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Abstract. A fundamental principle of Cognitive Psychology states that the rate at which the hu-
man brain learns a certain amount of knowledge is proportional to the amount of knowledge yet
to be learned. This is the so called pure memory or tabula raza law of learning. The mathemati-
cal formulation of this principle leads to a simple ordinary differential equation of the first order.
Here we expand the existing mathematical model to a fractional differential equation which al-
lows for a more realistic model having a much higher freedom to fit possible experimental data,
as well as allowing for memory effects during the learning process. Two different definitions of
the fractional derivative are used, one is the standard Riemann-Liouville global definition and
the other is a local definition based on the choice of the unit that measures functional variation.
A detailed comparison with the conventional model both at the analytical and the numerical level
is included.

1. Introduction

The question of how the human mind learns was a major philosophical problem
since the days of Plato and Aristotele. In fact, Aristotele introduced the theory of tabula
raza according to which the human mind starts as a blank slate on which knowledge,
coming initially through experience, is imprinted.

Since the Antiquity there have been many theoretical descriptions of how the brain
learns. These theories involve different philosophical explanation but also mathematical
models both at the deterministic and the stochastic level [2, 4, 5, 6, 12, 15, 17, and the
references there]. From the deterministic point of view, it seams that the most widely
accepted mathematical models are those that are founded on the principle of tabular
raza, on the connectedness and on tutoring.

The tabular raza, or pure memory model, is based on the principle that the human
mind learns at a rate that is proportional to the amount of pre-determined knowledge
yet to be learned.

The connectedness model is based on the constructivist view that the subject learns
by constructing a relation between the new and some prior knowledge. A more so-
phisticated model is to consider a linear combination between the previous two simple
models. In this model, we choose a fraction γ of the learning to be connected and the
remaining (1− γ) fraction of learning is assumed to be pure memory.
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The third model of learning is the choice of a tutor. This model provides instruction
as a tailor-made procedure where the instructor provides exactly what the subject needs
to know without wasting time on repetitions.

All these models have been constructed on the basis of experimental results made
mainly in schools and universities. These data lead to differential equations for learning
quantities as functions of time.

In the present work, we attempt to redefine one of this learning models, that is, the
pure memory model, in terms of fractional order derivative and compare the solution
with the corresponding model with conventional differentiation. In fact, we analyze the
learning model which is based on the standard law that we learn at a rate which is pro-
portional to the amount of knowledge we need to learn. In mathematical terms, this law
is expressed as an analogy between the derivative of the acquired amount of knowledge
and the amount of knowledge yet to be learned at any particular time. The proportional-
ity constant of this analogy is a positive number which specifies the intellectual ability
of the subject. The higher this constant the higher the derivative and therefore the faster
the brain acquires a pre-assigned material.

On the other hand, the intellectual ability for learning can also be calibrated, even
in a finer way, by using a fractional derivative of the acquired knowledge at any par-
ticular time. That is, instead of keeping the order of differentiation equal to one and
introduce the intelligence as a multiplicative factor, we keep the intelligence factor to
be equal to one and introduce a fractional derivative of the instantaneous knowledge ob-
tained. This is exactly what we have done in the present work, were we have solved the
problem using the conventional, the Riemann-Liouville, as well as a local differentia-
tion models and compare the obtained results. This comparison involves the connecting
function between the intelligence factor and the intelligence rate of absorbing knowl-
edge.

This paper is organized as follows. Section 2 analyzes the convectional model
where the intelligence enters as a multiplicative constant. A short discussion of the
fractional derivative and its meaning is included in Section 3, where we also introduce
a local fractional derivative based on the unit used to calculate the rate of change. In
Section 4 we solve the fractional model of learning both with the Riemann-Liouville
as well as with our local definition of the fractional derivative. We observed that no
significant difference between the two definitions of the derivative is identified. In
Section 5 we provide graphical interpretations of the obtained results. Finally Section
6 re-states all the results.

