

# CONTINUOUS DEPENDENCE OF THE SOLUTION OF RANDOM FRACTIONAL-ORDER DIFFERENTIAL EQUATION WITH NONLOCAL CONDITIONS

A. M. A. EL-SAYED, F. GAAFAR AND M. EL-GENDY

(Communicated by N. N. Leonenko)

Abstract. In this paper we are concerned with an initial value problem of random fractional-order differential equation with nonlocal condition. Continuous dependence and some other properties concerning the existence and uniqueness of the solution will be proved.

### 1. Introduction

The existence of solutions of nonlocal problems of differential equation of integer orders and fractional orders have been studied by some authors (see [4], [6], [7] and ([14]–[17]) for example).

Also stochastic problems are discussed in many papers, the reader is referred to ([1]-[3]), [5], ([8]-[13]) and [18].

Consider the random differential equation of fractional order

$$D^{\alpha}X(t) = c(t)f(X(t)) + b(t), \ t \in (0,T]$$
 (1)

with the nonlocal condition

$$X(0) + \sum_{k=1}^{n} a_k X(\tau_k) = X_0, \quad a_k > 0, \quad \tau_k \in (0, T),$$
 (2)

where  $X_0$  is a second order random variable and  $a_k$  are positive real numbers.

Here we study the existence of a unique mean square continuous solution of the problem (1)–(2). The continuous dependence on the random variable  $X_0$  and the deterministic coefficient  $a_k$  will be proved. The problem (1) with the integral condition

$$X(0) + \int_{0}^{T} X(s)dv(s) = X_{0}.$$
 (3)

will be considered. It must be noted that, in [4] the authors proved the existence of unique solution of the deterministic case of the problem (1)–(2).

Keywords and phrases: Stochastic fractional calculus, Banach contraction fixed point theorem, nonlocal condition, continuous dependence, mean square solution.



Mathematics subject classification (2010): 26A33, 34K50.

### 2. Preliminaries

Let I = [0,T] and  $C = C(I,L_2(\Omega))$  be the class of all mean square continuous second order stochastic process with the norm

$$||X||_C = \sup_{t \in [0,T]} ||X(t)||_2 = \sup_{t \in [0,T]} \sqrt{E(X(t))^2}.$$

Now we have the following definitions.

DEFINITION 2.1. [4] Let  $X \in C(I, L_2(\Omega))$  and  $\beta \in \mathbb{R}^+$  The mean square fractional-order integral  $I_a^{\beta}$  of X(t) is defined by

$$I_a^{\beta}X(t) = \int_a^t \frac{(t-s)^{\beta-1}}{\Gamma(\beta)}X(s)ds$$

where  $\Gamma(.)$  denotes the gamma function.

DEFINITION 2.2. [4] The mean square Caputo fractional-order derivative of order  $\alpha \in (0,1]$  of the absolutely mean square continuous process X(t) is defined by

$$D_a^{\alpha}X(t) = I_a^{1-\alpha}\frac{d}{dt}X(t), \ 0 < \alpha \leqslant 1.$$

where D denotes the mean square differentiation and X(t) is assumed to be mean square differentiable.

# 3. Integral equation representation

Throughout the paper we assume that the following assumptions hold

(H1) the function f satisfies the mean square Lipschitz condition

$$|| f(X_1(t)) - f(X_2(t)) ||_2 \le k || X_1(t) - X_2(t) ||_2$$
.

(H2) There exists a positive real number m such that

$$\sup_{t\in[0,T]}|f(0)|\leqslant m.$$

(H3) c(t) and b(t) are absolutely continuous functions where

$$c = \sup_{t} |c(t)|, \quad b = \sup_{t} |b(t)|$$

Now we have the following lemma.

LEMMA 3.1. The solution of the nonlocal random problem (1) and (2) can be expressed by the integral equation

$$X(t) = a \left( X_0 - \sum_{k=1}^n a_k I^{\alpha} g(t, X(t)) |_{t=\tau_k} \right) + I^{\alpha} g(t, X(t))$$
 (4)

where 
$$a = \left(1 + \sum_{k=1}^{n} a_{k}\right)^{-1}$$
.

Proof. For simplicity let

$$c(t)f(x(t)) + b(t) = g(t,x(t)).$$

If X(t) satisfies (1)–(2), then by using the properties of the stochastic fractional calculus, equation (1) can be written as

$$I^{1-\alpha}\dot{X}(t) = g(t, X(t)).$$

Operating by  $I^{\alpha}$  on both sides in the last equation, we obtain

$$X(t) - X(0) = I^{\alpha}g(t, X(t))$$

substituting for the value of X(0) from equation (2), we obtain

$$X(t) = X_0 - \sum_{k=1}^{n} a_k X(\tau_k) + I^{\alpha} g(t, X(t)).$$

For  $t = \tau_k$ , we have

$$X(\tau_k) = X_0 - \sum_{k=1}^{n} a_k X(\tau_k) + I^{\alpha}, g(t, X(t))|_{t=\tau_k},$$

