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Abstract. In this work we study the following singular problem involving the fractional Laplace
operator:

(Pλ )

{
L u = a(x)

uγ +λ f (x,u) in Ω;

u = 0, in R
N \Ω,

where Ω ⊂ R
N , N � 2 be a bounded smooth domain, a ∈C(Ω), λ is a positive parameter and

0 < γ < 1, 2 < r < 2∗s where 2∗s = N2
N−2s . Under appropriate assumptions on the function K and

the function f and we employ the method of Nehari manifold in order to show the existence of
Tr,γ such that for all λ ∈ (0,Tr,γ ) , problem (Pλ ) has at least two solutions.

1. Introduction

Let Ω be a smooth bounded domain in R
N , N � 2 and 2∗s = 2N

N−2s . The purpose of
this work is to study the existence of multiple solutions of the singular elliptic problem
involving the non-local operator:

(Pλ )

{
L u = a(x)

uγ + λ f (x,u) in Ω;

u = 0, in R
N \Ω,

where a ∈ C(Ω), λ is a positive parameter, 0 < γ < 1, 2 < r < 2∗s and the linear
non-local operator L is given by

L u(x) =
1
2

∫
RN

(u(x+ y)+u(x− y)−2u(x))K(y)dy.

For s ∈ (0,1), we introduce the fractional Sobolev space

Hs(Ω) =

{
u ∈ L2(Ω) :

|u(x)−u(y)|
|x− y|N+2s

2

∈ L2(Ω×Ω)

}
,

with the Gagliardo norm

‖u‖Hs(Ω) = |u|2 +
(∫

Ω×Ω

|u(x)−u(y)|2
|x− y|N+2s dxdy

) 1
2

.
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Denote
Q = R

2N \ ((RN \Ω)× (RN \Ω)
)

and we define the space

X
def=
{

u : R
N → RLebesgue measurable : u\Ω ∈ L2(Ω)

and (u(x)−u(y))
√

K(x− y) ∈ L2(Q)
}

with the norm

‖u‖X = |u|2 +
(∫

Q
|u(x)−u(y)|2K(x− y)dxdy

) 1
2

.

Through this paper we consider the space

E = {u ∈ X : u = 0 a.e. in R
n \Ω} ,

with the norm

‖u‖ =
(∫

Q
|u(x)−u(y)|2K(x− y)dxdy

) 1
2

.

Note that the space E was often called X0 in the previous literature, see e.g. [18, 19].
We stress that (E,‖.‖) is a Hilbert space and the embedding E ↪→ L2∗(Ω) is con-

tinuous (for detail see [18]). Moreover, C2
0(Ω) ⊂ E , X ⊂ Hs(Ω) and E ⊂ Hs(RN) (for

detail see [19]).
Associated to the problem (Pλ ) we define the functional Jλ : E → R given by

Jλ (u) =
1
2
||u||2− 1

1− γ

∫
Ω

a(x)|u(x)|1−γ dx− λ
r

∫
Ω

F(x, |u(x)|)dx, u ∈ E

where F(x,s) :=
∫ s
0 f (x,t)dt. We say that u ∈ E is a weak solution of problem (Pλ ) if

for every v ∈ E we have:∫
R2N

(u(x)−u(y))((v(x)− v(y))K(x− y)dxdy

=
∫

Ω
a(x)u(x)−γv(x)dx+ λ

∫
Ω

f (x,u(x))v(x)dx. (1.1)

Note that u is a positive solution of problem (Pλ ) , if u is positive and verifies the
equation

1
2
||u||2− 1

1− γ

∫
Ω

a(x)u(x)1−γ dx− λ
r

∫
Ω

F(x,u(x))dx = 0.

Before giving our main results, let us briefly recall literature concerning related
nonlinear equations involving fractional powers of the Laplace operator. Problem in-
volving fractional Laplace operator has been given considerable attention since they are
a arises in many physical phenomena, in probability and also in finance for more details
see for instance [3, 11] and references therein. Meanwhile, elliptic equations involving
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integral fractional Laplace operator has been investigated in quite a large number of pa-
pers, such as [7, 9, 18, 19] and references therein. Some other results dealing with the
existence of solutions concerning Dirichlet problem involving the spectral fractional
laplacian has been treated in [4, 6, 21] and references therein. Note that, these two frac-
tional operators (i.e. the ’integral’ one and the ’spectral’ one) are different. We refer
the interested reader to [20] for a careful comparison of theses two operator.

Problems (Pλ ) have been also studied with different elliptic operators. For Laplace
operator and purely singular case, they have been studied by Crandall-Rabinowitz-
Tartar [10]. After this paper, many authors have considered the problem above for
Laplacian, p-Laplacian operators or fractional p-laplacian, using the technique used
in [10] or a combination of this approach with the Nehari’s and Perron’s methods,
among others, we would like to mention Coclite-Palmieri [8], Giacomoni-Saoudi [14]
and references therein in the case of the Laplacian equation, In Giacomoni-Schindler-
Takáč [15], the case of the p-Laplacian equation is considered and the corresponding
quasilinear and singular N-Laplacian equation is considered in Saoudi-Kratou [17].
Ghanmi-Saoudi [13] proved the multiplicity of solutions of the quasi-linear singular
p− fractional equation using the method of the Nehari manifold.

