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EXISTENCE AND NONEXISTENCE OF POSITIVE

SOLUTIONS FOR A SYSTEM OF NONLINEAR

SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

FATEN TOUMI

Abstract. In this paper, we establish sufficient conditions for the existence and nonexistence of
positive solutions to the following nonlinear fractional differential system⎧⎪⎪⎨

⎪⎪⎩

Dαu(t)+a(t) f (t,u,v) = 0 in (0,1) ,

Dβ v(t)+b(t)g(t,u,v) = 0 in (0,1) ,
u(0) = 0, u(1) = 0, u′(0) = 0,
v(0) = 0, v(1) = 0, v′(0) = 0,

(P)

where 2 < α ,β � 3 , a,b ∈ C ((0,1) , [0,+∞)) and the functions f ,g belong to C ([0,1]×
[0,+∞) × [0,+∞) , [0,+∞)) and satisfy some appropriate conditions. Our analysis relies on
Krasnoselskii fixed point theorem. Some examples are given to illustrate our results.

1. Introduction

Fractional differential equations and systems arise in variety engineering and sci-
entific disciplines as the mathematical modeling in systems and processes in many
fields. For example, in the field of physics such as a non Markovian diffusion process
with memory [15] , charge transport in amorphous semi-conductors [17] , propagations
of mechanical waves in viscoelastics media [13] and also in the fields of electromag-
netic, acoustic, viscoelasticity, electrochemistry, economic, signal and image process-
ing, control theory, etc. For details, see [4,7,8,9,12,14,17] and the references therein.

Recently, many authors have dealt with the existence of positive solutions of non-
linear fractional differential equations and systems by the use of the techniques of non-
linear analysis (fixed-point theorems, Leray-Shauder theory, Adomian decomposition
method, etc), see [1,2,5,18–22] and the references therein. Namely, El-Shahed [5] dis-
cussed the existence and nonexistence of positive solutions for the following nonlinear
fractional boundary value problem{

Dαu(t)+ λa(t) f (u(t)) = 0 in (0,1) ,
u(0) = u′(0) = u′(1) = 0,

where Dα is the standard Riemann-Liouville fractional derivative of order α , 2 < α <
3 (see Definition 2.2), λ is a positive parameter, a : (0,1) → [0,+∞) is continuous
function with

∫ 1
0 a(t)dt > 0 and f ∈ C ([0,+∞) , [0,+∞)) .
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Motivated by the work of El-Shahed [5] , Zhao et al. [22] established some results
of existence and nonexistence of positive solutions for the following problem

{
Dαu(t)− f (t,u(t)) = 0 in (0,1) ,

u(0) = u′(0) = u′(1) = 0,

where 2 < α � 3. The authors treated the problem for both cases of singular and non-
singular nonlinearity f . They used the lower and upper solution method and Leggett-
Williams fixed point theorem to state their results.

Yu and Jiang [21] examined the existence of positive solutions for the following
problem {

Dαu(t)+ f (t,u(t)) = 0 in (0,1) ,
u(0) = u′(0) = u(1) = 0,

where 2 < α � 3, f ∈ C ([0,1]× [0,+∞) ,(0,+∞)) . The authors obtained some exis-
tence criteria for one or two positive solutions for the singular and nonsingular bound-
ary value problem by the means of the Kranoselskii fixed point theorem and the mixed
monotone method.

Recently, Feng et al. [6] studied the following nonlinear singular fractional prob-
lem with integral boundary conditions

⎧⎨
⎩

Dαu(t)+a(t) f (t,u(t)) = 0 in (0,1) ,
u(0) = u′(0) = · · · = u(n−2)(0) = 0,

u(1) =
∫ 1
0 h(t)u(t)dt,

(1.1)

where n− 1 < α � n , n � 3, a : (0,1) → [0,+∞) is continuous, h ∈ L1 ([0,1]) is
nonnegative and f ∈ C ([0,1]× [0,+∞) , [0,+∞)) . The authors developed some prop-
erties of the Green’s function of the problem (1.1) and exploit them to establish some
existence results.

