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A PROBLEM WITH AN INTEGRAL BOUNDARY

CONDITION FOR A TIME FRACTIONAL DIFFUSION

EQUATION AND AN INVERSE PROBLEM

HALYNA LOPUSHANSKA

Abstract. For a linear inhomogeneous time fractional diffusion equation on bounded cylindrical
domain the problem with an integral boundary condition is studied. The inverse problem for the
restoration of the whole right-hand side of the equation is also studied. The conditions of the
solvability and the unique solvability of these problems are founded.

1. Introduction

The conditions of classical solvability of a time fractional Cauchy problem and the
first boundary value problem to a time fractional diffusion equation were obtained, for
example, in [2, 3, 4, 10, 11, 14]. There were proved the existence and uniqueness theo-
rems and the representation of classical solution in terms of the Green vector-function.
The inverse problems to such equations ([1, 6, 12, 13, 15] and references therein) have
important practical applications. Some studies in inverse problems for restoration of
a right-hand side of the equation, or a minor coefficient in the equation, or the initial
data of a solution (see, for instance, [1, 8]) use the integral type over-determination
conditions.

In the present paper, for a time fractional diffusion equation we study the solvabil-
ity of a problem with an integral boundary condition. Namely, we study the boundary
value problem

Dβ
t u−Δu = F0(x,t), (x,t) ∈ Ω0× (0,T ], (1)∫

Ω1

K(x,t,z)u(z,t)dz = F(x,t), (x,t) ∈ Ω1 × [0,T ], (2)

u(x,0) = F2(x), x ∈ Ω0, (3)

with the Caputo fractional derivative (or Caputo-Djrbashian fractional derivative) [2]

Dβ v(t) =
1

Γ(1−β )

t∫

0

v′(τ)
(t − τ)β dτ =

1
Γ(1−β )

[ d
dt

t∫

0

v(τ)
(t − τ)β dτ − v(0)

tβ

]
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of order β ∈ (0,1) , where Ω0 is a boundary domain in R
n , n � 2 with a smooth

boundary Ω1 , K , F0 , F , F2 are given functions.
We can consider this problem as the inverse problem for the determination a pair

of functions: a classical solution u of the second boundary value problem

∂u(x, t)
∂ν(x)

= F1(x,t), (x,t) ∈ Ω1 × [0,T ], u(x,0) = F2(x), x ∈ Ω0, (4)

for the equation (1) and its unknown boundary values F1 under integral type over-
determination condition (2). Here ν(x) is the unite vector of the interior normal to the
surface Ω1 in the point x ∈ Ω1 . So, we can use the Green function’s method in study
the solvability of these problems. Note that in [13] the unknown boundary condition
was founded by using the another over-determination condition.

We also study the inverse problem of finding the solution of the problem (1), (3),
(4) and the right-hand side F0(x,t) of the equation (1) under the over-determination
condition ∫

Ω1

R(x,t,z)u(z,t)dz = F(x,t), (x,t) ∈ Ω0× [0,T ]

with given functions R , F1 , F2 , F . Note that the inverse problems for the determination
of the right-hand side F0 = F0(x) or F0 = F0(t) of a such kind of equations were studied
(see, for example, [1, 15]).

2. Definitions and auxiliary results

Assume that Ω1 is the surface of class C1+γ , γ ∈ (0,1) , Qi = Ωi×(0,T ] , i = 0,1,
Q2 = Ω0 , C(Q0) (C(Q0)) is the space of continuous functions on Q0 (Q0 , respec-
tively), Cγ (Ωi) is the space of Hölder continuous functions on Ωi , Cγ (Qi) is the space
of Hölder continuous functions in space variables x ∈ Ωi for all t ∈ [0,T ] and jointly

continuous in (x, t) ∈ Qi , i = 0,1, C2,β (Q0) = {v ∈C(Q0) |Δv,Dβ
t v ∈C(Q0)} ,

C2,β (Q0) = C2,β (Q0)∩C(Q0), C1
2,β (Q0) = {v ∈C2,β (Q0) |∂v/∂ν ∈C(Q1)},

D(R) is the space of indefinitely differentiable functions compactly supported in R ,
D ′(R) is the space of linear continuous functionals (distributions) over D(R) and
D ′

+(R) = { f ∈ D ′(R) : f = 0 for t < 0} .
We denote by f∗g the convolution of the distributions f and g , use the function

fλ ∈ D ′
+(R) :

fλ (t) =
θ (t)tλ−1

Γ(λ )
for λ > 0 and fλ (t) = f ′1+λ (t) for λ � 0 ,

where Γ(z) is the Gamma-function, θ (t) is the Heaviside function and derivative un-
derstood as a derivative in D ′(R) . Note that

fλ ∗ fμ = fλ+μ .
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Recall that the Riemann-Liouville derivative v(β )(t) of order β > 0 is defined as

v(β )(t) = f−β (t)∗ v(t).