The main goal of this paper is to show how the usual variational techniques can be
extended to deal with singular fractional Laplace problem with boundary conditions.
Hence, To obtain multiple (at least two distinct, positive) solutions of problem (Pλ ),
we combine some well-known fibering maps (i.e., maps of the form t → Jλ (tu), see
(Alves-El Hamidi [1], Brown-Zhang [5]) and by minimization on the suitable subset of
Nehari manifold.

Before stating our main results, we make the following assumptions throughout
this paper : Let f ∈ C (Ω×R,R) is positively homogeneous of degree r− 1, that is,
f (x,tu) = tr−1 f (x,u) hold for all (x,u) ∈ Ω×R and we suppose that the function F
satisfying suitable growth conditions. Precisely, we assume the following:

(H1 ) F : Ω×R −→ R is homogeneous of degree r, that is,

F(x,tu) = trF(x,u)(t > 0) for all x ∈ Ω, u ∈ R.

(H2 ) F±(x,u) = max(±F(x,u),0) �= 0 for all u �= 0.

From (H1 ), f leads to the so-called Euler identity

u f (x,u) = rF(x,u)

and
|F(x,u)| � C|u|r for some constantC > 0. (1.2)

Let K : R
N \ {0} −→ (0,∞) is a function satisfying the following properties:

(K1 ) γK ∈ L1(R) , with γ(x) = min(|x|2,1) .

(K2 ) There exists μ > 0 such that K(x) > μ |x|−(N+2s) , ∀ x ∈ R
n \ {0}.

(K3 ) K(x) = K(−x) for any x ∈ R
n \ {0}.
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We give below the precise statements of results that we will prove.

THEOREM 1.1. Suppose that the condition (H1)–(H2) and (K1)–(K3) are sat-
isfied. Then, there exists Tr,γ > 0 such that, problem (Pλ ) has at least two positive
solutions for all λ ∈ (0,Tr,γ).

This paper is organized as follows: The section 2 is devoted to proof some lem-
mas in preparation for the proof of our main result. While, existence of two solutions
(Theorem 1.1) will be presented in section 3.

2. Main results

In this section, we collect some basic results that will be used in the forthcoming
sections. Let Tr,γ be a constant given by

Tr,γ =
1+ γ
r−2

(
r−2

r+ γ −1

) r+γ−1
1+γ S

r+γ−1
1+γ

2∗

K‖a‖
r−2
1+γ
∞ |Ω|

(2∗−2)
2∗(1+γ)

,

where S2∗ is the best Sobolev constant of the embedding from E into L2∗(Ω) given by

S2∗ := inf
u∈E\{0}

(∫
Q |u(x)−u(y)|2K(x− y)dxdy

) 1
2

(
∫

Ω |u|2∗dx)
1
2∗

.

Define the constraint set

Nλ := {t(u)u : u ∈ E \ {0}}
where t(u) are the zeros of the map Φu : (0,∞) → R defined as

Φu(t) =
t2

2
||u||2−λ

tr

r

∫
Ω

F(x,u(x))dx− t1−γ

1− γ

∫
Ω

a(x)u(x)1−γdx.

Note that, it is clear that u ∈ Nλ if and only if

||u||2−λ
∫

Ω
F(x,u(x)dx =

∫
Ω

a(x)u(x)1−γdx (2.1)

and it is easy to see that tu ∈ Nλ if and only if Φ′
u(t) = 0 and in particular, u ∈ Nλ if

and only if Φ′
u(1) = 0.

To investigate the existence of multiple solutions, we decompose Nλ into three
measurable sets defined as follows:

N +
λ

def=
{

u ∈ Nλ : (γ +1)||u||2−λ (γ + r−1)
∫

Ω
F(x,u(x))dx > 0

}
,

N −
λ

def=
{

u ∈ Nλ : (γ +1)||u||2−λ (γ + r−1)
∫

Ω
F(x,u(x))dx < 0

}
,
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N 0
λ

def=
{

u ∈ Nλ : (γ +1)||u||2−λ (γ + r−1)
∫

Ω
F(x,u(x))dx = 0

}
.

Our first result is the following

LEMMA 2.1. Jλ is coercive and bounded below on Nλ .