2. The conventional model

Let M be the total amount of knowledge that has to be learned. This knowledge
could be interpreted, for example, as a course material for an advanced educational pro-
gram. Let y1(t) be the amount of knowledge that has been acquired at timet , assuming
that

y1(0) = εM, 0 � ε � 1 (1)
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that is, ε determines the percentage of the material M that is initially known. The value
ε = 0 corresponds to complete initial ignorance for the subject. Then the mathematical
model is stated as

dy1(t)
dt

= A(M− y1(t)), t > 0 (2)

where A is the intelligence factor of the particular person. The rate at which the ma-
terial is absorbed is proportional to the amount of material left to be learned [1]. The
solution of this simple conventional model is given by the function

y1(t) = M[1− (1− ε)e−At], t > 0 (3)

where, obviously,
lim
ε→0

y1(t) = M[1− e−At] (4)

and
lim
ε→1

y1(t) = M (5)

in which case all the material is known at the first place. As we observe in Figure 1,
due to the relaxation that appears as we approach the acquisition of the whole material,
we can not expect to finish our task in finite time, and this is true for every initial ε . In
fact, if we denote by th,ε the time needed for learning half of the material, then

th,ε =
ln[2(1− ε)]

A
(6)

which shows that the half acquisition time th,ε is inversely proportional to the intelli-
gence factor A .

Figure 1.

A consequence of the above learning process is the fact that the only way to
achieve a complete knowledge of the material at finite time is to raise the expected
level of knowledge and attempt to learn an amount of material M1 > M . Then, the
material M can be learnt at the finite time

t0 =
1
A

ln
M1(1− ε)
M1 −M

(7)
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where, the larger the distance between M1 and M , the shorter the time t0 . This is
depicted in Figure 2.

Figure 2.

A more realistic model is the one that takes into consideration a loss of the acquired
knowledge due to time passage. In this case, the rate of learning is diminished by a term
that is proportional to the part of M that is already acquired. Then the learning equation
becomes

dy2(t)
dt

= A(M− y2(t))−Ly2(t), t > 0 (8)

where the loss factor L is a coefficient depending on the ability of a person to keep up
with the acquired knowledge as time passes by. A person with a good memory has a
low L . The solution of equation (8) under the initial condition (1) is given by

y2(t) = M

[
A

A+L
+

(
ε − A

A+L

)
e−(A+L)t

]
(9)

We observe that in the presence of memory loss, even as t → ∞ , the total amount
of knowledge does not exceeds the A/(A+L) percentage of M . Hence, in this case it
is more important to raise the value of M to a higher level. The half time learning in
this case is equal to

th,ε =
1

A+L
ln

A
A+L − ε
A

A+L − 1
2

(10)

where, since we are interest in the half time, ε should be less than 1/2, so that the
logarithm assumes positive values. Furthermore, A should be larger than L , since in
any other case no learning process occurs. If L is larger than A , then the subject forgets
faster than he learns. In particular, for ε = 0, we obtain

th,o =
1

A+L
ln

2A
A−L

(11)
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3. The meaning of fractional differentiation

The problem of Fractional Calculus is as old as the Conventional Calculus. How-
ever, the field of Fractional Calculus and its applications expanded very rapidly only
within the last two decades [7, 9, 10, 11, 13]. Many authors attempted to provide some
meaning to fractional integrals and, from a point of view, this is enough, since the frac-
tional derivative is expressed via ordinary differentiation of fractional integration [13,
14].

Considering the well known definition of the fractional integral of order a > 0

0D
−a
t f (t) =

1
Γ(a)

t∫
0

(t− τ)a−1 f (τ)dτ (12)

we can interpret it as the area of a Stieltjes integral

0D
−a
t f (t) =

t∫
0

f (τ)dμt (τ) (13)

with respect to the measure

μt(τ) =
1

Γ(a+1)
[ta− (t− τ)α ] (14)

which depends both on a and t .
Besides this geometrical interpretation, it is possible to give a physical meaning to

the integral (12), or equivalently to the integral (13), in terms of the distance traveled
by a moving body when the time is measured with respect to a clock which clicks at
the points μt(1) , μt(2) , μt(3), . . . specifying non-equidistant time intervals [11].

A more direct interpretation of the integral (12) is to consider it as a continuous
linear combination of the values of f in the interval [0,t] , taken with a weight given by
the function (t − τ)α−1 . That is, 0D

−a
t f (t) is a weighted average of the function f in

the interval [0, t] . Note that for a ∈ (0,1) the weight function is an increasing function
of τ which ends with an integrable singularity at τ = t , while for a > 1 the weight
function is a continuous decreasing function of τ ∈ [0, t] .

