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Abstract. Derivatives of non-integer orders are applied to generalize notion of elasticity in frame-
work of economic dynamics with memory. Elasticity of Y with respect to X is defined for the
case of a finite-interval fading memory of changes of X and Y . We define generalizations of
point price elasticity of demand to the case of processes with memory. In these generalizations
we take into account dependence of demand not only from current price (price at current time),
but also all changes of prices for some time interval. For simplification, we will assume that there
is one parameter, which characterizes a degree of damping memory over time. The properties of
the suggested fractional elasticities and examples of calculations of these elasticities of demand
are suggested.

1. Introduction

Theory of derivatives and integrals of non-integer (fractional) orders [1, 2, 3, 4] has
a long history [5, 6]. Fractional calculus has wide applications in dynamical systems
theory since it allows us to describe systems and media that are characterized by power-
law non-locality and long-term memory (for example see [7, 8] and references therein).
A variety of models, which are based on application of the fractional-order derivatives
and integrals, have been proposed to describe behavior of financial and economical
processes from different points of view [9]–[18].

Are known various types of fractional derivatives that are suggested by Riemann,
Liouville, Riesz, Caputo, Grünwald, Letnikov, Sonin, Marchaud, Weyl and some others
scientists [1, 2]. Derivatives and integrals of non-integer orders have unusual geometric
[19], probabilistic [20, 21] and discrete interpretations [22, 23].

These fractional derivatives have a set of unusual properties [24]–[29] that should
be satisfied for all type of derivatives of non-integer orders. For example such properties
include a violation of the Leibniz rule (derivative of the product of two functions) and
a violation of chain rules (derivative of the composition of two functions) [24, 27, 29].
It should be emphasized that the violation of the standard Leibniz rule [24, 29] is a
characteristic property of fractional-order derivatives. The unusual properties of the
fractional-order derivatives allow us to describe complex properties of dynamical sys-
tems.
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One of the most important areas of application of differential operators is a de-
scription of economic dynamics by using the concept of elasticity. Elasticity shows
a relative change of an economic indicator under influence of change of an economic
factor on which it depends at constant remaining factors acting on it. Usually effects
of memory are ignored in the concept of elasticity. For example, the definition of the
standard point-price elasticity of demand at time point t = t0 , which is expressed by the
equation

E(Q(t); p(t);t0) =
(

p(t)
Q(t)

dQ/dt
dp/dt

)
t=t0

=
(

p
Q

dQ
dp

)
t=t0

, (1)

where Q is the quantity demanded and p is the price of a good. Equation (1) assumes
that the elasticity depends only on the current price at t = t0 an price at infinitesimal
neighborhood of point t0 . In general, we should take into account that demand can
depend on all changes of prices during a finite interval of time, since behavior of buyers
can be determined by the presence of a memory of previous price changes. We can say
that definition (1) can be used only if all buyers have a total amnesia.

In this paper we suggest a generalization of the point elasticity by using fractional-
order derivatives to remove amnesia of buyers in the concept of elasticity. Derivatives
of non-integer orders allow us to take into account a memory effect. Therefore the
fractional generalization of point elasticity of demand cannot be considered as a point
economic indicator only. Fractional elasticity depends on finite interval of time and/or
price range, in addition to parameter of memory decay (forgetting). For simplification,
we will assume that there is one parameter α , which characterizes a degree of memory
decay during time interval.

In Section 2, we give definitions of fractional derivatives. Some important prop-
erties of fractional derivatives are described. In Section 3, fractional generalizations
of elasticities of Y with respect to X are suggested. In Section 4, the properties of
fractional elasticities are considered. In Section 5, we define generalizations of point
elasticity of demand to the cases of memory. In Section 6, some simple examples of
calculations of fractional elasticities are suggested.

