
Fractional
Differential

Calculus

Volume 5, Number 1 (2015), 79–85 doi:10.7153/fdc-05-07

MAXIMAL SOLUTIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS

CHRISTOPHER C. TISDELL

Abstract. When do fractional differential equations have maximal solutions? This note discusses
this question in the following way. Firstly, a comparison theorem is formulated that involves
fractional differential inequalities. Secondly, a sequence of approximative problems involving
polynomials is analyzed and it is shown that there is a subsequence of solutions whose limit is
the maximal solution to the original problem of interest. In particular, the interval of existence
for the maximal solution is the optimal length, aligning with best practice in the local theory of
existence of solutions. We achieve this through an application of the Arzela–Ascoli Theorem and
our aforementioned comparison result. A YouTube video by the author designed to complement
this work is available at http://tinyurl.com/MaxFracDE.

1. Introduction

This note discusses the question:

When do fractional differential equations have maximal solutions?

Although the area of fractional differential equations is hundreds of years old, it has
formed a very lively line of inquiry for mathematicians throughout the past decade.
However, some of the basic qualitative and quantitative theory is still to be fully de-
veloped [9, p. 285]. This paper fills a gap in the literature by advancing the state of
knowledge regarding maximal (and minimal) solutions to nonlinear fractional differen-
tial equations.

Let q ∈ (0,1) . We denote the (Riemann–Liouville) fractional differential operator
of order q by Dq , which is defined via

Dq[y](t) :=
1

Γ(1−q)
d
dt

∫ t

0
(t− s)−qy(s) ds.

Consider the initial value problem (IVP)

Dq[x− x(0)] = f (t,x), x(0) = A. (1.1)

where f : R → R and f is continuous on the rectangle

R := {(t,u) ∈ R
2 : t ∈ [0,b], |u−A|� B}
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and b and B are positive constants. The left–hand side of (1.1) is known as the Caputo
derivative of x of order q∈ (0,1) with the notation CDq(x) := Dq [x− x(0)] sometimes
used. This particular form was suggested by Caputo [1] in response to a need for
improved accuracy in modelling the initial conditions of phenomena.

Early and significant advancements to our understanding of the qualitative prop-
erties of solutions to fractional differential equations appear in [2, 3, 5, 6, 7, 9, 10, 11,
12, 13, 14] and [4, Sec. 3.5, pp. 198–212]. The ideas within those works include the
application of fixed–point and sequential methods to yield existence, uniqueness and
approximation of solutions.

In particular, in [5], the authors gave sufficient continuity conditions under which
maximal and minimal solutions to (1.1) exist on intervals of type

[
0,min

{
b,

[
BΓ(q+1)
2N +B

]1/q
}]

where N is a positive constant (to be defined a little later). However, it is well–known
[2, Theorem 2.1] that the optimal interval for local existence theory for solutions to
(1.1) is of the larger form

[
0,min

{
b,

[
BΓ(q+1)

N

]1/q
}]

. (1.2)

Thus, there is a need to improve the result for maximal and minimal solutions in (1.1)
to align it with best–practice in the literature.

This note is organized as follows. A comparison theorem is formulated that in-
volves fractional differential inequalities. In contrast to [5], we apply Weierstrass’
polynomial approximation theorem to yield a sequence of polynomial–approximative
problems to (1.1). It is shown that there is a subsequence of solutions whose limit is
the maximal solution to the original problem of interest (1.1) on the larger and optimal
interval (1.2). We achieve this through an application of the earlier comparison result
and the Arzela–Ascoli Theorem.

2. Preliminaries

To comprehend the notation used and to keep the paper somewhat self–contained,
this brief section contains some preliminary definitions and associated notation.

A solution to the IVP (1.1) on an interval I is defined to be a function x : I ⊆
[0,b] → R such that the points (t,x(t)) lie in R for all t ∈ I ⊆ [0,b] and x(t) satisfies:
(1.1) for all t ∈ I ⊆ [0,b] .

Instead of directly dealing with the problem (1.1), we will be interested in an
equivalent integral equation in the proof of our main result. The following lemma is
well known, see [5].