If Dβ v exists then

Dβ v(t) = v(β )(t)− f1−β (t)v(0) for β ∈ (0,1).

Let the following assumptions hold:

(A) F0 ∈Cγ(Q0) , F2 ∈Cγ (Ω0) , suppF2 ⊂ Ω0 , F ∈Cγ (Q1) ,

(B) K(x, t,y) ((x,t) ∈ Q1,y ∈ Ω1 ) is a jointly continuous in all variables func-
tion, Hölder continuous in x,y ∈ Ω1 for all t ∈ [0,T ] .

DEFINITION 1. A function u ∈ C2,β (Q0) satisfying the equation (1) on Q0 and
the conditions (2), (3) is called a solution of the problem (1)–(3).

Definition 1 and the assumption (A) about F2 imply the compatibility condition

F(x,0) = 0, x ∈ Ω1. (5)

DEFINITION 2. A vector-function (G0(x,t,y,τ),G1(x,t,y,τ),G2(x,t,y)) such that
under rather regular F0 , F1 , F2 the function

u(x, t) =
t∫

0

dτ
∫

Ω0

G0(x,t,y,τ)F0(y,τ)dy+
t∫

0

dτ
∫

Ω1

G1(x, t,y,τ)F1(y,τ)dy

+
∫

Ω0

G2(x,t,y)F2(y)dy, (x,t) ∈ Q0 (6)

is a classical (from C1
2,β (Q0)) solution of the problem (1), (4) is called a Green vector-

function of this second boundary-value problem.
The existence of a unique Green vector-function of the problem (1), (4) may be

prove as in [9] for the first boundary value problem.
The results of [4, 14] and the Levi method (see [4, 5]) imply the following esti-

mates in the case n � 3:

Gj(x, t,y,τ) � C
(t− τ)|x− y|n−2 , j = 0,1,

G2(x, t,y) � C

tβ |x− y|n−2
, |x− y|2 < 4(t− τ)β ,

Gj(x, t,y,τ) � C(t− τ)β−1

|x− y|n ·
( |x− y|2

4(t− τ)β

)1+ n
2(2−β)

e
−c

(
|x−y|2

4(t−τ)β

) 1
2−β

, j = 0,1,

G2(x, t,y) � C
|x− y|n ·

( |x− y|2
4tβ

) n
2(2−β)

e
−c

(
|x−y|2
4tβ

) 1
2−β

, |x− y|2 > 4(t− τ)β

where C,c are positive constants, and similar estimates in the case n = 2. Note that the
character features in t is accurate. The Green vector-function owns Hölder properties.
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THEOREM 1. Assume that F0 ∈Cγ (Q0) , F1 ∈Cγ (Q1) , F2 ∈Cγ (Ω0) , suppF2 ⊂
Ω0 . Then there exists a unique solution u ∈ C1

2,β (Q0) of the second boundary value
problem (1), (4), and it is defined by the formula (6).

The theorem is proving as the corresponding result in [5, 5.3].

3. The existence and uniqueness theorems

Substituting the right-hand side of (6) in the condition (2) we obtain
t∫

0

dτ
∫

Ω1

K(x,t,z)dz
∫

Ω0

G0(z,t,y,τ)F0(y,τ)dy

+
t∫

0

dτ
∫

Ω1

K(x,t,z)dz
∫

Ω1

G1(z,t,y,τ)F1(y,τ)dy

+
∫

Ω1

K(x,t,z)dz
∫

Ω0

G1(z,t,y)F2(y)dy = F(x,t), (x,t) ∈ Q1,

that is

1

∑
j=0

t∫

0

dτ
∫

Ω j

Kj(x, t,y,τ)Fj(y,τ)dy+
∫

Ω0

K2(x,y,t)F2(y)dy = F(x,t), (x, t) ∈ Q1, (7)

where

Kj(x,t,y,τ) =
∫

Ω1

K(x,t,z)Gj(z,t,y,τ)dz, j = 0,1,

K2(x,t,y) =
∫

Ω1

K(x,t,z)G2(z,t,y)dz.