2. Fractional-order derivatives

There is a lot of type fractional-order derivatives that are suggested by Riemann,
Liouville, Riesz, Caputo, Grünwald, Letnikov, Sonin, Marchaud, Weyl [1, 2]. In this
article, we use the Caputo fractional derivative. The main distinguishing feature of the
Caputo fractional derivative is that the Caputo fractional derivative of a constant is zero.
This type of derivatives is used in order to elasticity of constant demand will be equal
to zero, that allows us to correspond it to a perfectly inelastic demand.
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2.1. Definition of Caputo fractional derivatives

The left-sided Caputo fractional derivative of order α of the function f (t) , where
t ∈ [a;b] , is defined by

C
a Dα

t [τ] f (τ) := aI
n−α
t [τ]

(
d
dτ

)n

f (τ), (2)

and the right-sided Caputo fractional derivative is

C
t Dα

b [τ] f (τ) := t I
n−α
b [τ]

(
− d

dτ

)n

f (τ), (3)

where n−1 < α < n and C
a Iα

t [τ] is the left-sided Riemann-Liouville integral of order
α > 0

aI
α
t [τ] f (τ) :=

1
Γ(α)

∫ t

a

f (τ)dτ
(t − τ)1−α , (t > a), (4)

and C
t Iα

b [τ] is the right-sided Riemann-Liouville integral of order α > 0

C
t Iα

b [τ] f (τ) :=
1

Γ(α)

∫ b

t

f (τ)dτ
(τ − t)1−α , (t < b). (5)

We also will use the simplified notations: C
a Dα

t f (t) instead of C
a Dα

t [τ] f (τ) and C
t Dα

b f (t)
instead of C

t Dα
b [τ] f (τ) .

2.2. Properties of Caputo fractional derivatives

To calculate the fractional elasticities we will use the following properties of the
Caputo fractional derivatives.

1) The left-sided and right-sided Caputo derivatives are linear operators

C
a Dα

t

(
c1Y1(t)+ c2Y2(t)

)
= c1

C
a Dα

t Y1(t)+ c2
C
a Dα

t Y2(t). (6)

2) The Caputo fractional derivatives of power functions are given (see Property
2.16 of [2]) by the equations

C
a Dα

t (t−a)β =
Γ(β +1)

Γ(β −α +1)
(t−a)β−α , (t > a, n−1 < α < n, β > n−1) (7)

C
t Dα

b (b− t)β =
Γ(β +1)

Γ(β −α +1)
(b− t)β−α , (t < b, n−1 < α < n, β > n−1), (8)

and
C
a Dα

t (t−a)k = 0, C
t Dα

b (b− t)k = 0 (k = 0,1, ...,n−1). (9)

In particular, we have
C
a Dα

t 1 = 0, C
t Dα

b 1 = 0. (10)
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For the case a = 0, we can use

C
0 Dα

t tβ =
Γ(β +1)

Γ(β −α +1)
tβ−α , (t > 0, n−1 < α < n, β > n−1), (11)

C
0 Dα

t tα = Γ(α +1), (C
0 Dα

t )ntα = 0. (12)

3) The fractional derivative of the exponential functions are given (see Property
2.17 of [2]) in the form

C
−∞Dα

t eλ t = λ α eλ t , (λ > 0). (13)

C
t Dα

+∞ e−λ t = λ α e−λ t , (λ > 0). (14)

4) We also can use Lemma 2.23 of [2] in the form

C
a Dα

t Eα [λ (t−a)α ] = λ Eα [λ (t−a)α ], (15)

where Eα [λ (t − a)α ] is the Mittag-Leffler function. Equation (15) means that the
Mittag-Leffler function is invariant with respect to the left-sided Caputo fractional
derivative C

a Dα
t , but it is not the case for the right-sided Caputo derivatives.

5) For example, the fractional-order derivatives of the composition of two func-
tions violate the standard chain rule

C
a Dα

t [τ]Y (X(τ)) �= C
X(a)D

α
X(t)[X ]Y (X) · C

a Dα
t [τ]X(τ). (16)

The violation the standard chain rule is one of the main properties of derivatives of
non-integer orders [27].

6) The fractional-order derivatives of the product of two functions (the Leibniz
rule) violate the usual rule

C
a Dα

t [τ]
(
Y1(τ)Y2τ)

)
�=

(
C
a Dα

t [τ]Y1(τ)
)

Y2(τ)+Y1(τ)
(

C
a Dα

t [τ]Y2(τ)
)
. (17)

This violation is a main characteristic property of all derivatives of non-integer orders
[24, 29].