In [19] , Wang et al considered the existence and the uniqueness of a positive solu-
tion to nonzero boundary values problem for a coupled system of nonlinear fractional
differential equations

⎧⎪⎪⎨
⎪⎪⎩

Dαu(t)+ f (t,v) = 0 in (0,1) ,
Dβ v(t)+g(t,u) = 0 in (0,1) ,

u(0) = 0, u(1) = au(ζ ) ,
v(0) = 0, v(1) = bv(ζ ) ,

where 1 < α,β < 2, 0 � a,b � 1, ζ ∈ (0,1) and f ,g ∈ C ([0,1]× [0,+∞) , [0,+∞)) .
Motivated by the above mentioned works, we investigate in this paper the exis-

tence of positive solutions for the following class of systems of nonlinear fractional
differential equations

⎧⎪⎪⎨
⎪⎪⎩

Dαu(t)+a(t) f (t,u,v) = 0 in (0,1) ,
Dβ v(t)+b(t)g(t,u,v) = 0 in (0,1) ,

u(0) = 0, u(1) = 0, u′(0) = 0,
v(0) = 0, v(1) = 0, v′(0) = 0,

(P)
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where 2 < α,β � 3, a,b ∈ C ((0,1) , [0,+∞)) and f ,g are nonnegative continuous
functions on [0,1]× [0,+∞)× [0,+∞) .

The paper is organized as follows. In Section 1, we recall some notions and no-
tations, especially we give some properties of the Green’s function which are needed
later. Also, we state Krasnoselskii’s fixed point theorem for a cone preserving operators
and we prove a key lemma used in the proofs of our main results. Section 2 and Section
3 are devoted to establish some results for the existence of at least one or two positive
solutions for (P) , respectively. In the last Section, we give some sufficient conditions
for nonexistence of positive solutions for (P) .

2. Preliminaries

In this section, we recall some results and present some lemmas that will be used
to prove our main results.

DEFINITION 2.1. (See [10,16]) The Riemann-Liouville fractional integral of or-
der α > 0 for a measurable function f : (0,+∞) → R is defined as

Iα f (t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, t > 0,

where Γ is the Euler Gamma function, provided that the right-hand side is pointwise
defined on (0,+∞) .

DEFINITION 2.2. (See [10,16]) The Riemann-Liouville fractional derivative of
order α > 0 for a measurable function f : (0,+∞) → R is defined as

Dα f (t) =
1

Γ(n−α)

(
d
dt

)n ∫ t

0
(t− s)n−α−1 f (s)ds =

(
d
dt

)n

In−α f (t),

where n = [α]+1, [α] denotes the integer part of the real number α , provided that the
right-hand side is pointwise defined on (0,+∞) .

LEMMA 2.3. (See [3]) Let α > 0 and n be the smallest integer greater than or
equal to α . Let u ∈ C (0,1)∩L1 ([0,1]) . Then

(i) Dα Iαu = u.

(ii) For λ > α −1 , Dα tλ = Γ(λ+1)
Γ(λ−α+1)t

λ−α . Moreover, we have Dα tα−m = 0 , m =
1,2, ...,n.

(iii) Dαu(t) = 0 if and only if u(t) = c1tα−1 + c2tα−2 + ... + cntα−n, ci ∈ R , i =
1, ...,n.

(iv) Assume that Dαu ∈ C (0,1)∩L1 ([0,1]) , then we have

IαDαu(t) = u(t)+ c1t
α−1 + c2t

α−2 + ...+ cnt
α−n,

ci ∈ R , i = 1, ...,n.
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LEMMA 2.4. Let y∈C ([0,1]) be a given function and 2< α � 3 , then the unique
solution of the fractional differential equation

Dαu(t)+ y(t) = 0 in (0,1) , (2.1)

subject to the boudary conditions

u(0) = 0, u(1) = 0, u′(0) = 0, (2.2)

is given by

u(t) =
∫ 1

0
Gα (t,s)y(s)ds, (2.3)

where

Gα (t,s) =
(t (1− s))α−1− (

(t− s)+
)α−1

Γ(α)
, for t,s ∈ [0,1] . (2.4)

Gα (t,s) is called the Green’s function of the boundary value problem (2.1)–(2.2) .
Here, for x ∈ R, x+ = max(x,0) .

Proof. By Lemma 2.3, the fractional differential equation (2.1) is equivalent to

u(t) = −Iαy(t)+ c1t
α−1 + c2t

α−2 + c3t
α−3, (2.5)

where c1, c2, c3 ∈ R .

The boundary conditions (2.2) imply that c2 = c3 = 0 and c1 =
∫ 1

0

(1−s)α−1

Γ(α)
y(s)ds .

Thus, substituting the values of c1, c2, c3 into (2.5) gives

u(t) =
∫ t

0

tα−1 (1− s)α−1− (t− s)α−1

Γ(α)
y(s)ds+

∫ 1

t

tα−1 (1− s)α−1

Γ(α)
y(s)ds.