The fact that the ordinary integral represents a very special case, in fact a pecu-
liarity, of integration becomes obvious if we observe that the integral in (12) becomes
an ordinary average with constant weight if and only if a is a positive integer. For
a = n ∈ N , 0D

−n
t f (t) denotes the (n−1)-th repeated ordinary integrals, as we can see

from the Cauchy formula for multiple integration.
There exist in the literature some direct definitions of fractional derivatives which

have a local character [1, 3, 8, 10, 16]. We offer here another such definition which is
based on the physical interpretation of measuring the rate of change of a function with
respect to a non-uniform unit of functional variation.

Starting from the fact that, in all theories of fractional differentiation the a -derivative
of the power function tl reduces the exponent l by the order of differentiationa , we
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reexamine the physical meaning of the ordinary derivative

f ′(x0) = lim
x→x0

f (x)− f (x0)
x− x0

(15)

The ratio
f (x)− f (x0)

x− x0
,

measures the variation of the function f , using as a unit of the variation the identity
function idx = x . The main characteristic of the identity function is that it has a constant
variation, equal to one, at every point of its domain. In other words, the identity function
provides a homogeneous unit for measuring functional variations.

However, nothing prevents us to use an inhomogeneous unit of measurement, es-
pecially if this unit is compatible with the variations of the quantities entering a specific
model. For example, if we use as a unit of measuring functional variations the function
g(x) =

√
x , then

lim
x→x0

x− x0√
x−√

x0
= lim

x→x0

(√
x+

√
x0

)
= 2

√
x0 (16)

that is
0D

1/2
x x = 2

√
x (17)

and for a function f

lim
x→x0

f (x)− f (x0)√
x−√

x0
= lim

x→x0

f (x)− f (x0)
x− x0

lim
x→x0

x− x0√
x−√

x0
= 2

√
x0 f ′(x0) (18)

Hence, we arrive at

0D
1/2
x f (x) = 2

√
x f ′(x) (19)

In the generic case, where 0 < a < 1, the fractional derivative is defined as

lim
x→x0

f (x)− f (x0)
xa − xa

0
= lim

x→x0

f (x)− f (x0)
x− x0

lim
x→x0

x− x0

xa − xa
0

= f ′(x0)
1

axa−1
0

(20)

that is

0D
a
x f (x) =

1
a
x1−a f ′(x) (21)

In the case where a > 0, with m = [a] , we define the a -order local derivative as

0D
a
x f (x) = 0D

a−m
x f (m)(x) =

1
a−m

x1−a+m f (m+1)(x) (22)

On the other hand the fractional integral is still defined as in the Riemann-Liouville
definition (12).

It seems that the interpretation of the derivative as a measure of functional variation
with respect to a non uniform unit, which is specified by the order of differentiation,
does not generate the multiplicative constants of the fractional derivatives generated by
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the Riemann-Liouville or the Caputo derivative [13]. This is due to the fact that the
proposed interpretation preserves the local character of the derivative as opposed to the
global character incorporated in the Riemann-Liouville or the Caputo derivative.

The next question is associated with the usefulness of such non-uniform units of
measuring functional variations. Well, some quantities entering particular models vary
at a non-uniform rate and this rate can be represented by such a non-uniform unit in a
natural and tailor-made choice for the model at hand. Obviously, this choice simplifies
the logistics of the model. For example, if we know that a quantity varies proportionally
to the cubic root of the variable x , then by choosing the cubic root of x as the unit of
functional variation, it follows that this quantity has a constant derivative of order one
third. Actually, this is exactly what Abel did in his celebrated 1823 paper initiating the
applications of fractional calculus.

4. The fractional model

In the conventional model the intelligence of the ‘student’ enters the problem via
the intelligence factor A, while the order of the rate of learning is assumed to be equal to
one. A more advanced model concerns the case where the ability of the student to learn
is measured by a derivative of fractional order a ∈ (0,1] . In this case, we replace the
intelligence factor A with the intelligence rate a and the corresponding mathematical
model reads

0D
a
t y3(t) = M− y3(t), t > 0 (23)

where we considered the normalized intelligence factor A = 1, and for simplicity we
assume that y3(0) = 0, so that the Riemann-Liouville derivative 0Da

t coincides with the
Caputo derivative c

0D
a
t . It is well known that the solution of the fractional differential

equation
0D

a
t u(t)+Au(t) = Ag(t) (24)

with u(0) = 0 and 0 < a < 1 is given by

u(t) = −g(t)∗ d
dt

Ea(−Ata) (25)

where ∗ denotes the convolution integral and

Ea(z) =
∞

∑
n=0

zn

Γ(an+1)
, z ∈ C (26)

is the Mittag-Leffler function of one parameter [10]. The Mittag-Leffler function is a
generalization of the exponential function and in particular