7) In general, an action of the fractional derivative on the a fractional derivative is
not the same as the action of fractional derivative of order 2α , i.e.

C
a Dα

t [t ′] C
a Dα

t′ [τ]Y (τ) �= C
a D2α

t [τ]Y (τ). (18)

This inequality means that the semi-group property cannot be realized for all type of
functions. Equality instead of the inequality is obtained only for a narrow class of
functions [2].
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3. Fractional elasticities of Y with respect to X

The most important area of application of differential calculus is to describe the
economics with the help of the concept of elasticity. The elasticity shows a relative
change of an economic indicator under influence of change of economic factors on
which it depends at constant remaining factors affecting it.

In this section, we define generalizations of point elasticity of Y with respect to X
by taking into account a long-term memory and a finite-interval memory of changes of
economic factor X and indicator Y . We will consider the following forms of memory.

(1) In the general case, the economic indicator and economic factors can depend on
time, i.e. Y and X are functions of time t ∈ [ti;t f ] . The absence of memory (amnesia)
means that the value of Y (t) is determined only by the values of X(t) at the point
t = t0 ∈ [ti; t f ] and in infinitely small neighborhood of this point. The presence of a
memory means that the value of Y (t) depends on values of X(t) at all points t of the
finite interval [ti; t f ] .

(2) The presence of a memory can also mean that the values of Y (X0) actually de-
pends not only on X0 but it also a depends on X from the intervals [Xi;X0) and (X0;Xf ] .
In general, the time parameter cannot be excluded to have an explicit dependence of Y
on X in the form of function. In a rigorous mathematical description of processes with
memory, we should apply integro-differential equations. For simplification, we will
assume that we have a solution of this equation in the form Y = Y (X) .

An important property of processes with memory is a decay property of memory,
a “fading of memory” [31, 32, 33]. For simplification, we will assume that there is one
parameter α , which characterizes a degree of damping memory over time.

DEFINITION 1. The fractional T -elasticity Eα(Y (t);X(t); [ti,t0]) of order α at
t = t0 of Y = Y (t) with respect to X = X(t) is defined by the equation

Eα(Y (t);X(t); [ti,t0]) :=
X(t0)
Y (t0)

C
ti D

α
t0 [t]Y (t)

C
ti D

α
t0 [t]X(t)

, (19)

where t ∈ [ti, t0] .

The fractional T -elasticity Eα(Y (t);X(t); [ti,t0]) describes an elasticity for the
economic processes with a memory of the changes of economic factors and indicator.
This type of memory describes the dependence of the economic indicator Y not only
on X(t0) at the current time t0 but also the economic factor X(t) at all t ∈ [ti; t0] . The
order α is the parameter that characterizes the degree of damping memory over time.
In general, we can consider fractional elasticity with two different parameters α and β
to describe fading memory of Y (t) and X(t respectively.

DEFINITION 2. Let us consider an economic indicator Y =Y (X) as a function of
an economic factor X ∈ [Xi;Xf ] . The left-sided and right-sided fractional X -elasticities
Eα ,l(Y (X); [Xi,X0]) and Eα ,r(Y (X); [X0,Xf ]) of order α at X0 ∈ [Xi;Xf ] of Y with
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respect to X are defined by the equations

Eα ,l(Y (X); [Xi,X0]) :=
(X0)α

Y (X0)
C
Xi

Dα
X0

[X ]Y (X), (20)

Eα ,r(Y (X); [X0,Xf ]) :=
(X0)α

Y (X0)
C
X0

Dα
Xf

[X ]Y (X), (21)

where Xi = Xmin and Xf = Xmax are initial and final points of the investigated interval
of the economic factor X ∈ [Xi;Xf ] . Here C

Xi
Dα

X0
is the left-sided Caputo derivative and

C
X0

Dα
Xf

is the right-sided Caputo derivative of order α > 0.