Proof. Let u∈Nλ . Then, using (1.2) and the fact that the embedding E ↪→ L2∗(Ω)
is continuous combined with the Hölder’s inequality, we obtain∫

Ω
F(x,u(x))dx � C

∫
Ω
|u|rdx � C|Ω| 2∗

2∗−r |u|r2∗ . (2.2)

Moreover, as above, one has∫
Ω

a(x)u1−γdx � ‖a‖∞

∫
Ω
|u|1−γdx � ‖a‖∞|Ω| 2∗

2∗+γ−1 |u|1−γ
2∗ . (2.3)

Consequently, from (2.2) and (2.3), we obtain

Jλ (u) =
1
2
||u||2− 1

1− γ

∫
Ω

a(x)
u(x)γ−1 dx− λ

r

∫
Ω

F(x,u(x))dx

=
r−2
2r

||u||2− r+ γ −1
r(γ −1)

∫
Ω

a(x)u1−γdx

� r−2
2r

S2∗|u|22∗ −
r+ γ −1
r(γ −1)

‖a‖∞|Ω| 2∗
2∗+γ−1 |u|1−γ

2∗ .

Now, since 0 < γ < 1 and 2 < r, the functional Jλ is coercive and bounded from below
on Nλ . which give the proof of the Lemma 2.1. �

LEMMA 2.2. Let λ ∈ (0,Tr,γ). Then, there exist t+0 and t−0 such that

Φu(t+0 ) = λ
∫

Ω
F(x,u)dx = Φu(t−0 )

and
Φ′

u(t
+
0 ) < 0 < Φ′

u(t
−
0 );

that is, t+0 u ∈ N +
λ and t−0 u ∈ N −

λ .

Proof. From the definition of the function Φu(t) the function Φ′
u(t) is defined by

Φ′
u(t) = t||u||2−λ tr−1

∫
Ω

F(x,u(x))dx− t−γ
∫

Ω
a(x)u(x)1−γdx

Then, for Φ′
u(t) = 0 it is simple to verify that Φu attains it’s maximum at

tmax =
(

(r+ γ −1)
∫

Ω a(x)u1−γdx
(r−2)||u||2

) 1
γ+1

.
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Moreover, Φ′
u(t) > 0 for all 0 < t < tmax and Φ′

u(t) < 0 for all t > tmax . On the other
hand,

Φ(tmax) =
γ +1
r−2

(
r−2

r+ γ −1

) r+γ−1
γ+1 ||u||

2(r+γ−1)
γ+1

(
∫

Ω a(x)u1−γdx)
r−2
γ+1

.

Using (2.2) and (2.3), one has

Φu(tmax)−λ
∫

Ω
F(x,u(x))dx

� γ +1
r−2

(
r−2

r+ γ −1

) r+γ−1
γ+1 (S2∗|u|22∗)

r+γ−1
γ+1(

‖a‖∞|Ω| 2∗+γ−1
2∗ |u|1−γ

2∗
) r−2

γ+1

−λC|Ω| 2∗−r
2∗ |u|r2∗ ,

=
γ +1
r−2

(
r−2

r+ γ −1

) r+γ−1
γ+1 S

r+γ−1
γ+1

2∗ |u|
2(r+γ−1)

γ+1
2∗ |u|−

(r−2)(1−γ)
γ+1

2∗(
‖a‖∞|Ω| 2∗+γ−1

2∗
) r−2

γ+1

−λC|Ω| 2∗−r
2∗ |u|r2∗

=C|Ω| 2∗−r
2∗
(
Tr,γ −λ

) |u|r2∗ > 0, (2.4)

for all λ ∈ (0,Tr,γ). Hence, there exist tow numbers denoted t+0 , t−0 such that 0 < t+0 <
tmax < t−0 and verifies

Φu(t+0 ) = λ
∫

Ω
F(x,u)dx = Φu(t−0 )

and
Φ′

u(t
+
0 ) < 0 < Φ′

u(t
−
0 ).

This implies that, t+0 u ∈ N +
λ and t−0 u ∈ N −

λ . The proof of Lemma 2.2 is now com-
pleted. �

As a consequence of Lemma 2.2, we have the following result:

LEMMA 2.3. For all λ ∈ (0,Tr,γ) the set N ±
λ �= /0 and the set N 0

λ = /0 . More-
over, N −

λ is a closed set in E− topology.

Proof. From Lemma 2.2, we can assume that N ± are non-empty sets for λ ∈
(0,Tr,γ). Now, to prove the result, we proceed by contradiction. For, this purpose there
exists u0 ∈ N 0

λ . It follows that

(γ +1)‖u0‖2−λ (r+ γ −1)
∫

Ω
F(x,u0(x))dx = 0,

that is,

0 = ‖u0‖2−
∫

Ω
a(x)u1−γ

0 dx−λ
∫

Ω
F(x,u0)dx

=
r−2

r+ γ −1
‖u0‖2−

∫
Ω

a(x)u1−γ
0 dx.
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Using, (2.4) we get

0 < φu0(tmax)−λ
∫

Ω
F(x,u0)dx

=
γ +1
r−2

(
r−2

r+ γ −1

) r+γ−1
γ+1 ||u0||

2(r+γ−1)
γ+1(∫

Ω a(x)u1−γ
0 dx

) r−2
γ+1

−λ
∫

Ω
F(x,u0)dx

� γ +1
r−2

(
r−2

r+ γ −1

) r+γ−1
γ+1 ||u0||

2(r+γ−1)
γ+1(

(r−2)‖u0‖2

r+γ−1

) r−2
γ+1

− γ +1
r+ γ −1

‖u0‖2 = 0 (2.5)

which is impossible. Thus, N 0
λ = /0 for all λ ∈ (0,Tr,γ) . Now, to prove that N −