E1(z) =
∞

∑
n=0

zn

Γ(n+1)
=

∞

∑
n=0

zn

n!
= ez (27)

Hence, the solution of (22) is given by

y3(t) = −M ∗ d
dt

Ea(−ta) (28)
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where
d
dt

Ea(−ta) =
∞

∑
n=1

(−1)ntan−1

Γ(an)
(29)

and therefore

y3(t) = −M

t∫
0

∞

∑
n=1

(−1)n(t− τ)an−1

Γ(an)
dτ = −M

∞

∑
n=1

(−1)ntan

Γ(an+1)
= M[1−Ea(−ta)]. (30)

Compare solution (30) with solution (4), for A = 1, in order to understand the role of
the Mittag-Leffler function in connection to the a -fractional derivative.

If we use our local fractional differentiation approach, equation (23) is written as

t1−a

a
y′5(t) = M− y5(t), t > 0 (31)

which is also written as
(etay5(t))′ = Mata−1eta (32)

and in view of the initial condition y5(0) = 0, implies that

y5(t) = M(1− e−ta), t > 0 (33)

where 0 < a < 1.

5. Comparison of the models

The conventional model (CM), with zero initial condition, gives

y1(t) = M(1− e−At) (34)

while the Riemann-Liouville fractional model (FM), under the same condition, gives

y3(t) = M[1−Ea(−ta)] (35)

and the local model (LM) gives

y5(t) = M(1− e−ta) (36)

Graphs of y1(t) , y3(t) , t ∈ [0,4] for (A,a)= (1.08,0.80) and (A,a)= (1.21,0.30) ,
are depicted in Figures 3 and 4 respectively.

Note that after we pass the half learning time with the CM we learn faster than the
FM. This is of course due to the difference between the values of the two parameters.

Again the CM is more effective after the half-learning time, but things are the
opposite way before that time.

Since, for all models, the acquisition of M cannot be achieved in finite time, a
possible measure of comparison is to find the relation that connects the intelligence
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Figure 3.

Figure 4.

factor A with the intelligence rate a under the assumption that the half-learning time
for the relative models coincide.

Along this line we observe that the half-learning time for y1 is

t1 =
ln2
A

(37)

for y3 is the solution t3 of the equation

1
2

= Ea(−ta3) (38)

and for y5 is equal to
t5 = a

√
ln2 (39)

Since, we assumed the same half-learning time, i.e. t1 = t3 = t5 , it follows that the
parameters A and a are connected with the relation

Ea

(
−

(
ln2
A

)a)
=

1
2

(40)
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which is depicted in the next Figure 5, for y1 and y3 . This curve shows the pairs of
intelligence factors and intelligence rates that lead to identical half-learning periods for
the conventional and the fractional models.

Figure 5.

Also, the relation
A = (ln2)

a−1
a (41)

connects the half-learning periods for y1 (conventional) and y5 (local derivative).
Figures 6–8 provide some graphs of the functions Ea(−ta) and e−ta for compari-

son.

6. Conclusions

There are three major mathematical models for learning, the tabula raza, the con-
nectedness and the tutorial. These models are formulated via three corresponding dif-
ferential equations that differ on the expression for the rate of absorbing knowledge. In
the work at hand, we have picked one of this models, i.e. the tabula raza model, and
we re-defined its basic law terms in fractional derivative of order a ∈ (0,1) . This way,
the multiplicative intelligence factor of the conventional model is now replaced by the
intelligence rate of change, which is a more fine parameter of the model. The relation
that connects these two different parameters of the problem is identified and depicted.

The fractional differential equation is interpreted in two different ways. One uses
the standard Riemann-Liouville global definition of the fractional derivative. The other
uses a local definition of the fractional derivative which is based on measuring func-
tional variation by an appropriate non-homogeneous unit of fractional variation. As we
can see from the relative numerical values, the two kinds of fractional derivatives do
not show any significant difference. However, the local definition frees the definition
of the derivative from the functional history of the evaluated quantity, which is implied
by the global character of the Riemann-Liouville definition.
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Figure 6.

Figure 7.

Figure 8.
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