Using that the standard (point) elasticity of Y with respect to X can be represented
as a derivative of f (t) = ln(Y (t)) by g(t) = ln(X(t)) in the form

E(p,t0) :=
(

d f (t)
dg(t)

)
t=t0

=
(

d ln(Y (t))
d ln(X(t))

)
t=t0

, (22)

we can also define the corresponding fractional generalization by using the fractional
derivative of function f (t) = ln(Y (t)) by a function g(t) = ln(X(t)) (see Section 18.2
of [1] and Section 2.5 of [2]).

DEFINITION 3. The fractional Log -elasticity Eα ,log(Y (t);X(t); [ti,t0]) of order α
at t = t0 ∈ [ti; t f ] is defined by the equation

Eα ,log(Y (t);X(t); [ti,t0]) :=

=
1

Γ(n−α)

∫ t0

ti
dτ

dg(τ)
dτ

f (τ)
(g(t)−g(τ))α+1−n

(
1

dg(τ)/dτ
d
dτ

)n

f (τ) , (t0 > ti),

(23)
where n−1 � α � n , f (t) = ln(Y (t)) and g(t) = ln(X(t)) .

REMARK 1. For the case α = 1, equations (19), (20) and (21) take the forms

E1(Y (t);X(t); [ti,t0]) =
X(t0)
Y (X0)

(
dY (t)/dt
dX(t)/dt

)
t=t0

(24)

and

E1,l(Y (X); [Xi,X0]) = E1,r(Y (X); [X0,Xf ]) =
X0

Y (X0)

(
dY (X)

dX

)
X=X0

, (25)

where the elasticity does not depend on t �= t0 and X �= X0 . This means that the case
α = 1 corresponds to the economic processes without memory.

REMARK 2. Using the chain rule

dY (X(t))
dt

=
(

dY (X)
dX

)
X=X(t)

dX(t)
dt

, (26)
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we have the equality of the fractional T -elasticity and the fractional X -elasticity for
the case α = 1 of the economic dynamics without memory,

E1(Y (t);X(t); [ti,t0]) = E1,l(Y (X); [Xi,X0]) = E1,r(Y (X); [X0,Xf ]). (27)

This case corresponds to economic the case of total amnesia. The standard point elas-
ticity of Y with respect to X describes economic processes, when market participants
have amnesia.

Using the suggested fractional elasticities of Y with respect to X , which are sug-
gested in Section 3, we consider generalizations of point-price elasticities of demand in
Section 5.

4. Properties of fractional elasticities

Let us give main properties of the suggested fractional elasticities. For simplifica-
tion, we describe these properties for ti = 0 and Xi = 0.

1. The fractional elasticity is a dimensionless quantity,

Eα(λ Y (t);X(t); [0,t0]) = Eα(Y (t);X(t); [0,t0]), (28)

Eα(Y (t);λ X(t); [0,t0]) = Eα(Y (t);X(t); [0,t0]). (29)

These equations mean that its do not depend on units of the economic indicator Y and
the economic factor X .

2. The fractional T -elasticity of inverse function is inverse

Eα(X(t);Y (t); [0,t0]) =
1

Eα(Y (t);X(t); [0,t0])
. (30)

In general, the fractional X -elasticities of inverse functions are not inverse

Eα ,l(Y (X); [0,X0]) �= 1
Eα(X(Y ); [0,Y0])

, Eα ,r(Y (X); [X0,Xf ]) �= 1
Eα(X(Y ); [Y0,Yf ])

.

(31)
These inequalities become equalities for α = 1.

3. In general, the fractional elasticity of the product of two functions, which de-
pend on the same argument, does not equal to the sum of elasticities

Eα(Y1(t) ·Y2(t);X(t); [0,t0]) �= Eα(Y1(t);X(t); [0,t0])+Eα(Y2(t);X(t); [0,t0]) (32)

for α �= 1. This inequality becomes an equality for α = 1. Inequality (32) caused by
the violation of the Liebniz rule (17).