So the solution u satisfies (2.3) . �
The following properties of the Green’s function play an important role in this

paper.

PROPOSITION 2.5. ( [6]) The function Gα defined by (2.4) satisfies

(i) Gα is nonnegative continuous function on [0,1]× [0,1] and Gα (t,s) > 0 , for all
t,s ∈ (0,1) .

(ii) For all t ∈ [0,1] , s ∈ (0,1) , we have

Gα (t,s) � Kα (s) ,

where

Kα (s) :=
1

Γ(α)

(
(τ (s) (1− s))α−1− (τ (s)− s)α−1

)
, (2.6)

and
τ (s) =

s

1− (1− s)
α−1
α−2

.
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(iii) Let θ ∈ (
0, 1

2

)
. Then, there exists γα > 0 such that

min
t∈[θ ,1−θ ]

Gα (t,s) � γαKα (s) , ∀s ∈ [0,1] .

REMARK 2.6. The constant γα satisfies the following properties

(i) 0 < γα < 1.

(ii) θ α−1 � γα .

For details, see the proof of Proposition 2.9 in [6] .

LEMMA 2.7. ( [11]) Let P be a cone of a real Banach space E , and Ω1,Ω2 two
bounded open balls of E centered at the origin with Ω1 ⊂ Ω2 . Suppose that T : P∩(
Ω2\Ω1

) −→ P is completely continuous operator such that either

(i) ‖Tx‖ � ‖x‖ , x ∈ P∩∂Ω1 and ‖Tx‖ � ‖x‖ , x ∈ P∩∂Ω2 , or

(ii) ‖Tx‖ � ‖x‖ , x ∈ P∩∂Ω1 and ‖Tx‖ � ‖x‖ , x ∈ P∩∂Ω2

holds. Then T has a fixed point in P∩ (
Ω2\Ω1

)
.

Let E = C ([0,1])×C ([0,1]) , then E is a Banach space endowed with the norm
‖(u,v)‖ = ‖u‖+‖v‖ , where ‖u‖ = supt∈[0,1] |u(t)| .

We define the cone P ⊂ E by

P = {(u,v) ∈ E : u(t) � 0, v(t) � 0, t ∈ [0,1]} .

Let θ ∈ (
0, 1

2

)
, and set Jθ = [θ ,1−θ ]. We consider the set Ω ⊂ P given by

Ω =
{

(u,v) ∈ P : min
t∈Jθ

u(t) � γα ‖u‖ , min
t∈Jθ

v(t) � γβ ‖v‖
}

.

Due to the concavity of the function minimum it is easy to verify that Ω is nonempty
closed convex set, so Ω is a cone of E . Let

Ωr = {(u,v) ∈ Ω : ‖(u,v)‖ � r} , ∂Ωr = {(u,v) ∈ Ω : ‖(u,v)‖ = r} , r > 0. (2.7)

The space R
2 is endowed with the norm ‖.‖1 given by ‖(u,v)‖1 = |u|+ |v| for any

(u,v) ∈ R
2 . So, for each r > 0, we note Br =

{
(u,v) ∈ R

2,‖(u,v)‖1 � r
}

and Br
c ={

(u,v) ∈ R
2,‖(u,v)‖1 > r

}
.

Next, we define the operator T : E −→ E as follows

(T (u,v)) (t) = (T1 (u,v) ,T2 (u,v))(t) , t ∈ [0,1] , (2.8)

where

T1 (u,v)(t) =
∫ 1

0
Gα(t,s)a(s) f (s,u(s),v(s))ds
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and

T2 (u,v)(t) =
∫ 1

0
Gβ (t,s)b(s)g(s,u(s),v(s))ds.

In the sequel we need the following notations

σθ
α =

∫ 1−θ

θ
a(t)Kα(t)dt (2.9)

and

σθ
β =

∫ 1−θ

θ
b(t)Kβ (t)dt (2.10)

where θ ∈ [
0, 1

2

]
and Kα ,Kβ are defined in Proposition 2.5 by (2.6) .

In the remainder of the paper, we adopt the following hypotheses:

(H1) a,b∈ C ((0,1) , [0,+∞)) , a(t) 	= 0 and b(t) 	= 0 on any subinterval of (0,1) and
0 < σ0

α ,σ0
β < +∞ .

(H2) f ,g ∈ C ([0,1]× [0,+∞)× [0,+∞) , [0,+∞)) .

