nonlinear Alternative theorem, we will obtain an unbounded solution of above
BVP. At the end some examples illustrate.

1. Introduction

Fractional differential equations is a full applicable theory in almost whole sci-
ences such as basic sciences, engineering, social sciences, medicine, economics, dy-
namical processes and so on [see more details in monographes [1], [2], [3]]. Every
interested researcher can find a large number of attractive investigations in various
fields of fractional calculus and related applications such as solvability and existence
of multiplicity of positive solutions for a given boundary value problems of fractional
differential equations such as [4], [5], [6], [7], [8], [9], and references therein.

Kazem Ghanbari and Yousef Gholami in [6] used some standard fixed point the-
orems in order to represent the existence of triple positive solutions of the following
fractional boundary value problem

D u(t) +Aa(t)f(t,u(t)) =0, t€(0,%0), a€(2,3)

u(0) 1 (0) =0, Timy DI u(t) =Y Bl (8

0<é<b <. <<, Bie R+1le(), i=1,2,...m—2
where D, represent the fractional Riemann-Liouville derivative of order o.
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In this paper we consider the following BVP:

D u(t) +a(t) f(t,u(t),u'(t)) = 0; t€(0 o), a€(2,3),
u(0) =u/(0)=0, lim DS u(r) EﬁlD“ Lu(r) ‘ ; (1.1
e 1=¢;

0<é <& <. <y <oo, ﬂ,eR.

By means of Leray-Schauder Nonlinear Alternative theorem, we show that the
boundary value problem (1.1) has an unbounded solution.
Firstly assume that the following conditions are satisfy:

Cl) Zﬁl <1.
i=1
(C2) a€C(]0,%0),[0,00)) and there exist p € (0,o0) such that

0< / a(s)ds < oo.
p

(G3) feC([0,0) x R%,R) and f(2,0,0) dos not vanish identically zero on [0, o).
(Ca) F(t,u,u’) = f(t,exp(t® ")u,exp(t® 2)u’) and

N AGTRD]
lu|—eo W1 (|ue]) w2 (u'])

|u'| e

¢(t)7

where ¢ € L'[0,50) and y; € C([0,),(0,)) is nondecreasing on [0,) also
there exist M € R such that 0 < |y, (|u/])] <M on [0,0).

2. Technical background

In this section we introduce some standard definitions and lemmas that will be
needed to prove the main result in the next section.

DEFINITION 2.1. Assume that u € L'(0,c0). The fractional Riemann-Liouville
integral of order o for u is defined by

1% u(r) = ﬁ /Ot(z — 9% u(s)ds, o> 0.

DEFINITION 2.2. The fractional Riemann-Liouville derivative of order o for a
given real valued function u on (0,0) is defined by

o _ l d ! ! n—o— _
Dg u(t) = o) (E) /0 (t—ys) Yu(s)yds, a>0, n=[o]+1,

provided that the right hand side is point-wise defined on (0,c°).
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LEMMA 2.3. If u € C(0,00), D& u(r) € L'(0,0), & >0, then

1§ DG u(t) +ch , GER, n=la]+1.
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LEMMA 2.4. Assume that y € C(0,%0), 0 < [;°y(s)ds < oo. Then the boundary

value problem
Dgiu(t) +y(t) =0, t€(0,), € (2,3),

u(0) =u'(0)=0, limD% 'u(r) DY ulr) ,
(0) =4'(0) lim Dy Zﬂ .

has the unique solution as

u(t) = /Ooo G(1,5)y(s)ds

such that
G(t,5) = Gi(t,5) + Gat,s),
with
1 [t* ' =(—5)%1 0<s<t<oo
Gi(t,s) = =
I'a) oL, 0<tr<s<oo
and
m
La—1
iZEIﬁlt 0; 0<s< i < oo
Galt.s) S 1, 0<&<s<
Mo)(1- Y p) L1 0Ses

2
u(t) = cit® et 2403 —/
0

Implementing boundary conditions u(0) =0, «’(0) =0 we conclude that c3 =

0 respectively. Now applying third boundary condition

lim DG u(r) Z BiDy u(t)

1=

we deduce that

oo m &
/0 y(s)ds—izziﬁ,- A y(s)ds
(1-36)

Cc] =

2.1

(2.2)

(2.3)

(2.4)

2.5)

(2.6)