4. The fractional elasticity of the sum of two functions, which depend on the same
argument, is given by the equation

Eα(Y1(t)+Y2(t);X(t); [0,t0])
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=
1

Y1 +Y2
(Y1(t)Eα(Y1(t);X(t); [0,t0])+Y2(t)Eα(Y2(t);X(t); [0,t0])) . (33)

5. The fractional elasticity of the power function is a constant

Eα ,l(Xβ ; [0,X0]) =
β
α

, (34)

where β > n−1 and n−1 < α < n for all n ∈ N .
6. The fractional elasticity of the exponential function is given by the equation

Eα ,r(e−λ X ; [X0;∞)) = (λ X)α , (35)

where λ > 0
7. The fractional elasticity of the linear function is given by the equation

Eα ,l(a0 +a1X ; [0,X0]) =
1

Γ(2−α)
a1X

a0 +a1X
. (36)

8. For derivatives of non-integer orders, the standard chain rule cannot be satis-
fied in general. For example, the chain rules for fractional derivatives of a composite
function (see Eq. 2.209 in Section 2.7.3 of [3]) have the form that is similar to the
following

Dα
t Y (X(t)) =

tα Y (X(t))
Γ(1−α)

+
∞

∑
k=1

Cα
k

k! tk−α

Γ(k−α +1)

×
k

∑
m=1

(Dm
XY (X))X=X(t) ∑

k

∏
r=1

1
ar!

((Dr
t X)(t)
r!

)ar
, (37)

where t > 0, ∑ extends over all combinations of non-negative integer values of a1 ,
a2 ,...,ak such that ∑k

r=1 rar = k and ∑k
r ar = m . Obviously, that equation (37) is much

more complicated than the chain rule (26) for the first order derivative . Note that
equation (37) is a generalization of the chain rule for the derivative of integer order
n ∈ N that is represented by the Faá di Bruno’s formula of the form

Dn
t Y (X(t)) = n!

n

∑
m=1

(Dm
XY (X))X=X(t) ∑

n

∏
r=1

1
ar!

(Dr
t X(t)
r!

)ar
, (38)

where Dn
t = dn/dtn . Therefore, we have the inequalities

Eα(Y (t);X(t); [ti,t0]) �= Eα ,l(Y (X); [Xi,X0]), (39)

Eα(Y (t);X(t); [ti,t0]) �= Eα ,r(Y (X); [X0,Xf ]) (40)

for non-integer values of the order α . As a result, the fractional X -elasticities and
the fractional T -elasticity should be considered as independent characteristics in the
economic dynamics with memory.

9. The frational elasticities of constant demand are equal to zero.

Eα(const;X(t); [ti,t0]) = 0, Eα ,l(const; [Xi,X0]) = Eα ,r(const; [X0,Xf ]) = 0, (41)

that corresponds to perfectly inelastic demand.
These properties can be directly derived from the properties of the Caputo frac-

tional derivative and the definition of the fractional elasticities.
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5. Fractional elasticities of demand

In this section, we define generalizations of point-price elasticity of demand to the
cases of memory. In these generalizations we take into account dependence of demand
not only from the current price (price at current time), but also changes of prices in some
interval (prices that were before this current price). For simplification, we will assume
that there is one parameter α , which characterizes a degree of damping memory over
time.

DEFINITION 4. Let demand Q = Q(t) and price p = p(t) be functions of time
variable t ∈ [ti; t f ] . The fractional T -elasticity Eα(Q(t); p(t); [ti,t0]) of order α at
t = t0 of demand Q(t) with respect to price p(t) is defined by the equation

Eα(Q(t); p(t); [ti,t0]) :=
p(t0)
Q(t0)

C
ti D

α
t0 [t]Q(t)

C
ti D

α
t0 [t] p(t)

, (42)

where t ∈ [ti, t0] , and ti < t0 < t f .

The fractional T -elasticity (42) describes an elasticity of demand for the processes
in economic dynamical systems with the memory of price changes over time. This type
of memory describes the dependence of demand Q not only from the price p = p(t0)
at the current time t0 but also the prices p(t) that were before this price, i.e. all prices
at t ∈ [ti; t0] . The order α is the parameter that characterizes the degree of damping
memory over time.