λ is a
closed set for all λ ∈ (0,Tr,γ) . We can introduce the sequence {un} ⊂ N −

λ such that
un → u in E . Since {un} ⊂ N −

λ , then we have

||un||2−
∫

Ω
a(x)u1−γ

n dx−λ
∫

Ω
F(x,un)dx = 0,

and

(γ +1)||un||2 −λ (γ + r−1)
∫

Ω
F(x,un)dx < 0. (2.6)

Therefore, we get

||u||2−
∫

Ω
a(x)u1−γdx−λ

∫
Ω

F(x,u)dx = 0,

and

(γ +1)||u||2−λ (γ + r−1)
∫

Ω
F(x,u)dx � 0,

which implies that u ∈ N 0
λ ∪N −

λ = N −
λ . Thus u ∈ N −

λ for all λ ∈ (0,Tr,γ). This
completes the proof of the Lemma 2.3. �

LEMMA 2.4. Given u ∈ N −
λ (respectively N +

λ ) with u � 0 , for all v ∈ E with
v � 0 , there exist ε > 0 and a continuous function h such that for all s∈R with |s|< ε
we have

h(0) = 1 and h(s)(u+ sv) ∈ N −
λ (respectively N +

λ ).

Proof. We introduce the function ψ : R×R −→ R define by:

ψ(t,s) = tγ+1||u+ sv||2−
∫

Ω
a(x)(u+ sv)1−γdx−λ tr+γ−1

∫
Ω

F(x,u+ sv)dx.

That is, the first derivative of the function ψ is given by

ψt(t,s) = (γ +1)tγ ||u+ sv||2−λ (r+ γ −1)tr+γ−2
∫

Ω
F(x,u+ sv)dx,
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which is continuous on R×R . Now, since u∈N −
λ ⊂Nλ , we have that that ψ(1,0) =

0, and

ψt(1,0) = (γ +1)||u||2−λ (r+ γ −1)
∫

Ω
F(x,u)dx < 0.

Thus, using the implicit function theorem on the function ψ at the point (1,0) we get
the existence of a constant δ > 0 and a function h such that

h(0) = 1, h(s)(u+ sv) ∈ Nλ , ∀ s ∈ R, |s| < δ .

Hence, taking ε > 0 possibly smaller enough, we get

h(s)(u+ sv) ∈ N −
λ , ∀ s ∈ R, |s| < ε.

The case u ∈ N +
λ may be obtained in the same way. Therefore the proof of Lemma

2.4 is now completed. �

3. Multiplicity of solutions to the problem (Pλ ) for all λ ∈ (0,Tr,γ)

Since Jλ (u) = Jλ (|u|) , we can assume that all the price elements in Nλ are
nonnegative. On the other hand, according to Lemma 2.1 and Lemma 2.3, for all
λ ∈ (0,Tr,γ)

m+ := inf
u∈N +

λ

Jλ (u) and m− := inf
u∈N −

λ

Jλ (u)

are well defined. Moreover, for all u ∈ N +
λ , it follows that

(γ +1)||u||2−λ (γ + r−1)
∫

Ω
F(x,u(x))dx > 0,

and consequently, since 0 < γ < 1, 2 < r and u �= 0, we have

Jλ (u) =
1
2
||u||2− 1

1− γ

∫
Ω

a(x)u(x)1−γdx− λ
r

∫
Ω

F(x,u(x))dx

=
(1

2
− 1

1− γ

)
||u||2 + λ

( 1
1− γ

− 1
r

)∫
Ω

F(x,u(x))dx

<
−1− γ
2(1− γ)

||u||2 +
γ +1

r(1− γ)
||u||2

= − (r−2)(γ +1)
2r(1− γ)

||u||2 < 0.

Thus,
m+ = inf

u∈N +
λ

Jλ (u) < 0 (3.1)

for all λ ∈ (0,Tr,γ) .

Proof of Theorem 1.1. The proof is done in two steps:

Step 1: (Pλ ) have a positive solution in N +
λ .

Let us consider the sequence {un}⊂N +
λ and applying Ekeland’s variational prin-

ciple (see [2]), we obtain
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(i) Jλ (un) < m+ + 1
N ,

(ii) Jλ (u) � Jλ (un)− 1
N ‖u−un‖ , for all u ∈ N +.