Using the above estimates of components of the Green vector-function we find

|Kj(x, t,y,τ)|
�

∫

{z∈Ω1:|y−z|<2(t−τ)β/2}

∣∣K(x,t,z)Gj(z,t,y,τ)
∣∣dx

+
∫

{z∈Ω1:|y−z|>2(t−τ)β/2}

∣∣K(x,t,z)Gj(z,t,y,τ)
∣∣dx

� C1

[ ∫

{z∈Ω1:|y−z|<2(t−τ)β/2}

dz
(t− τ)|y− z|n−2 dz

+
∫

{z∈Ω1:|y−z|>2(t−τ)β/2}

(t − τ)β−1

|z− y|n
( |z− y|2

4(t− τ)β

)1+ n
2(2−β)

e
−c

(
|z−y|2

4(t−τ)β

) 1
2−β

dz
]
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� C2

[ 1
t− τ

2(t−τ)β/2∫

0

dr+(t− τ)−1− nβ
2(2−β)

diamΩ1∫

2(t−τ)β/2

r
n

2−β e
−c

(
r2

4(t−τ)β

) 1
2−β

dr
]

� C3(t− τ)
β
2 −1

[
1+

∞∫

1

η
n−β

2 e−cηdη
]

� k̂(t − τ)
β
2 −1

= k̂Γ
(β

2

)
f β

2
(t− τ), x ∈ Ω1, y ∈ Ω j, 0 � τ < t � T, j = 0,1,

and similarly,
∣∣∣K2(x, t,y)

∣∣∣ � C4

[ ∫

{z∈Ω1:|y−z|<2tβ/2}

dz

tβ |y− z|n−2
dz

+
∫

{z∈Ω1:|y−z|>2tβ/2}

1
|z− y|n

( |z− y|2
4tβ

) n
2(2−β)

e
−c

(
|z−y|2
4tβ

) 1
2−β

dz
]

� C5

[ 1

tβ

2tβ/2∫

0

dr+ t
− nβ

2(2−β)

diamΩ1∫

2tβ/2

r
n

2−β −2
e
−c

(
r2

4tβ

) 1
2−β

dr
]

� k̂t−
β
2 = k̂Γ

(
1− β

2

)
f
1− β

2
(t), x ∈ Ω1, y ∈ Ω0, t ∈ (0,T ].

Hereinafter Ci , k̂ , k̂i , i ∈ Z+ are positive constants.
Note that

f
1− β

2
(t)∗

t∫

0

Kj(x, t,y,τ)Fj(y,τ)dτ =
t∫

0

f
1− β

2
(t − s)ds

s∫

0

Kj(x,s,y,τ)Fj(y,τ)dτ

=
t∫

0

( t∫

τ

f
1− β

2
(t− s)Kj(x,s,y,τ)ds

)
Fj(y,τ)dτ

=
t∫

0

( t−τ∫

0

f
1− β

2
(s)Kj(x,t − s,y,τ)ds

)
Fj(y,τ)dτ

=
t∫

0

(
f
1− β

2
(s)∗Kj(x,s,y,τ)

)∣∣
s=t−τFj(y,τ)dτ

=
t∫

0

f
1− β

2
(t − τ)∗Kj(x, t − τ,y,τ)Fj(y,τ)dτ.

Denote

R j(x,t,y,τ) = f
1− β

2
(t− τ)∗Kj(x,t− τ,y,τ), j = 0,1.
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We have

|R j(x, t,y,τ)| � k̂Γ
(β

2

)
f
1− β

2
(t− τ)∗ f β

2
(t − τ)

= k̂Γ
(β

2

)(
f
1− β

2
∗ f β

2

)
(t − τ) = k̂Γ

(β
2

)
f1(t − τ) = k̂1θ (t− τ).

Since the character features in the variable t is accurate then

R j(x,t,y,τ) �= 0, (x,t) ∈ Q1, (y,τ) ∈ Qj, j = 0,1

and are the continuous functions. Similarly, taking the equality

f
1− β

2
(t)∗ f

1− β
2
(t) = f2−β (t)

into account, we obtain that the function

R2(x,t,y) := f
1− β

2
(t)∗K2(x, t,y)

is continuous on Q1×Ω0 and has the estimate

|R2(x,t,y)| � k̂2t
1−β , (x,t) ∈ Q1, y ∈ Ω0.