DEFINITION 5. Let us consider a demand Q = Q(p) as a function of price p ∈
[pl; ph] . The left-sided and right-sided fractional p -elasticities Eα ,l(Q(p); [pl , p0]) and
Eα ,r(Q(p); [p0, ph]) of order α at p0 ∈ [pl; ph] of demand Q = Q(p) is defined by the
equations

Eα ,l(Q(p); [pl, p0]) :=
(p0)α

Q(p0)
C
pl

Dα
p0

[p]Q(p), (43)

Eα ,r(Q(p); [p0, ph]) :=
(p0)α

Q(p0)
C
p0

Dα
ph

[p]Q(p), (44)

where pl = pmin is a lowest price and ph = pmax is the highest price; C
Xi

Dα
X0

and C
X0

Dα
Xf

are the left-sided and right-sided Caputo derivatives of order α > 0.

The fractional p -elasticities (43) and (44) describe an elasticity of demand for
the processes in economic dynamical systems with price memory. The elasticity (43)
takes into account a “memory of low prices”. The “memory of high prices” is taken
into account by the elasticity (44). These types of memory describe a dependence of
demand Q not only on the current price p0 but also all prices p of the given range
( pl � p � ph ). The order α characterizes a degree of damping memory over time.

Analogously to generalization of the price elasticities of demand, we can general-
ize of other types of elasticity. For example, we can give definitions of fractional income
elasticity of demand. Using the demand function Q = Q(t) and income function I =
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I(t) of time variable t ∈ [ti;t0] , the fractional income T -elasticity Eα(Q(t); I(t); [ti,t0])
of order α at t = t0 can be defined by the equation

Eα(Q(t); I(t); [ti,t0]) :=
I(t0)
Q(t0)

C
ti D

α
t0 [t]Q(t)

C
ti D

α
t0 [t] I(t)

. (45)

REMARK 3. In the definition of the fractional elasticities, we use the Caputo frac-
tional derivatives instead of other types of derivatives. It is caused by that the Caputo
fractional derivatives of a constant is equal to zero. This property leads us to zero velues
of fractional elasticities elasticity for constant demand. Contrary to it the Riemann-
Liouville fractional derivatives of a constant is not equal to zero (see equation (2.1.20)
of [2]),

RL
0 Dα

p [p′]Q(p′) =
p−α

Γ(1−α)
. (46)

Therefore the fractional elasticities, which are defined by this type of derivatives, cannot
be considered as a perfectly inelastic demand for the constant demand functions. For
example, the corresponding left-sided fractional p -elasticity of the constant demand
Q(p) = q0 = const is the constant

RLEα ,l(Q(p); [0, p]) :=
pα

Q(p)
RL
0 Dα

p [p′]Q(p′) =
1

Γ(1−α)
, (47)

where RL
0 Dα

p is the left-sided Riemann-Liouville derivative [2].

It should be noted that the fractional p -elasticities and the fractional T -elasticity
should be considered as independent indicators of the economic dynamics with mem-
ory. This fact is based on the violation of the standard chain rule for derivatives of
non-integer orders.

6. Examples of calculations

Let us consider simple examples of calculations of fractional elasticities. For sim-
plification, we will use the demand equation

Q(p) = a0 +a1p+a2p2, (48)

where p is the unit price and Q(p) is the quantity demanded when the price is p .
Equation (48) is considered as a demand function for a product. Point-price elas-

ticity is the elasticity of demand, which is defined by the equation

E(p) = (p/Q(p))(dQ(p)/dp).

To find the point elasticity of demand E(p) for (48), we use

dQ(p)
dp

= a1 +2a2p. (49)
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As a result, the standard (point-price) elasticity of demand is

E(p) =
p

Q(p)
dQ(p)

dp
=

a1p+2a2p2

a0 +a1p+a2p2 . (50)

Let us consider some examples of fractional elasticity for demand (48).