Since Jλ (u) = Jλ (|u|) , we can assume that un(x) � 0. Consequently, as Jλ is coercive
on Nλ , {un} is a bounded sequence in E , going to a sub-sequence denoted by {un} ,
and u0 � 0 such that un ⇀ u0, weakly in E, un → u0, strongly in L1−γ(Ω), and Ls(Ω),
for 1 � s < 2∗, and un(x) → u0(x), a.e. in Ω, as n → ∞. Now, from (3.1) and using
the weak lower semi-continuity of norm Jλ (u0) � liminfJλ (un) = inf

N +
Jλ , we see that

u0 �≡ 0 in Ω.
Claim 1 . u0(x) > 0 a.e. in Ω.
Firstly, we start by observing that, since un ∈ N +

λ , one has

(γ +1)||un||2−λ (γ + r−1)
∫

Ω
F(x,un)dx > 0 (3.2)

equivalent to

(γ +1)
∫

Ω
a(x)u1−γ

n dx−λ (r−2)
∫

Ω
F(x,un)dx > C1. (3.3)

Now, using Hölder’s inequality, we get that, as n → ∞,∫
Ω

u1−γ
n dx �

∫
Ω

u1−γ
0 dx+

∫
Ω
| un−u0 |1−γ dx

�
∫

Ω
u1−γ

0 dx+C ‖ un−u0 ‖1−γ
L2(Ω)

=
∫

Ω
u1−γ

0 dx+o(1).

Similarly ∫
Ω

u1−γ
0 dx �

∫
Ω

u1−γ
n dx+

∫
Ω
| un−u0 |1−γ dx

�
∫

Ω
u1−γ

0 dx+C ‖ un−u0 ‖1−γ
L2(Ω)

=
∫

Ω
u1−γ

n dx+o(1).

Thus, ∫
Ω

u1−γ
n dx =

∫
Ω

u1−γ
0 dx+o(1). (3.4)

On the other hand, using Vitali’s convergence Theorem, we have

lim
n→∞

∫
Ω

F(x,un)dx =
∫

Ω
F(x,u0)dx. (3.5)

Therefore, from (3.4) and (3.5), it follows that

lim
n→∞

(
(γ +1)

∫
Ω

a(x)u1−γ
n dx−λ (r−2)

∫
Ω

F(x,un)dx

)

= (γ +1)
∫

Ω
a(x)u1−γ

0 dx−λ (r−2)
∫

Ω
F(x,u0)dx � 0.
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Now, we assume that

(γ +1)
∫

Ω
a(x)u1−γ

0 dx−λ (r−2)
∫

Ω
F(x,u0)dx = 0. (3.6)

Consequently, combining (3.4)–(3.5) and the weakly lower semi-continuity of the norm,
we obtain

0 � ||u0||2−
∫

Ω
a(x)u1−γ

0 dx−λ
∫

Ω
F(x,u0)dx

= ||u0||2− r+ γ −1
r−2

∫
Ω

a(x)u1−γ
0 dx (3.7)

= ||u0||2−λ
r+ γ −1

γ +1

∫
Ω

F(x,u0)dx

and consequently, from (2.5) one has a contradiction. That is

(γ +1)
∫

Ω
a(x)u1−γ

0 dx−λ (r−2)
∫

Ω
F(x,u0)dx > 0. (3.8)

Now, let us consider the function ϕ ∈ E, with ϕ � 0. From Lemma 2.3 with u = un ,
there exits a sequence of continuous functions gn = gn(t) such that gn(t)(un + tϕ) ∈
N +

λ and g2
n(0) = 1. So,

[gn(t)]2||un + tϕ ||2− [gn(t)]1−γ ∫
Ω a(x)(un + tϕ)1−γdx

−λ [gn(t)]r
∫

Ω F(x,un + tϕ)dx = 0.

Since

||un||2−
∫

Ω
a(x)u1−γ

n dx−λ
∫

Ω
F(x,un)dx = 0, (3.9)

it follows that, for t small enough

0 = (gn(t)2−1)||un + tϕ ||2 +
(||un + tϕ ||2−||un||2

)
−(gn(t)1−γ −1)

∫
Ω

a(x)(un + tϕ)1−γdx−
∫

Ω
a(x)

(
(un + tϕ)1−γ −u1−γ

n

)
dx

−λ (gn(t)r −1)
∫

Ω
F(x,un + tϕ)dx−λ

∫
Ω

F(x,un + tϕ)−F(x,un)dx

� (gn(t)2−1)||un + tϕ ||2 +
(||un + tϕ ||2−||un||2

)
−(gn(t)1−γ −1)

∫
Ω

a(x)(un + tϕ)1−γdx

−λ (gn(t)r −1)
∫

Ω
F(x,un + tϕ)dx−λ

∫
Ω

F(x,un + tϕ)−F(x,un)dx,
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dividing by t > 0 and passing to the limit as t → 0, we get

0 � 2g′n(0)‖un‖2−g′n(0)(1− γ)
∫

Ω
u1−γ

n dx−λ rg′n(0)
∫

Ω
F(x,un)dx

+2
∫

R2N

(un(x)−un(y))(ϕ(x)−ϕ(y))K(x− y)
|x− y|N+2s dxdy

= g′n(0)
(

(2− r)‖un‖2 +(r+ γ −1)
∫

Ω
u1−γ

n dx

)