(H3) There exist t1,t2 ∈ (0,1) such that f (t1,u,v) > 0 and g(t2,u,v) > 0 for each
u,v ∈ (0,+∞) .

REMARK 2.8. In the special case when the functions f and g are nondecreasing
with respect to the second and the third variable on (0,1) , (H3) can be replaced by

(H ′
3) There exist t1, t2 ∈ (0,1) such that f (t1,0,0) > 0 and g(t2,0,0) > 0.

LEMMA 2.9. Let (H1) ,(H2) and (H3) hold. Then (u,v)∈C ([0,1])×C ([0,1]) is
a solution of the boundary value problem (P) if and only if (u,v)∈C ([0,1])×C ([0,1])
is a solution of the integral equations

u(t) =
∫ 1

0
Gα(t,s)a(s) f (s,u(s),v(s))ds, (2.11)

v(t) =
∫ 1

0
Gβ (t,s)b(s)g(s,u(s),v(s))ds. (2.12)

That is (u,v) is a fixed point of the operator T defined by (2.8) .

Proof. The proof is immediate from Lemma 2.4, so we omit it. �

We call G(t,s) =
(
Gα (t,s) ,Gβ (t,s)

)
the Green’s function of the problem (P) .

Now, we state the following lemma which will be used in the proofs of our main
results.

LEMMA 2.10. Let (H1) and (H2) hold. Then T : Ω −→ Ω is completely contin-
uous.
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Proof. Since the functions Gα ,Gβ , f ,g are nonnegative and continuous and using
(H1) , we conclude that T : P −→ P is continuous.

Let (u,v) ∈ Ω , then by Proposition 2.5 (ii) and (iii) , we have for all t ∈ Jθ

T1 (u,v)(t) � γα

∫ 1

0
Kα(s)a(s) f (s,u(s) , v(s))ds

� γα max
τ∈[0,1]

∫ 1

0
Gα(τ,s)a(s) f (s,u(s) , v(s))ds

= γα ‖T1 (u,v)‖ .

Similarly, we have for all t ∈ Jθ

T2 (u,v)(t) � γβ ‖T2 (u,v)‖ .

Therefore, T (Ω) ⊂ Ω .
Now, let S be a bounded set of Ω , then there exists a positive constant M > 0

such that ‖(u,v)‖ � M , for all (u,v) ∈ S .
Let

M1 := max
t∈[0,1],(u,v)∈BM

f (t,u,v)

and
M2 := max

t∈[0,1],(u,v)∈BM

g(t,u,v)

From the hypothesis (H1) and Proposition 1.5 (ii) , we have for all t ∈ [0,1] and
u,v ∈ S

T1 (u,v)(t) �
∫ 1

0
Kα(s)a(s) f (s,u(s) ,v(s))ds � M1σ0

α .

Similarly,

T2 (u,v)(t) �
∫ 1

0
Kβ (s)b(s)g(s,u(s) ,v(s))ds � M2σ0

β .

So
‖T (u,v)‖ � M1σ0

α +M2σ0
β .

Hence, T (S) is uniformly bounded.
Now, let us prove that T (S) is equicontinuous on [0,1] . Using Proposition 2.5

(i) , we deduce that the function Gα is uniformly continuous on [0,1]× [0,1] . Thus,
for any ε > 0, there exists a constant δ > 0 such that for any t1,t2 ∈ [0,1] satisfying
|t2− t1| < δ and for all s ∈ [0,1] ,

|Gα (t2,s)−Gα (t1,s)| < ε
M1σ0

α2
.

Then, for u,v ∈ S , we have

|T1 (u,v)(t2)−T1 (u,v)(t1)| < ε
2
. (2.13)
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Similarly,

|T2 (u,v)(t2)−T2 (u,v)(t1)| < ε
2
. (2.14)

Therefore, by (2.13) and (2.14) we obtain

d (T (u,v)(t2) ,T (u,v)(t1)) < ε ,

where d is the distance associated to the norm ‖ . ‖1 on R
2 .

Thus, T (S) is equicontinuous. So, by Ascoli’s theorem T (S) is relatively com-
pact in E . So T : Ω −→ Ω is completely continuous. This completes the proof. �

Hereinafter, we use the following notations

f δ = limsup
‖(u,v)‖−→δ

(
max
t∈[0,1]

f (t,u,v)
u+ v

)
(2.15)

and

fδ = liminf
‖(u,v)‖−→δ

(
min
t∈[0,1]

f (t,u,v)
u+ v

)
, (2.16)

where δ = 0 or +∞.