EXAMPLE 1. Let us consider the fractional p -elasticity (43) with pl = 0 and
α ∈ (0;1) . Using (11), we get

C
0 Dα

p Q(p) = C
0 Dα

p a0 +a1
C
0 Dα

p p+a2
C
0 Dα

p p2

= a1
Γ(2)

Γ(2−α)
p1−α +a2

Γ(3)
Γ(3−α)

p2−α (51)

Substitution of (51) into (43) gives the left-sided fractional p -elasticity in the form

Eα ,l(Q(p); [0, p]) =
(p)α

Q(p)
C
0 Dα

p [p]Q(p) =
a1

1
Γ(2−α) p+a2

2
Γ(3−α) p

2

a0 +a1p+a2p2

=
1

Γ(2−α)
a1p+a2

2
2−α p2

a0 +a1p+a2p2 , (52)

where we use Γ(n+1) = n! for n ∈ N and Γ(z+1) = zΓ(z) . For α = 1, equation (52)
gives (50).

EXAMPLE 2. Let us consider the demand and price functions in the form

Q(t) = q0 +q1t +q2t
2, (53)

p(t) = p0 t. (54)

It is obvious that the substitution of (54) into (53) gives (48) with

a0 = q0, a1 =
q1

p0
, a2 =

q1

p2
0

. (55)

Let us consider the fractional T -elasticity (42) with ti = 0 and α ∈ (0;1) . Using (11),
we get

C
0 Dα

t Q(t) = q1
Γ(2)

Γ(2−α)
t1−α +q2

Γ(3)
Γ(3−α)

t2−α . (56)

and
C
0 Dα

t p(t) = p0
Γ(2)

Γ(2−α)
t1−α . (57)

Substitution of (56) and (57) into (42) gives the fractional T -elasticity

Eα(Q(t); p(t); [0, t0]) =
p(t)
Q(t)

0CDα
t Q(t)

C
0 Dα

t p(t)
=

p0t
q0+q1t+q2t2

q1
1

Γ(2−α) t
1−α+q2

2
Γ(3−α) t

2−α

p0
1

Γ(2−α) t
1−α

=
p0t

q0 +q1t +q2t2
q1t1−α +q2

2
(2−α) t

2−α

p0t1−α

=
q1t +q2

2
(2−α) t

2

q0 +q1t +q2t2
=

a1p+a2
2

2−α p2

a0 +a1p+a2p2 , (58)
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where we use Γ(z+1) = zΓ(z) and equations (54), (55).
Because we have chosen simple equations of (53) and (54), the expressions (58)

and (52) differ only by a factor

Eα ,l(Q(p); [0, p]) =
1

Γ(2−α)
Eα(Q(t); p(t); [0,t]). (59)

In the general case, these fractional elasticity can be distinguished not only by a factor.

EXAMPLE 3. Let us consider the demand and price functions in the following
simple form

Q(t) = atβ , (60)

p(t) = btγ . (61)

Substitution of (61) into (60) gives

Q(p) =
a

bβ/γ pβ/γ . (62)

The standard (point-price) elasticity has the form

E(p) =
p

Q(p)
dQ(p)

dp
=

β
γ

. (63)

The fractional p -elasticity is given by the equation

Eα ,l(Q(p); [0, p]) =
(p)α

Q(p)
C
0 Dα

p Q(p) =
Γ(β/γ +1)

Γ(β/γ +1−α)
. (64)

The fractional T -elasticity is written in the form

Eα(Q(t); p(t); [0,t0]) =
p(t)
Q(t)

C
0 Dα

t Q(t)
C
0 Dα

t p(t)
=

Γ(β +1)Γ(γ +1−α)
Γ(γ +1)Γ(β +1−α)

. (65)

For α = 1, we get

Eα(Q(t); p(t); [0,t0]) = Eα ,l(Q(p); [0, p0]) = E(p)

since Γ(z+1) = zΓ(z) . It is easy to see that the expression of the fractional p -elasticity
(64) and the fractional T -elasticity (65) are different for α �= 1.

It is well-known the following conditions. If E(p) < −1, then demand is elastic
and a percent increase in price yields a larger percent decrease in demand. If −1 <
E(p) < 0, then demand is inelastic and a percent increase in price yields a smaller
percent decrease in demand. It is evident that taking into account the effect of memory
(0 < α < 1) , we can get other inequalities for the price in comparison with the standard
case (α = 1).
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