Thus, from (7) we obtain the linear integral Volterra equation of the first type

t∫

0

dτ
∫

Ω1

R1(x,t,y,τ)F1(y,τ)dy = h(x,t), (x,t) ∈ Q1 (8)

relatively unknown F1 where

h(x, t) = f
1− β

2
(t)∗F(x,t)−

t∫

0

dτ
∫

Ω0

R0(x, t,y,τ)F0(y,τ)dy

−
∫

Ω0

R2(x,t,y)F2(y)dy, (x,t) ∈ Q1.

This integral equation has the jointly continuous kernel R1(x,t,y,τ) , Hölder continu-
ous in x,y ∈ Ω1 for all t,τ ∈ [0,T ] , and h ∈Cγ (Q1) , h(x,0) = 0.

Conversely, if F1 ∈ Cγ(Q1) is a solution of the equation (8), which is equivalent
to the equation (7), then by Theorem 1 the function (6) is a solution (from C1

2,β (Q0))
of the problem (1), (4) and satisfies the condition (2).

We obtain the following result.

THEOREM 2. Assume that (A), (B) and (5) hold, there exists a solution F1 ∈
Cγ(Q1) of the equation (8). Then there exists a solution u ∈ C1

2,β (Q0) of the problem
(1)–(3). It is defined by (6).
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THEOREM 3. At terms of uniqueness of a solution of the equation (8) a solution
u ∈C1

2,β (Q0) of the problem (1)–(3) is unique.

Proof. Take two solutions u1,u2 ∈C1
2,β (Q0) of the problem (1)–(3). Putting u =

u1−u2 we obtain

Dβ
t u = Δu, (x,t) ∈ Q0,∫

Ω1

K(x,t,y)u(y,t)dy = 0, (x,t) ∈ Q1, (9)

u(x,0) = 0, x ∈ Ω0.

By Theorem 1, for the solution u ∈C1
2,β (Q0) of the second boundary value problem

Dβ
t u = Δu, (x,t) ∈ Q0,

∂u(x,t)
∂ν(x)

= F1(x,t), (x,t) ∈ Q1, u(x,0) = 0, x ∈ Ω0

with some unknown F1 ∈Cγ(Q1) we have

u(x, t) =
t∫

0

dτ
∫

Ω1

G1(x,t,y,τ)F1(y,τ)dy, (x,t) ∈ Q0. (10)

As it has been shown before, using (9), we obtain the first type linear Volterra
integral equation

t∫

0

dτ
∫

Ω1

R1(x,t,y,τ)F1(y,τ)dy = 0, (x,t) ∈ Q1,

relatively unknown F1 . By Theorem’s assumption,

F1(y,τ) = 0, (y,τ) ∈ Q1. (11)

Then (10) implies that u = 0 on Q0 . �

4. The restoration of a whole right-hand side of equation

We study the inverse problem

∂u(x,t)
∂ν(x)

= F1(x,t), (x,t) ∈ Q1, (12)

u(x,0) = F2(x), x ∈ Ω0, (13)∫

Ω1

R(x,t,z)u(z,t)dz = F(x,t), (x,t) ∈ Q0 (14)
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for the equation (1) under the following assumption
(C) F1 ∈Cγ(Q1) , F2 ∈Cγ(Ω0) , suppF2 ⊂ Ω0 , F ∈Cγ (Q0) , R(x,t,y) ((x,t) ∈

Q0,y ∈ Ω1 ) is a a jointly continuous in all variables function, Hölder continuous in
x ∈ Ω0 , y ∈ Ω1 for all t ∈ [0,T ] .

This problem consists in finding a pair of functions

(u,F0) ∈ M (Q0) = M := C1
2,β (Q0)×Cγ(Q0)

satisfying the equation (1) and the above conditions (12)–(14).
The problem’s definition and the assumption (C) about F2 imply the compatibility

condition
F(x,0) = 0, x ∈ Ω0. (15)

THEOREM 4. Assume that (C) and (15) hold, there exists a solution F0 ∈Cγ (Q0)
of the integral equation

t∫

0

dτ
∫

Ω0

R0(x,t,y,τ)F0(y,τ)dy = r0(x,t), (x,t) ∈ Q0, (16)

with

r0(x, t) = f
1− β

2
(t)∗F(x,t)−

t∫

0

dτ
∫

Ω1

R1(x,t,y,τ)F1(y,τ)dy−
∫

Ω0

R2(x,t,y)F2(y)dy,

Rj(x,t,y,τ) = f
1− β

2
(t− τ)∗

∫

Ω1

R(x,t− τ,z)Gj(z,t − τ,y,τ)dz, (y,τ) ∈ Qj, j = 0,1,

R2(x, t,y) = f
1− β

2
(t)∗

∫

Ω1

R(x,t,z)G2(z,t,y)dz, y ∈ Ω0, (x, t) ∈ Q0.