3. Existence of positive solution

In this section, we set γ = min
(
γα ,γβ

)
and we recall that the constants σθ

α and
σθ

β are respectively defined by (2.9) and (2.10) .

THEOREM 3.1. Suppose that conditions (H1) ,(H2) and (H3) hold. In addition,
suppose that one of the following conditions is satisfied

(A1) (i) f0 >
1

γγα σθ
α

and g0 >
1

γγβ σθ
β

.

(ii) f ∞ <
1

2σ0
α

and g∞ <
1

2σ0
β

.

(A2) There exist two constants r,R with 0 < r � R such that the functions f and g
are nondecreasing with respect to the second and the third variable on [0,R] and
satisfying for all t ∈ [0,1]

(i) f
(
t,γα ‖u‖ ,γβ ‖v‖

)
>

r

γα σθ
α

and g
(
t,γα ‖u‖ ,γβ ‖v‖

)
>

r

γβ σθ
β

.

(ii) f (t,R,R) <
R

2σ0
α

and g(t,R,R) <
R

2σ0
β
.

Then problem (P) has at least one positive solution.
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Proof. Let T be the operator defined by (2.8) .

Case 1 . Suppose that condition (A1) holds, then we deduce by (A1)(i) that there
exists r1 > 0 such that

f (t,u,v) > ( f0 − ε1)(u+ v) , t ∈ [0,1] , (u,v) ∈ Br1

for ε1 chosen such that γγα σθ
α ( f0 − ε1) � 1.

Let Ωr1 be the set defined by (2.7) for r = r1 . Then, for all t ∈ Jθ , (u,v)∈ ∂Ωr1 ,
we have

T1 (u,v)(t) � γα

∫ 1

0
Kα (s)a(s) f (s,u(s) ,v(s))ds

� γα ( f0 − ε1)
∫ 1−θ

θ
Kα(s)a(s)(u(s)+ v(s))ds

� γα ( f0 − ε1)
∫ 1−θ

θ
Kα(s)a(s)

(
γα ‖u‖+ γβ ‖v‖

)
ds

� γγα ( f0 − ε1)‖(u,v)‖
∫ 1−θ

θ
Kα (s)a(s)ds

� ‖(u,v)‖ .

So

‖T1 (u,v)‖ � min
t∈Jθ

T1 (u,v)(t) � ‖(u,v)‖ . (3.1)

Similarly, we prove

‖T2 (u,v)‖ � ‖(u,v)‖ . (3.2)

Hence, from (3.1) and (3.2) , we conclude that for each (u,v) ∈ Ω∩∂Ωr1

‖T (u,v)‖ � 2‖(u,v)‖ � ‖(u,v)‖ . (3.3)

Now, considering (A1) (ii) , there exists R1 > 0 such that

f (t,u,v) < ( f ∞ + ε2)(u+ v) , t ∈ [0,1] , (u,v) ∈ BR1

c

where ε2 satisfies 2σ0
α ( f ∞ + ε2) < 1.

Let

M := max
t∈[0,1],(u,v)∈BR1

f (t,u,v).

Then for each t ∈ [0,1] and (u,v) ∈ R
2 , we have

f (t,u,v) � M +( f ∞ + ε2)(u+ v) .
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Choose r2 > max
{

2r1,R1,Mσ0
α

( 1
2 −σ0

α ( f ∞ + ε2)
)−1

}
, then for (u,v)∈ ∂Ωr2 and for

all t ∈ [0,1] we have

T1 (u,v)(t) �
∫ 1

0
Kα(s)a(s) f (s,u(s) ,v(s))ds

�
∫ 1

0
Kα(s)a(s)(M +( f ∞ + ε2) (u(s)+ v(s)))ds

= Mσ0
α +( f ∞ + ε2)

∫ 1

0
Kα(s)a(s)(u(s)+ v(s))ds

� r2

2
− r2σ0

α ( f ∞ + ε2)+ ( f ∞ + ε2)
∫ 1

0
Kα(s)a(s)ds‖(u,v)‖

� 1
2
‖(u,v)‖ . (3.4)

Analogously, we prove

‖T2 (u,v)‖ � 1
2
‖(u,v)‖ . (3.5)

Hence, from (3.4) and (3.5) , we conclude that for each (u,v) ∈ Ω∩∂Ωr2

‖T (u,v)‖ � ‖(u,v)‖ . (3.6)

Thus by using Lemme 2.9 and applying Lemma 2.7 to (3.3) and (3.6) , we conclude
that the boundary value problem (P) has a nonnegative solution (u,v) ∈ Ω with r1 �
‖(u,v)‖ � r2.