+2
∫

R2N

(un(x)−un(y))(ϕ(x)−ϕ(y))K(x− y)
|x− y|N+2s dxdy,

(3.10)

where g′n(0) ∈ [−∞,∞] denotes the right derivate of gn(t) at zero. Since un ∈ N +,
g′n(0) �= −∞. For simplicity, we assume that the right derivate of gn at t = 0 exists.
Moreover, from (3.7) g′n(0) is uniformly bounded from below. Now, using the condi-
tion (ii) ,

|gn(t)−1| ‖un‖
n

+ tgn(t)
‖ϕ‖
n

� Jλ (un)− Jλ (gn(t)(un + tϕ))

= − γ +1
2(1− γ)

‖un‖2 + λ
r+ γ −1
r(1− γ)

∫
Ω

F(x,un)dx+
γ +1

2(1− γ)
gn(t)2‖un + tϕ |2

−λ
r+ γ −1
r(1− γ)

gn(t)r
∫

Ω
F(x,un + tϕ)dx

=
γ +1

2(1− γ)
[‖un + tϕ‖2−‖un‖2 +( fn(t)2−1)‖un + tϕ‖2]

−λ
r+ γ −1
r(1− γ)

[∫
Ω

F(x,un + tϕ)−F(x,un)dx+(gn(t)r −1)
∫

Ω
F(x,un + tϕ)dx

]
.

Then, dividing the above inequality by t > 0, and passing to the limit t → 0, we obtain

1
N

(|g′n(0)|‖un‖+ tgn(t)‖ϕ‖)
� g′n(0)

1− γ

[
r+ γ −1
(1− γ)

∫
Ω

a(x)u1−γ
n dx− γ +1

(1− γ)
‖un‖2

]

+
2(γ +1)
(1− γ)

∫
R2N

(un(x)−un(y))(ϕ(x)−ϕ(y))K(x− y)
|x− y|N+2s dxdy

−λ
(

r+ γ −1
(1− γ)

)∫
Ω

f (x,un)ϕdx.

(3.11)

Then from (3.8), there exists a positive constant C such that

− 1
1− γ

(
(r−2)‖un‖2− (r+ γ −1)

∫
Ω

u1−γ
n dx

)
− ||un||

n
� C > 0. (3.12)

Thus, according to (3.12) and (3.11), g′n(0) is uniformly bounded from above. Conse-
quently,

g′n(0) is uniformly bounded for n large enough. (3.13)
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Thus from condition (ii) it follows that for t > 0 small enough,

Jλ (un) � Jλ (gn(t)(un + tϕ))+
1
N
||gn(t)(un + tϕ)−un||. (3.14)

That is,

1
N

(|gn(t)−1|‖un‖+ tgn(t)‖ϕ‖)

� 1
N
‖gn(t)(un + tϕ)−un‖

� Jλ (un)− Jλ (gn(t)(un + tϕ))

= −g2
n(t)−1

2
‖un‖2 +

g1−γ
n (t)−1

1− γ

∫
Ω

a(x)u1−γ
n dx

+
g1−γ

n (t)
1− γ

∫
Ω

a(x)
(
(un + tϕ)1−γ −u1−γ

n

)
dx+

g2
n(t)
2

(‖un‖2−‖un + tϕ‖2)
+

λ
r

gr
n(t)

∫
Ω

F(x,un + tϕ)−F(x,un)dx+
λ
r
(gr

n(t)−1)
∫

Ω
F(x,un)dx,

Then dividing by t > 0, and passing to the limit t → 0, we obtain

1
N

(|g′n(0)|‖un‖+‖ϕ‖)
� −g′n(0)

[
‖un‖2 +

∫
Ω

a(x)u1−γ
n dx+ λ

∫
Ω

F(x,un)dx

]
+ λ

∫
Ω

f (x,un)ϕdx

−
∫

R2N

(un(x)−un(y))(ϕ(x)−ϕ(y))K(x− y)
|x− y|N+2s dxdy

+ liminf
t→0+

1
1− γ

∫
Ω

(
(un + tϕ)1−γ −u1−γ

n

t
dx

)

= −
∫

R2N

(un(x)−un(y))(ϕ(x)−ϕ(y))K(x− y)
|x− y|N+2s dxdy

+ λ
∫

Ω
f (x,un)ϕdx+ liminf

t→0+

1
1− γ

∫
Ω

a(x)

(
(un + tϕ)1−γ −u1−γ

n

t

)
dx. (3.15)

From (3.15) we deduce that

liminf
t→0+

1
1− γ

∫
Ω

(un + tϕ)1−γ −u1−γ
n

t
dx

�
∫

R2N

(un(x)−un(y))(ϕ(x)−ϕ(y))K(x− y)
|x− y|N+2s dxdy

−λ
∫

Ω
f (x,un)ϕdx+

1
N

(| f ′n(0)|‖un‖+‖ϕ‖) (3.16)

Since
a(x)[(un + tϕ)1−γ −u1−γ

n ] � 0, ∀x ∈ Ω, ∀t > 0,
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using Fatou’s Lemma we get

∫
Ω

a(x)u−γ
n ϕ dx � liminf

t→0+

1
1− γ

∫
Ω

a(x)

(
(un + tϕ)1−γ −u1−γ

n

t
dx

)
.