0,022
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_tOt 1 i=1 _ t (l—s)a_ly(s)ds
(o)1= B) o T'(a)
i=1
° n &i
oo w0 po—1 / Y(S)ds—z,ﬂl y(s)ds
— A G (t,s)y(s)ds I )y(s)ds—i—to‘_l i=1 _
[(o)(1— ;ﬁi)
< °° n &
. > B! [Cyds Bt [T y(s)ds
= /0 Gi(t,9)y(s)ds + = _ _i=l _

Me)(1-Y8)  T@(-3p)

i=1 i=1

- /0 "Gt 5)y(s)ds + /O " Galt, )y(s)ds = /O TG, s)y(s)ds,

where G(t,s) that is called Green’s function corresponds to (2.1) and defined by (2.4)—
(2.6). Uniqueness of coefficients ¢y, ¢», c3, shows that (2.3) is the unique solution of
boundary value problem (2.1), (2.2). The proof is complete. [

REMARK 2.5. The Green function of (2.1), (2.2) has the following properties:

(Hy) G(t,s) >0 forz,s € (0,00).

(Ha) exp(~1%")G(t,5) < Lo, Lo= sy —
(Hs) exp(—19 )G <Ly, L= gy —r—

REMARK 2.6. Considering the following space

X = {u € C([0,),R)

tlim exp(—% Nu(r) < oo} ,
such that equipped with the norm

lullx = ||l = sup exp(—%")[u(t)],
1€[0,%0)
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define the space

[—o0

Y= {u(t) €X

W (t) € C([0,50),R), lim exp(—t*2)u' (1) < oo} ,

that endowed with the norm

ully = |ul|ee + [t || o = sup exp(—1*~")|u(t)| + sup exp(—2*2)[u’(¢)],
1€[0,00) 1€(0,00)

and applying some standard arguments about properties of a given Banach space, we
can show that X,Y are Banach spaces.
Basically in this paper, we use the Banach space Y defined above.

Define the operator 7 : Y — Y as follows

(Tu)(t) = /O G, 5)als) f(s,u(s), i (s))ds, ue¥. @.7)

Obviously fractional boundary value problem (1.1) has a solution u if and only if u
solve the operator equation u = Tu.

THEOREM 2.7. [5] Let C be a convex subset of a Banach space, U be a open
subset of C with 0 € U. Then every completely continuous map T : U — C has at least
one of the two following properties:

(E1) There exist an u € U such that Tu = u.
(E2) There existan v € dU and A € (0,1) such that v=ATv.

As a result of noncompactness of half line [0,e0), the Arzela-Ascoli theorem fails
to work in space Y. Thus in order to show the compactness of the operator 7' defined
by (2.7), we need to represent the following modified compactness criterion.

LEMMA 2.8. [9] Assume that Z is a bounded subset of Y. Then Z is relatively
compact in Y, provided that the following conditions hold:

(i) For u(t) € Z, exp(—t* Yu(t) and exp(—t*~2)u'(t) are equicontinuous on any
compact subinterval of [0,e0).

(ii) For given € > 0, there exist v = v(g) such that for every t,t >V
exp(—1%1)[u(r2) —u(n)]| <&, exp(—12)|[ () = (1)]| <&, u(t) € Z.
(ii) is called Equiconvegence at infinity for Z.

LEMMA 2.9. If conditions (Cy) — (C4) hold, then operator T : Y — Y is com-
pletely continuous.
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Proof. In order to represent the proof, we divide it into the three steps as follows:
(i) In this step show that integral operator 7 : Y — Y is continuous. Assume that

{u,} be a sequence in Y such that u, — u and u), — u' as n — . Hence there exist
positive constant 0 such that

max{[[u|ly, sup|un||y }, max{|[u'[|y,sup|[u,[|y} < 8.
neN neN

Then using Lebesgue dominated convergence theorem, we conclude that

| G aisDds = [ flouls)ad ())ds, n— o

0 0

Therefore considering Remark 2.5 and Remark 2.6, we can get

1Tty — Tully = [Tty — Tl + || (Tt — (Tu)' ||
< Lo [ als)1f (.t (9):16(5)) = fs.1(8).1d (5) s
L [ a1 50 (9).16,(9) = S5, (5) 0 () s

— 0, n-— oo

So T is continuous.