Case 2 . Suppose that condition (A2) is satisfied and let (u,v) ∈ Ω∩ ∂Ωr , then
we have for all t ∈ Jθ

u(t) � γα ‖u‖ and v(t) � γβ ‖v‖ .

Therefore, by using (A2) (i) , we obtain for all t ∈ Jθ and (u,v) ∈ ∂Ωr

T1 (u,v)(t) � γα

∫ 1

0
Kα(s)a(s) f (s,u(s) ,v(s))ds

� γα

∫ 1−θ

θ
Kα (s)a(s) f

(
t,γα ‖u‖ ,γβ ‖v‖

)
ds

� γα
r

γα σθ
α

∫ 1−θ

θ
Kα(s)a(s)ds

= r = ‖(u,v)‖
So

‖T1 (u,v)‖ � ‖(u,v)‖ . (3.7)

By the same manner, we obtain

‖T2 (u,v)‖ � ‖(u,v)‖ . (3.8)
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Hence, from (3.7) and (3.8) , we conclude that for each (u,v) ∈ Ω∩∂Ωr

‖T (u,v)‖ � ‖(u,v)‖ . (3.9)

Next, using the monotonicity of the function f , we have for all t ∈ [0,1] and for (u,v)∈
∂ΩR ,

T1 (u,v)(t) �
∫ 1

0
Kα(s)a(s) f (s,u(s) ,v(s))ds

�
∫ 1

0
Kα(s)a(s) f (s,R,R)ds

� R

2σ0
α

∫ 1

0
Kα (s)a(s)ds

=
R
2

=
1
2
‖(u,v)‖ . (3.10)

Similarly, we prove

‖T2 (u,v)‖ � 1
2
‖(u,v)‖ . (3.11)

Hence, from (3.10) and (3.11) , we conclude that for each (u,v) ∈ Ω∩∂ΩR

‖T (u,v)‖ � ‖(u,v)‖ . (3.12)

Thus by applying Lemma 2.7 to (3.9) and (3.12) , we deduce that the boundary
value problem (P) has a nonnegative solution (u,v) ∈ Ω with r � ‖(u,v)‖ � R .

Now, let us prove that (u,v) is a positive solution for the the problem (P) that is
u(t) > 0 and v(t) > 0 for each t ∈ (0,1) .

In the contrary case we can find t∗ ∈ (0,1) such that u(t∗) = 0 or v(t∗) = 0. We
will suppose that u(t∗) = 0. Since u(t) � 0, we have

u(t∗) = 0 =
∫ 1

0
Gα(t∗,s)a(s) f (s,u(s),v(s))ds � 0.

Since the functions Gα ,a and f are nonnegative and continuous, we obtain

Gα(t∗,s)a(s) f (s,u(s),v(s)) = 0 a.e.(s) .

According the assumption (H1) and the fact that Gα is positive on (0,1) , we deduce
that

f (s,u(s),v(s)) = 0 a.e.(s) .

Now, by the hypothesis (H3) and the continuity of the function f we deduce that there
exists a subset K ⊂ (0,1) with μ(K) > 0 where μ is the Lebesgue measure on [0,1]
such that f (t,u(t) , v(t)) > 0 on K and this is a contradiction. This ends the proof. �
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EXAMPLE 3.2. Consider the system of nonlinear differential equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D
5
2 u(t)+ 1√

t

(
1+ t +u

1
3 v

1
2

)
= 0 in (0,1) ,

D
5
2 v(t)+ 1√

t
(t +u

1
3 v

1
3 ) = 0 in (0,1) ,

u(0) = 0, u(1) = 0, u′(0) = 0,
v(0) = 0, v(1) = 0, v′(0) = 0.

(3.13)

Then α = β = 5
2 , a(t) = b(t) = 1√

t
, f (t,u,v) =

(
1+ t +u

1
3 v

1
2

)
, g(t,u,v) = (t +

u
1
3 v

1
3 ) . It is easy to verify that the conditions (H1) , (H2) and (H3) hold. In addition,

we have f ∞ = limsup
‖(u,v)‖−→+∞

max
t∈[0,1]

f (t,u,v)
u+ v

= lim
‖(u,v)‖−→+∞

2+u
1
3 v

1
2

u+ v
= 0 and g∞ = 0. On

the other hand, we have f0 = liminf
‖(u,v)‖−→0

min
t∈[0,1]

f (t,u,v)
u+ v

= lim
‖(u,v)‖−→0

1+u
1
3 v

1
2

u+ v
= +∞ and

g0 = +∞ . Therefore the hypothesis (A1) is satisfied. Theorem 3.1 yields that the
problem (3.13) admits a positive solution.