Then there exists a solution (u,F0) ∈ M (Q0) of the problem (1), (12)–(14) where u
is defined by (6). At terms of uniqueness of a solution of the equation (16) a solution
(u,F0) ∈ M (Q0) of the problem (1), (12)–(14) is unique.

Proof. Substituting the right-hand side of (6) in the condition (14) and using the
previous reasoning we obtain the linear integral Volterra equation (16) of the first
type relatively unknown F0 . This integral equation has a jointly continuous kernel
R0(x,t,y,τ) , Hölder continuous in x,y ∈ Ω0 for all t,τ ∈ [0,T ] , r0 ∈ Cγ(Q0) and
r0(x,0) = 0, x ∈ Ω0 . Conversely, if F0 ∈ Cγ (Q0) is a solution of the equation (16),
then the function (6) is a solution (from C1

2,β (Q0)) of the problem (1), (12)–(14).

Take two solutions (u1,F1
0 ) , (u2,F2

0 ) of the problem (1), (12)–(14). Putting u =
u1−u2 , F0 = F1

0 −F2
0 we obtain

Dβ
t u = Δu+F0, (x,t) ∈ Q0,
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∂u(x,t)
∂ν(x)

= 0, (x,t) ∈ Q1,

u(x,0) = 0, x ∈ Ω0,∫

Ω1

R(x,t,y)u(x,s)ds = 0, (x,t) ∈ Q0. (17)

By Theorem 1, the solution u(x,t) of obtained direct second boundary value problem
has the representation

u(x, t) =
t∫

0

dτ
∫

Ω0

G0(x,t,y,τ)F0(y,τ)dy, (x,t) ∈ Q0. (18)

Substitute it in (17). As it has been shown before, we obtain the first type linear Volterra
integral equation

t∫

0

dτ
∫

Ω0

R0(x,t,y,τ)F0(y,τ)dy = 0, (x,t) ∈ Q0

relatively unknown F0 . By Theorem’s assumption,

F0(y,τ) = 0, (y,τ) ∈ Q0.

Then (18) implies that u = 0 on Q0 . �

5. Problems with other conditions

5.1. In the same way we can study the boundary value problem

Dβ
t u−Δu = F0(x,t), (x,t) ∈ Q0, (19)∫

Ω0

K (x,t,z)u(z,t)dz = F(x,t), (x,t) ∈ Q1, (20)

u(x,0) = F2(x), x ∈ Ω0, (21)

where K , F0 , F , F2 are given functions.
This problem is different from the problem (1)–(3) by the condition (20) where

integration is on Ω0 . We obtain similar preliminary results.

ASSUMPTION (D). K (x,t,y) ((x,t) ∈ Q1,y ∈ Ω0 ) is a jointly continuous in all
variables function, Hölder continuous in x ∈ Ω1 , y ∈ Ω0 for all t ∈ [0,T ] .

For the solution u ∈C2,β (Q0) the compatibility condition
∫

Ω0

K (x,0,z)F2(z)dz = F(x,0), x ∈ Ω1 (22)

is necessary.
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THEOREM 5. Assume that (A), (D) and (22) hold, there exists a solution F1 ∈
Cγ(Q1) of the integral equation

t∫

0

dτ
∫

Ω1

P1(x,t,y,τ)F1(y,τ)dy = p(x,t), (x,t) ∈ Q1 (23)

with

p(x, t) = f1−β (t)∗F(x,t)−
t∫

0

dτ
∫

Ω0

P0(x,t,y,τ)F0(y,τ)dy

−
∫

Ω0

P2(x,t,y)F2(y)dy, (x, t) ∈ Q1,

P j(x, t,y,τ) = f1−β (t− τ)∗K j(x,t − τ,y,τ), (y,τ) ∈ Qj, j = 0,1,

P2(x, t,y) = f1−β (t)∗K2(x,t,y), y ∈ Ω0, (x,t) ∈ Q1,

and

K j(x, t,y,τ) =
∫

Ω0

K (x,t,z)Gj(z,t,y,τ)dz, x ∈ Ω1, y ∈ Ω j, 0 � τ < t � T, j = 0,1,

K2(x, t,y) =
∫

Ω0

K (x,t,z)G2(z,t,y)dz, x ∈ Ω1, y ∈ Ω0, t ∈ (0,T ].