Hence, using (3.16), it follows that

∫
Ω

u−γ
n ϕ dx �

∫
R2N

(un(x)−un(y))(ϕ(x)−ϕ(y))K(x− y)
|x− y|N+2s dxdy

−λ
∫

Ω
f (x,un)ϕ dx+ f ′n(0)

‖un‖+‖ϕ‖
n

for n large enough. Using (3.13) and applying Fatou’s Lemma again, to conclude that
u0(x) > 0 a.e. in Ω and

∫
R2N

(un(x)−un(y))(u0(x)−u0(y))K(x− y)
|x− y|N+2s dxdy

−
∫

Ω
a(x)u−γ

0 ϕ dx−λ
∫

Ω
f (x,u0)ϕ dx � 0, (3.17)

for all ϕ ∈ E, with ϕ � 0. Now, we prove that u0 ∈ N +
λ for all λ ∈ (0,Tr,γ). Then,

choosing ϕ = u0 in (3.17), we get

‖u0‖2 � λ
∫

Ω
F(x,u0)dx+

∫
Ω

a(x)(u0)1−γdx.

On the other hand, from (3.7) it follows that,

‖u0‖2 � λ
∫

Ω
F(x,u0)dx+

∫
Ω

a(x)(u0)1−γdx.

Thus

‖u0‖2 = λ
∫

Ω
F(x,u0)dx+

∫
Ω

a(x)(u0)1−γdx, (3.18)

this implies that u+ ∈ Nλ . Moreover from (3.9), ones gets

lim
n→∞

‖un‖2 = λ
∫

Ω
F(x,u+)dx+

∫
Ω

a(x)(u+)1−γdx.

Hence according to (3.18), we have un → u0 in E as n → ∞. In particular, combining
(3.8) with (3.18), we obtain

(γ +1)||u0||2 −λ (γ + r−1)
∫

Ω
F(x,u0)dx > 0,

and therefore u0 ∈ N +
λ .
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Claim 2 . u0 is a solution of problem (Pλ ).
Our proof is inspired by Ghanmi-Saoudi [13]. Let φ ∈ E and ε > 0. We define

Ψ ∈ E by Ψ := (u0 + εφ)+ where (u0 + εφ)+ = max{u0 + εφ ,0}. Let Ωε = {u0 +
εφ � 0} and Ωε = {u0 + εφ < 0}. Replace ϕ with Ψ in (3.17) and combining with
(3.18) we obtain

0 �
∫

R2N

(u0(x)−u0(y))(ψ(x)−ψ(y))K(x− y)
|x− y|N+2s dxdy

−
∫

Ω
a(x)u−γ

0 Ψdx−λ
∫

Ω
f (x,u0)Ψdx

=
∫
{(x,y)∈ Ωε×Ωε}

(u0(x)−u0(y))((u0 + εφ)(x)− (u0 + εφ)(y))K(x− y)
|x− y|N+2s dxdy

−
∫
{(x,y)∈ Ωε×Ωε}

(
a(x)u−γ

0 (u0 + εφ)+ λ f (x,u0)(u0 + εφ)
)

dx

=
∫

R2N

|u0(x)−u0(y)|p−2(u0(x)−u0(y))((u0 + εφ)(x)− (u0 + εφ)(y))
|x− y|N+2s dxdy

−
∫

Ω

(
a(x)u−γ

0 (u0 + εφ)+ λ f (x,u0)(u0 + εφ)
)

dx

=
∫
{(x,y)∈ Ωε×Ωε}

(u0(x)−u0(y))((u0 + εφ)(x)− (u0 + εφ)(y))K(x− y)
|x− y|N+2s dxdy

−
∫
{(x,y)∈ Ωε×Ωε}

(
a(x)u−γ

0 (u0 + εφ)+ λ f (x,u0)(u0 + εφ)
)

dx

= ‖u0‖2−
∫

Ω
u1−γ

0 dx−λ
∫

Ω
F(x,u0)dx−

∫
Ω

(
u−γ

0 φ + λ f (x,u0)φ
)

dx

+ ε
∫

R2N

(u0(x)−u0(y))(φ(x)−φ(y))K(x− y)
|x− y|N+2s dxdy

−
∫
{(x,y)∈Ωε×Ωε}

(u0(x)−u0(y))((u0 + εφ)(x)− (u0 + εφ)(y))K(x− y)
|x− y|N+2s dxdy

−
∫
{(x,y)∈ Ωε×Ωε}

(
a(x)u−γ

0 (u0 + εφ)+ λ f (x,u0)(u0 + εφ)
)