THEOREM 3.3. Suppose that conditions (H1) , (H2) and (H3) hold. In addition,
suppose that the following condition is satisfied:

(A3) (i) f 0 <
1

2σ0
α

and g0 <
1

2σ0
β

.

(ii) f∞ >
1

γγα σθ
α

and g∞ >
1

γγβ σθ
β

.

Then problem (P) has at least one positive solution.

Proof. The proof is analogous to that of Theorem 3.1, so we omit it. �

EXAMPLE 3.4. Consider the system of nonlinear differential equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D
5
2 u(t)+ 2√

t
(u+ v)(u+ v+2− t)= 0 in (0,1) ,

D
5
2 v(t)+ 1√

t
(u+ v)(u+ v+1− t)= 0 in (0,1) ,

u(0) = 0, u(1) = 0, u′(0) = 0,
v(0) = 0, v(1) = 0, v′(0) = 0.

(3.14)

Then α = β = 5
2 , a(t)= 2√

t
, b(t)= 1√

t
, f (t,u,v)= (u+v)(u+ v+2− t), g(t,u,v)

= (u+ v)(u+ v+1− t). It is easy to verify that the conditions (H1) , (H2) and (H3)

hold. In addition, we have f 0 = limsup
‖(u,v)‖→0

max
t∈[0,1]

f (t,u,v)
u+ v

= lim
‖(u,v)‖→0

(u+ v+2) = 2 and

g0 = 1. Now, by a simple computation, we obtain σ0
α ≈ 0.20962 and σ0

β ≈ 0.10481.
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So we have 2σ0
α f 0 ≈ 0.83848 < 1 and 2σ0

β g0 ≈ 0.94472 < 1, that is (A3) (i) is ver-

ified. Next, we have f∞ = liminf
‖(u,v)‖−→+∞

min
t∈[0,1]

f (t,u,v)
u+ v

= lim
‖(u,v)‖−→+∞

(u+ v+1) = +∞

and g∞ = +∞ . Therefore hypothesis (A3) is satisfied. Then by Theorem 3.3 the prob-
lem (3.14) admits a positive solution.

4. Existence of multiple positive solutions

Now, we discuss the multiplicity of positive solutions for system (P) .

THEOREM 4.1. Assume (H1) , (H2) and (H3) . Suppose that the following as-
sumptions hold

(A4) (i) f0 >
1

γγα σθ
α

and g0 >
1

γγβ σθ
β

.

(ii) f∞ >
1

γγα σθ
α

and g∞ >
1

γγβ σθ
β

.

(A5) There exists r > 0 such that maxt∈[0,1],(u,v)∈Br
f (t,u,v) <

r

2σ0
α

and

maxt∈[0,1],(u,v) ∈Br
g(t,u,v) <

r

2σ0
β
.

Then problem (P) has at least two positive solutions (u1,v1) and (u2,v2) which
satisfy

0 < ‖(u1,v1)‖ < r < ‖(u2,v2)‖ .

Proof. By (A4)(i) , there exists 0 < r1 < r such that for each t ∈ [0,1] and (u,v)∈
Br1 ,

f (t,u,v) > ( f0 − ε1) (u+ v),

where ε1 is chosen such that γγα σθ
α ( f0 − ε1) � 1. So using the same manner to prove

(3.3) , we obtain
‖T (u,v)‖ � ‖(u,v)‖ , (u,v) ∈ ∂Ωr1 . (4.1)

Now by (A4)(ii) , there exists r2 > r such that for each t ∈ [0,1] and (u,v) ∈ Br2
c
,

f (t,u,v) > ( f∞ − ε2)(u+ v) ,

where ε2 satisfies γγα σθ
α ( f∞ − ε2) � 1. So using the same manner to prove (3.3) , we

obtain
‖T (u,v)‖ � ‖(u,v)‖ , (u,v) ∈ ∂Ωr2 . (4.2)

On the other hand, by hypothesis (A5) , we have for all t ∈ [0,1] and (u,v) ∈ ∂Ωr

T1 (u,v)(t) �
∫ 1

0
Kα(s)a(s) f (s,u(s) ,v(s))ds

<
r

2σ α

∫ 1

0
Kα(s)a(s)ds =

1
2
‖(u,v)‖ . (4.3)
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Similarly, we prove