FRACTIONAL DIFFERENTIAL EQUATIONS 81

LEMMA 2.1. If f : R → R is continuous then the initial value problem (1.1) is
equivalent to the integral equation

x(t) = A+
1

Γ(q)

∫ t

0
(t − s)q−1 f (s,x(s)) ds. (2.1)

3. Comparison result

We now present a theorem that enables us to compare two solutions to related
fractional IVPs. The ideas rely on fractional differential inequalities and a Lipschitz
condition (3.2) with Lipschitz constant L > 0.

THEOREM 3.1. (Comparison theorem) Let w : R → R satisfy the Lipschitz con-
dition

|w(t,u)−w(t,v)|� L|u− v|, for all (t,u), (t,v) ∈ R (3.2)

for some constant L > 0 and let x = x(t) satisfy

Dq[x− x(0)] � w(t,x), x(0) = A (3.3)

on some interval I := [0,a]⊆ [0,b] . If y = y(t) satisfies

Dq[y− y(0)] = w(t,y), y(0) = α (3.4)

on I with A � α then x(t) � y(t) for all t ∈ I .

Proof of Theorem 3.1. Assume there is a point t1 ∈ I := [0,a] ⊆ [0,b] such that
x(t1) > y(t1) . Define r via

r(t) := x(t)− y(t), for all t ∈ [0,a]

so that r(t1) > 0. From the assumption in Theorem 3.1 of A � α , we have r(0) � 0.
Let t0 denote the greatest value in [0,a] such that r(t0) = 0.

For all t ∈ [t0, t1] we have r(t) � 0 with r(t) > 0 for all t ∈ (t0, t1] .
Now for all t ∈ [t0,t1] we have

Dq[r](t) = Dq[r− r(t0)](t) = Dq[x− x(t0)](t)−Dq[y− y(t0)](t)
� w(t,x(t))−w(t,y(t))
� L[x(t)− y(t)]
= Lr(t).

where we have applied (3.3), (3.4) and (3.2).
Hence we now have produced a fractional IVP involving a linear fractional in-

equality, namely
Dqr � Lr, r(t0) = 0 (3.5)
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for all t ∈ [t0, t1] . Now, in a similar spirit to Lemma 2.1 (with equalities replaced by
inequalities and 0 replaced by t0 ), the problem (3.5) can be equivalently recast in the
integral form

r(t) � 1
Γ(q)

∫ t

t0
(t− s)q−1Lr(s) ds, for all t ∈ [t0,t1].

It follows from the Gronwall–Reid–Bellman inequality for fractional differential equa-
tions [9, Lemma 3.1] that r satisfies

r(t) � 0, for all t ∈ [t0,t1].

However, this contradicts r(t) > 0 for all t ∈ (t0,t1] . Thus we see that there is no point
t1 ∈ [0,a] such that x(t1) > y(t1) . We thus conclude x � y on [0,a] as required. �

REMARK 3.2. A similar comparison result to Theorem 3.1 follows if we impose
(3.2) and reverse each of the remaining inequalities contained in the assumptions of
Theorem 3.1, with the conclusion being y � x on I .

REMARK 3.3. The Lipschitz condition (3.2) will be satisfied, for example, if f =
f (t,x) has a continuous partial derivative with respect to x on R , which is satisfied for
many kinds of functions, for example, polynomials [15]. Thus, Theorem 3.1 applies to
a wide range of problems.

4. Application to maximal solutions

We now discuss the question raised at the beginning of the paper:

When do fractional differential equations have maximal solutions?

Let N > 0 be a constant that bounds f on R , that is,

| f (t, p)| � N, for all (t, p) ∈ R.

The following result shows that under the assumption of continuity on f , the prob-
lem (1.1) will admit a maximal solution on an optimal interval of existence.

THEOREM 4.1. If f : R → R is continuous then the fractional IVP

Dq[x− x(0)] = f (t,x), x(0) = A (4.6)

has a maximal solution xM in the sense that

x � xM on [0,β ]

β := min

{
b,

[
BΓ(q+1)

N

]1/q
}

for all solutions x on [0,β ] .
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Proof of Theorem 4.1. Choose a sequence of positive constants εn that converges
to zero. Since f is continuous on R the approximation theorem of Weierstrass [8,
Theorem 7.24] ensures we can choose a sequence of polynomials Pn = Pn(t,x) such
that for each n

|Pn(t,u)− f (t,u)| < εn, for all (t,u) ∈ R.