(if) Now in order to prove the relatively compactness of operator 7' : Y — Y, as-
sume that Q is a bounded subset of Y. Thus there exist p > 0 such that ||ul|y < p for
u € Q. Then using conditions (C,),(C4) and Remark 2.5, Remark 2.6 we have

1Tl = sup | [~ Glos)als)sts,u(s).(5)ds
t€[0,00) | /O
g[@/:a(s) f (s,exp(s“_l)%,exp(sa_z)#%) ds
e u(s) u'(s)
- LO/O als) | F (s, exp(s“—l) "exp(s®2) ) ‘ “

Lo i )+

< Loy (p M/ s)ds < oo, u€Q.

Similarly we can show that |[(Tu)'||e < o for u € Q. It show that TQ is uniformly
bounded.

In order to use Lemma 2.8, we should prove that 7€ is equicontinuous on any
compact subinterval of [0,eo). For J >0, 11,f, € [0,J] and for u € Q, without lose
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generality, let 11 < #,. Indeed:
|exp(—15")(Tu) (r2) —exp(—+{*~") (Tu) (11)]

< [ al)lexp—1511602,9) ~exp(—1f )G, 5]} sus) i 5) s
< [ alolfexp(—15 )G (12 exp(—1£ )G 1, )]s, () s
iﬂ,-

+ o [exp(—§ g — exp(—rf )|

a)(l_ZBt
i=1
x é a(s)| (s, u(s),u (5))|ds
< Lowi(p M/ [exp(—121)G1 (12,5) — exp(—12 )G (11,5)]a(s)9 (s)ds
Loy (p MZﬂl

b exp(—re g — exp(— 1\/

)(l_gﬂl

So we conclude that
|exp(—t5 ") (Tu) (t2) — exp(—1{ ") (Tu) (1)
<Lova(P)M [ exp(=1"7)[Ga(12:5) = Ga 01.9) a(5) (s)ds

Loy (p MZﬂl
+ i=1 exp( a 1 l|/
I—Zﬁ,

— 0, as umformly t1 — 1 for ue Q.
Similarly we can prove that
|exp(—15'")(Tu)' (12) —exp(—t{2)(Tu)' ()| — O,
when uniformly # — #,. Therefore TQ is locally equicontinuous on [0,0).

(iii) At last we must prove that 7Q is equiconvergent at infinity.
For u € Q,we know that

| a@rtsuts)al ()las <y ()M [ a(o)o(s)ds <.
on the other hand considering (2.5), obviously we have

< G
hm ﬁ
el explieT)

a(s)f(s,u(s),u (s))ds = 0.
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Hence
lim exp(—1*~")|(Tu)(1)]

= lim /oc Ma(s)f(s,u(s),u’(s))ds

t=eo Jo exp(r@l)
m
Zﬁila_l
i=1

+lim exp(—1% ) — / " a(s)f(s.u(s) il (s))ds
T(a)(1-Y Bi) "™
i=1
LOV/I MZﬁl a— -
. =R tal_l)/,- a(s)(s)ds < oo.

Similarly we can obtain the following

lim exp(—1%2)|(Tu) ()| < o.

f—o0

Therefore TQ2 is equiconvrgent at infinity. Finally by means of compactness criterion in
Lemma 2.8, we deduce that integral operator T : Y — Y is completely continuous. [

3. Main result

THEOREM 3.1. Let that conditions (Cy) — (Ca) hold and the following condition
is satisfied:
there exist positive constant |1 such that

(Lio-l-Ll) > 2%,(_1 u)m /Oma(s)(p(s)ds. 3.1)

Then the fractional boundary value problem (1.1) has an unbounded solution u = u(t)
such that
0 < exp(—t% Nu(t) +exp(—1* ) (r) < u, t€0,00).

Proof. Let us consider the following fractional boundary value problem

D u(t) + Aa(e) f(t,u(t),u'(t); 1 € (0 ), @€ (2,3),4€(0,1),

u(0) =/(0) =0, lim D u(r) 2 BiDg u(r) ‘ , (3.2)
1=E;
0<&<&<..<E<o BER

According to end part of Remark 2.6, we know that solving (3.2) is equivalent to solving
the fixed point problem u = ATu.
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Assume that
K={ue||luly <pu}.

We claim that there is no u € dK such that u = ATu for A € (0,1).