‖T2 (u,v)‖ <
1
2
‖(u,v)‖ . (4.4)

Hence, from (4.3) and (4.4) , we conclude that for each (u,v) ∈ Ω∩∂Ωr

‖T (u,v)‖ < r = ‖(u,v)‖ . (4.5)

Thus by applying Lemma 2.7 to (4.2) and (4.5) , we deduce that (P) has a positive
solution (u1,v1)∈ Ω∩(

Ωr\Ωr1

)
with r1 � ‖(u1,v1)‖< r , and by (4.1) and (4.5) , we

conclude that system (P) has a positive solution (u2,v2) ∈ Ω∩ (
Ωr2\Ωr

)
with r <

‖(u2,v2)‖ � r2 . Thus, the boundary value problem (P) admits two positive solutions
satisfying

r1 � ‖(u1,v1)‖ < r < ‖(u2,v2)‖ � r2.

This ends the proof. �

THEOREM 4.2. Assume (H1) ,(H2) and (H3) . Suppose that the following as-
sumptions hold

(A6) (i) f 0 <
1

2σ0
α

and g0 <
1

2σ0
β

.

(ii) f ∞ <
1

2σ0
α

and g∞ <
1

2σ0
β

.

(A7) There exists R > 0 such that maxt∈[0,1],(u,v)∈BR
f (t,u,v) > R

γα σ θ
α

and

maxt∈[0,1],(u,v) ∈∂BR
g(t,u,v) > R

γβ σ θ
β
.

Then problem (P) has at least two positive solutions (u1,v1) and (u2,v2) which
satisfy.

0 < ‖(u1,v1)‖ < R < ‖(u2,v2)‖ .

5. Nonexistence of a positive solution

Our last results correspond to the case when system (P) has no positive solution.

THEOREM 5.1. Assume that (H1) ,(H2) and (H3) hold and f (t,u,v)<
1

2σ0
α

(u+v) ,

g(t,u,v) <
1

2σ0
β

(u+ v) , for all t ∈ [0,1] , u > 0 , v > 0 . Then the boundary value prob-

lem (P) has no positive solution.
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Proof. Assume the contrary, that problem (P) admits a positive solution (u,v) .
Then, by Lemma 2.9, (u,v) satisfy (2.11) and (2.12) . By Proposition 2.5 (ii) we
have

‖u‖ = max
t∈[0,1]

∫ 1

0
Gα(t,s)a(s) f (s,u(s),v(s))ds

�
∫ 1

0
Kα(s)a(s) f (s,u(s),v(s))ds

<
1

2σ0
α

∫ 1

0
Kα(s)a(s)(u+ v)(s)ds

� 1
2
‖(u,v)‖ .

Similarly, we obtain

‖v‖ <
1
2
‖(u,v)‖ .

So, ‖(u,v)‖ = ‖u‖+ ‖v‖ < ‖(u,v)‖ , which is a contradiction. The proof is com-
plete. �

EXAMPLE 5.2. The following boundary value problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D
5
2 u+ 1√

t
((u+v)2+(u+v))(2+sinu+cosv)

1.2(u+v)+2 = 0 in (0,1) ,

D
7
3 v+ 1√

t
(u+ v)

( 5
2 + sin(u+ v)

)
= 0 in (0,1) ,

u(0) = 0, u(1) = 0, u′(0) = 0,
v(0) = 0, v(1) = 0, v′(0) = 0,

(5.1)

has no positive solution. In fact, set α = 5
2 , β = 7

3 , a(t) = b(t) = 1√
t
, f (t,u,v) =

((u+v)2+(u+v))(2+sinu+cosv)
1.2(u+v)+2 and g(t,u,v) = (u+ v)

(
5
2 + sin(u+ v)

)
. It is easy to ver-

ify that the conditions (H1) ,(H2) and (H3) hold. A simple calculation shows that
σ0

5
2
≈ 0.10481 and σ0

7
3
≈ 0.13946. So we have 2σ0

5
2
f (t,u,v) < 0.9957(u+ v) and

2σ0
7
3
g(t,u,v) < 0.97622(u+ v) . Thus Theorem 5.1 is valid.

THEOREM 5.3. Assume that (H1) , (H2) and (H3) hold and f (t,u,v) >
1

γγα σθ
α

(u+ v), g(t,u,v) >
1

γγβ σθ
β

(u+ v), for all t ∈ [0,1] , u > 0 , v > 0 . Then the

boundary value problem (P) has no positive solution.
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