Then there exists a solution u ∈ C1
2,β (Q0) of the problem (19)–(21). It is defined

by (6).

Proof. This theorem is proving as Theorems 2 and 3. Using the above estimates
of components of the Green vector-function we find

|K j(x, t,y,τ)|
� C6

[ ∫

{z∈Ω0:|y−z|<2(t−τ)β/2}

dz
(t− τ)|y− z|n−2 dz

+
∫

{z∈Ω0:|y−z|>2(t−τ)β/2}

(t− τ)β−1

|z− y|n
( |z− y|2

4(t− τ)β

)1+ n
2(2−β)

e
−c

(
|z−y|2

4(t−τ)β

) 1
2−β

dz
]

� C7

[ 1
t− τ

2(t−τ)β/2∫

0

rdr+(t− τ)−1− nβ
2(2−β)

diamΩ0∫

2(t−τ)β/2

r
1+ n

2−β e
−c

(
r2

4(t−τ)β

) 1
2−β

dr
]

� k̂(t− τ)β−1 = k̂Γ(β ) fβ (t− τ),

x ∈ Ω1, y ∈ Ω j, 0 � τ < t � T, j = 0,1,
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and similarly,

|K2(x, t,y)| � C8

[ ∫

{z∈Ω0:|y−z|<2tβ/2}

dz

tβ |y− z|n−2
dz

+
∫

{z∈Ω0:|y−z|>2tβ/2}

1
|z− y|n

( |z− y|2
4tβ

) n
2(2−β)

e
−c

(
|z−y|2
4tβ

) 1
2−β

dz
]

� C9

[ 1

tβ

2tβ/2∫

0

rdr+ t
− nβ

2(2−β)

diamΩ1∫

2tβ/2

r
n

2−β −1
e
−c

(
r2

4tβ

) 1
2−β

dr
]

� k̂

x ∈ Ω1, y ∈ Ω0, t ∈ (0,T ].

So, the equation (23) has the jointly continuous kernel P1(x,t,y,τ) , Hölder con-
tinuous in x,y ∈ Ω1 for all t,τ ∈ [0,T ] , p ∈Cγ (Q1) and p(x,0) = 0. �

5.2. We also study the inverse problem

Dβ
t u−Δu = F0(x,t), (x,t) ∈ Ω0× (0,T ], (24)

∂u(x,t)
∂ν(x)

= F1(x,t), (x,t) ∈ Ω1× [0,T ], (25)

u(x,0) = F2(x), x ∈ Ω0, (26)
∫

Ω0

P(x,t,z)u(z,t)dz = F(x,t), (x,t) ∈ Ω0× [0,T ] (27)

with given functions P , F1 , F2 , F .

ASSUMPTION (E). F1 ∈ Cγ (Q1) , F2 ∈ Cγ (Ω0) , suppF2 ⊂ Ω0 , F ∈ Cγ (Q0) ,
P(x,t,y) ((x, t) ∈ Q0,y ∈ Ω0 ) is a a jointly continuous in all variables function, Hölder
continuous in x,y ∈ Ω0 for all t ∈ [0,T ] .

This problem consists in finding a pair of functions

(u,F0) ∈ M0(Q0) = M0 := C1
2,β (Q0)×Cγ(Q0)

satisfying the equation (24) and the conditions (25)–(27).
The compatibility condition

∫

Ω0

P(x,0,z)F2(z)dz = F(x,0), x ∈ Ω0 (28)

is necessary.
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THEOREM 6. Assume that (E) holds, there exists a solution F0 ∈ Cγ (Q0) of the
integral equation

t∫

0

dτ
∫

Ω0

P0(x,t,y,τ)F0(y,τ)dy = p0(x, t), (x, t) ∈ Q0,

with

p0(x, t) = f1−β (t)∗F(x,t)−
t∫

0

dτ
∫

Ω1

P1(x,t,y,τ)F1(y,τ)dy−
∫

Ω0

P2(x, t,y)F2(y)dy,

Pj(x, t,y,τ) = f1−β (t− τ)∗
∫

Ω0

P(x,t− τ,z)Gj(z,t − τ,y,τ)dz, (y,τ) ∈ Qj, j = 0,1,

P2(x, t,y) = f1−β (t)∗
∫

Ω0

P(x,t,z)G2(z,t,y)dz, y ∈ Ω0, (x,t) ∈ Q0.

Then there exists a solution (u,F0) ∈ M0(Q0) of the problem (24)–(27), u is defined
by (6).
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