The proof is immediate, because if there exist u € JK with u = ATu, then for
A € (0,1) we have

[lulle = [|A(Tu) (1)]| = sup Aexp(—t~")|(Tu)(r)]

1€[0,00)
S S0P I8 %Mﬂsm@m%s»us
< l@/owa(s) f (S,exp(sal)%’exp(saz)ﬂggs% ) ' ®
z%/ma(s) F (s’ eprzis“)l)’exg(/ii)z) >‘ds
< Lowi(u M/ s)ds.

Thus
W< Lovi (M | al(s)o(s)ds.

Therefore it is clear that

M/ (3.3)

L_O

Similarly we can show that

(34)

(WM [~ a(s)9(5)ds
u

Gathering (3.3) and (3.4), we conclude that

h|._.

X
1

Ly ' Ly

( o1 ) 2yi ()M /
+
which is contradiction with (3.1). Then by means of Remark 2.5, Theorem 2.7, the
fractional boundary value problem (1.1) has an unbounded solution u = u(#) such that
0 < exp(—t% Nu(t) +exp(—1* ) (r) < u, t€[0,00).

This completes the proof. [l
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4. Applications

EXAMPLE 4.1. Considering the fractional boundary value problem

Dom( )+a()f(t,u(t),d' (1)) =0, 1 €[0,),

, 3 1 3 1 1 3 1 (41)
u(0) =4/ (0) =0, lim D.ule) = 3Dy (Z)w%u(z),
where
3 3
t , 1 exp(t2) +exp(—12 )u?
r)=¢e -5 /> t7 ) = 5
Ll() XP( 2) f( MM) exp(tz) exp([%) Xp( t%)( /)2

observing conditions (C}) — (C4), it is clear that the conditions (C;) — (C3) hold. Also
by means of condition (C4) we find that

1 2
Flo.exp(t? uexple ') = exp(—1) s
In this case, we conclude that
F(t

lim M o(1),

VVNMWMMWM

u' |—oo
where ¢(1) =exp(—t) € Ll[ ) and v (u) = 1 +u? is nondecreasing and continuous

on [0,0), also y»(u') = 1+( Ty © [0,1) on [0,e). Hence condition (Cy) holds.

Atlast according to (3.1) and choosing u > by means of Theorem 3.1

20
_ 3[N(3)+T ()]’ -
we conclude that the fractional boundary value problem (4.1) has at least one positive
solution u = u(¢) such that

0 < exp(—12)u(t) +exp(—t2)i (1) <, 1€ [0,0).

EXAMPLE 4.2. Letus consider the following three-point fractional boundary value
problem on positive half line

7

Dgu(t) +a(t) f(r,u(t),u'(r) =0, t €[0,0),

4.2)
u(O) = u’(O) =0, l[lgn D Zﬂl +u &l
te
where
1 1 1 1 1 1
a(t)_exp(_ ) ﬂ1:§7 ﬁ2:Za ﬂ3:§7 61:ﬁ7 62_67 €3Z§a (43)
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with

( o < ' ) ) - <eprzt%)> O<u<l
ex —r+ex . s Ux
P P exp(eH 1000

[o—1 u
/ exp [ —t+ex : t (e"p“%)) +103(u—1)|, 1<u<10?
flt,uu)= S exp o) 1000 I

!

_tg’l u

1
exp (—H—exp( o ) ) 156‘6(’3) 4£9.99% 10%| , 103 <u.
expli?)

(4.3) ensures that the conditions (Cy), (C>) hold. Also construction of function f(z,u,u’)
shows that f is continuous on [0, ). Thus condition (C3) hold.
Now we have

F(t,uu')=f (t,exp(t%)mexp(t%)u’) ,
F(t,u,)| < o)y (lul)ya(lu']),
where ¢(1) = exp(—t) and vy (r) = exp(exp(u(t))) and

-1 _

tg

%O(’j), 0O<u<l
w0={" il
valu) = %00)4403@1—1), 1 <u<10°

-1 _
8 (t%)
exp 5 3
_ . 1 10° < u.
Sl 19,9910, 10° <

Hence ¢ (u') € (0, 5755 + 10°]. Therefore condition (Cy4) holds.
9( 555 +10%)
2[1($)+T($)]
deduce that the fractional boundary value problem (4.2) has an unbounded solution u
such that

Now using (3.1) and choosing u > and applying Theorem 3.1, we

1
3

[N E

0 <exp(—t3)u(t) +exp(—t3)u'(t) < u, t€0,).
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