dx

= ε
∫

R2N

(u0(x)−u0(y))(φ(x)−φ(y))K(x− y)
|x− y|N+2s dxdy− ε

∫
Ω

(
u−γ

0 φ + λ f (x,u0)φ
)

dx

−
∫
{(x,y)∈ Ωε×Ωε}

(u0(x)−u0(y))((u0 + εφ)(x)− (u0 + εφ)(y))K(x− y)
|x− y|N+2s dxdy

− ε
∫
{(x,y)∈ Ωε×Ωε}

(
a(x)u−γ

0 (u0 + εφ)+ λ f (x,u0)(u0 + εφ)
)

dx

� ε
∫

R2N

(u0(x)−u0(y))(φ(x)−φ(y))K(x− y)
|x− y|N+2s dxdy

− ε
∫

Ω

(
a(x)u−γ

0 φ + λ f (x,u0)φ
)

dx

−
∫
{(x,y)∈ Ωε×Ωε}

(u0(x)−u0(y))((u0 + εφ)(x)− (u0 + εφ)(y))K(x− y)
|x− y|N+2s dxdy.
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By Claim 1 we derive that the measure of the domain of integration Ωε tends to zero
as ε → 0+. It follows as ε → 0+ that,

∫
{(x,y)∈ Ωε×Ωε}

(u0(x)−u0(y))((u0 + εφ)(x)− (u0 + εφ)(y))K(x− y)
|x− y|N+2s dxdy → 0.

Dividing by ε and letting ε → 0+ , we get

∫
R2N

(u0(x)−u0(y))(φ(x)−φ(y))K(x− y)
|x− y|N+2s dxdy−

∫
Ω

(
u−γ

0 φ + λ f (x,u0)φ
)

dx � 0.

Since the equality holds if we replace ϕ by −ϕ which implies that u0 is a positive
solution of problem (Pλ ).

Step 2: (Pλ ) have a positive solution in N −
λ .

Similarly to the first Step, applying Ekeland’s variational principle to the mini-
mization problem m− = inf

v∈N −
λ

Jλ (v) there exists a sequence {vn} ⊂ N −
λ such that

(i) Jλ (vn) < m+ + 1
N ,

(ii) Jλ (v) � Jλ (vn)− 1
N ‖v− vn‖ , for all v ∈ N −.

Since Jλ (v) = Jλ (|v|) , we can assume that vn(x) � 0. Consequently, as Jλ is coercive
on Nλ , {vn} is a bounded sequence in E , going to a sub-sequence denoted by {vn} ,
and v0 � 0 such that un ⇀ u0, weakly in E, vn → v0, strongly in L1−γ(Ω), and Ls(Ω),
for 1 � s < 2∗, and vn(x) → v0(x), a.e. in Ω, as n → ∞. Now, from (3.1) and using
the weak lower semi-continuity of norm Jλ (v0) � liminfJλ (vn) = inf

N −Jλ , we see that

v0 �≡ 0 in Ω. Now, we prove that v0(x) > 0 a.e. in Ω. Similarly to the arguments in
Claim 1, we start by observing that, since vn ∈ Λ− , one has

(γ +1)||vn||2−λ (γ + r−1)
∫

Ω
F(x,vn)dx < 0 (3.19)

and consequently,

((γ +1)
∫

Ω
a(x)v1−γ

n dx−λ (r−2)
∫

Ω
F(x,vn)dx < 0. (3.20)

Therefore, from (3.4) and (3.5) it follows that

lim
n→∞

[
((γ +1)

∫
Ω

a(x)v1−γ
n dx−λ (r−2)

∫
Ω

F(x,vn)dx
]

= ((γ +1)
∫

Ω
a(x)v1−γ

0 dx−λ (r−2)
∫

Ω
F(x,v0)dx � 0.

Now, repeating the same arguments as in Claim 1, it follows that

(1+ γ)
∫

Ω
|v0|1−γdx−λ (r−2)

∫
Ω

F(x,v0)dx < 0. (3.21)
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Now, let ϕ ∈ E, with ϕ � 0. From Lemma 2.3 with u = vn , there exits a sequence
of continuous functions gn = gn(t) such that gn(t)(vn + tϕ) ∈ N − and gn(0) = 1.
Therefore, using the same arguments as in Claim 1 we prove that

g′n(0) is uniformly bounded for n large enough. (3.22)

Then, as in Step 1 applying (ii) and (3.22), we conclude that v0(x) > 0 a.e. in Ω and

∫
R2N

(v0(x)− v0(y))(φ(x)−φ(y))K(x− y)
|x− y|N+2s dxdy

−
∫

Ω

(
v−γ
0 φ + λ f (x,v0)φ

)
dx � 0, (3.23)

for all ϕ ∈ E. Finally, as in the arguments of Claim 2, we obtain that v0 ∈ Λ− is a pos-
itive solution of problem (Pλ ). The proof of the Theorem 1.1 is now completed. �
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