Each Pn is Lipschitz on R with corresponding Lipschitz constants Ln .
We may assume Pn � f on R and that N is a joint bound on f and each Pn on R .
By [7, Theorem 3.1], for each n , the sequence of fractional IVPs

Dq[xn − xn(0)] = Pn(t,xn), xn(0) = A. (4.7)

has a unique solution xn = xn(t) on [0,β ] .
Now, we show xn has a uniformly convergent subsequence by applying the Arzela–

Ascoli theorem [8, Theorem 7.25]. This requires us to show that xn is uniformly
bounded and equicontinuous on [0,β ] .

Firstly, the uniform bound on xn on [0,β ] follows from the previous conclusion
that each xn solves (4.7) and so (t,xn(t)) ∈ R for each n and all t ∈ [0,β ] . That is, for
all t ∈ I and each n we have |xn(t)−A|� B .

Secondly, the uniform equicontinuity of xn follows from the following calcula-
tions.

Let t1, t2 ∈ [0,β ] . If t1 � t2 then

|xn(t1)− xn(t2)|
=

1
Γ(q)

∣∣∣∣
∫ t1

0
(t− s)q−1Pn(s,xn(s)) ds

−
∫ t2

0
(t − s)q−1Pn(s,xn(s)) ds

∣∣∣∣
=

∣∣∣∣ 1
Γ(q)

∫ t1

0
[(t1− s)q−1− (t2− s)q−1]Pn(s,xn(s)) ds

− 1
Γ(q)

∫ t1

t2
(t2− s)q−1Pn(s,xn(s)) ds

∣∣∣∣
� [2(t2 − t1)q + tq1 − tq2 ]

N
Γ(q+1)

� 2(t2 − t1)q N
Γ(q+1)

< ε

provided 0 < t2 − t1 < δ (ε) with δ (ε) := [εΓ(q+1)/2N]1/q . If t2 � t1 then a similar
situation occurs. Hence our xn are uniformly equicontinuous on [0,β ] .

By the Arzela–Ascoli Theorem, there is a (continuous) function xM = xM(t) which
is the (uniform) limit of a subsequence xnk of our xn on [0,β ] .

We now show that the above limit function xM does indeed solve our original IVP
(1.1) on [0,β ] .
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For t ∈ [0,β ] , consider∣∣∣∣xnk(t)− [A+
1

Γ(q)

∫ t

0
(t − s)q−1 f (s,xnk (s)) ds]

∣∣∣∣
=

1
Γ(q)

∣∣∣∣
∫ t

0
(t − s)q−1|Pnk(s,xnk (s))− f (s,xnk(s))| ds

∣∣∣∣
<

1
Γ(q)

∣∣∣∣
∫ t

0
(t − s)q−1εnk ds

∣∣∣∣
� εnk

β q

Γ(q+1)
.

Taking limits above, we see that for each t ∈ [0,β ] ,∣∣∣∣xM(t)− [A+
1

Γ(q)

∫ t

0
(t− s)q−1 f (s,xM(s)) ds]

∣∣∣∣ � 0.

Hence we conclude that

xM(t) = A+
1

Γ(q)

∫ t

0
(t− s)q−1 f (s,xM(s)) ds, for all t ∈ [0,β ]

and in view of Lemma 2.1, our limit function xM is a solution to (1.1) on [0,β ] .
Now, let x be any solution to (1.1). We claim x � xM on [0,β ] and so the limit

function xM will be the maximal solution.
Since f � Pnk on R we see that x satisfies

Dq[x− x(0)] � Pnk(t,x), x(0) = A.

Also, since xnk satisfies

Dq[xnk − xnk(0)] = Pnk(t,xnk), xnk(0) = A

we know from Theorem 3.1 that
x � xnk .

In the limit we thus obtain
x � xM.

There is one and only one maximal solution xM to (1.1) due to the following
argument. Assume there are two maximal solutions xM and yM . Since xM and yM are
also solutions to (1.1) we have xM � yM and yM � xM on [0,β ] . Hence we see that
xM ≡ yM . Hence xM is the maximal solution. �

REMARK 4.2. We can also show the existence of a minimal solution to (1.1) that
lies below all other solutions on [0,β ] in a similar way to the proof of Theorem 4.1 by
appealing to the remark following Theorem 3.1. The details are omitted for the sake of
brevity.
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