then

$$X(\tau_k) = X(t) - I^{\alpha}g(t, X(t)) + I^{\alpha}g(t, X(t))|_{t=\tau_k}.$$

So

$$\begin{split} X(t) &= X_0 - \sum_{k=1}^n a_k \left( X(t) - I^{\alpha} g(t, X(t)) + I^{\alpha} g(t, X(t)) |_{t=\tau_k} \right) + I^{\alpha} g(t, X(t)) \\ &= X_0 - \sum_{k=1}^n a_k X(t) + \sum_{k=1}^n a_k I^{\alpha} g(t, X(t)) - \sum_{k=1}^n a_k I^{\alpha} g(t, X(t)) |_{t=\tau_k} + I^{\alpha} g(t, X(t)) \end{split}$$

$$\left(1 + \sum_{k=1}^{n} a_k\right) X(t) = X_0 - \sum_{k=1}^{n} a_k I^{\alpha} g(t, X(t))|_{t=\tau_k} + \left(1 + \sum_{k=1}^{n} a_k\right) I^{\alpha} g(t, X(t)),$$

then

$$X(t) = \left(1 + \sum_{k=1}^{n} a_k\right)^{-1} \left(X_0 - \sum_{k=1}^{n} a_k I^{\alpha} g(t, X(t))|_{t=\tau_k}\right) + I^{\alpha} g(t, X(t))$$

and finally

$$X(t) = a\left(X_0 - \sum_{k=1}^n a_k I^{\alpha} g(t, X(t))|_{t=\tau_k}\right) + I^{\alpha} g(t, X(t))$$

where 
$$a = \left(1 + \sum_{k=1}^{n} a_k\right)^{-1}$$
.  $\square$ 

## 4. Existence and uniqueness

Now define the operator F by

$$FX(t) = a\left(X_0 - \sum_{k=1}^n a_k I^{\alpha} g(t, X(t))|_{t=\tau_k}\right) + I^{\alpha} g(t, X(t)).$$
(5)

Then we can prove the following lemma.

LEMMA 4.2.  $F: C \rightarrow C$ .

*Proof.* Let  $X \in C$ ,  $t_1$ ,  $t_2 \in [0,T]$  such that  $|t_2 - t_1| < \delta$ , then

$$FX(t_{2}) - FX(t_{1})$$

$$= \int_{0}^{t_{2}} \frac{(t_{2} - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s)f(X(s)) + b(s))ds - \int_{0}^{t_{1}} \frac{(t_{1} - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s)f(X(s)) + b(s))ds$$

$$= \int_{0}^{t_{1}} \frac{(t_{2} - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s)f(X(s)) + b(s))ds + \int_{t_{1}}^{t_{2}} \frac{(t_{2} - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s)f(X(s)) + b(s))ds$$

$$- \int_{0}^{t_{1}} \frac{(t_{1} - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s)f(X(s)) + b(s))ds$$

$$= \int_{0}^{t_{1}} \left[ \frac{(t_{2} - s)^{\alpha - 1}}{\Gamma(\alpha)} - \frac{(t_{1} - s)^{\alpha - 1}}{\Gamma(\alpha)} \right] (c(s)f(X(s)) + b(s))ds$$

$$+ \int_{t_{1}}^{t_{2}} \frac{(t_{2} - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s)f(X(s)) + b(s))ds$$

and from assumption (H1) we have

$$|| f(X(t)) ||_2 - | f(0) | \le || f(X(t)) - f(0) ||_2 \le k || X(t) ||_2$$

then we have

$$|| f(X(t)) ||_2 \le k || X(t) ||_2 + | f(0) | \le k || X ||_C + m.$$

Then

$$\begin{split} &\|FX(t_2) - FX(t_1)\|_2 \\ & \leq \int_0^{t_1} \left[ \frac{(t_2 - s)^{\alpha - 1}}{\Gamma(\alpha)} - \frac{(t_1 - s)^{\alpha - 1}}{\Gamma(\alpha)} \right] \mid c(s) \mid \|f(X(s))\|_2 \, ds \\ & + \int_0^{t_1} \left[ \frac{(t_2 - s)^{\alpha - 1}}{\Gamma(\alpha)} - \frac{(t_1 - s)^{\alpha - 1}}{\Gamma(\alpha)} \right] \mid b(s) \mid ds \\ & + \int_{t_1}^{t_2} \frac{(t_2 - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid c(s) \mid \|f(X(s))\|_2 \, ds + \int_{t_1}^{t_2} \frac{(t_2 - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid b(s) \mid ds \\ & \leq c[k \parallel X \parallel_C + m] + b \int_0^{t_1} \left[ \frac{(t_2 - s)^{\alpha - 1}}{\Gamma(\alpha)} - \frac{(t_1 - s)^{\alpha - 1}}{\Gamma(\alpha)} \right] ds \\ & + c[k \parallel X \parallel_C + m] + b \int_{t_1}^{t_2} \frac{(t_2 - s)^{\alpha - 1}}{\Gamma(\alpha)} ds \\ & = c[k \parallel X \parallel_C + m] + b) \left[ -\frac{(t_2 - t_1)^{\alpha}}{\Gamma(\alpha + 1)} + \frac{t_2^{\alpha}}{\Gamma(\alpha + 1)} - \frac{t_1^{\alpha}}{\Gamma(\alpha + 1)} \right] \\ & + c[k \parallel X \parallel_C + m] + b) \left[ \frac{(t_2 - t_1)^{\alpha - 1}}{\Gamma(\alpha)} \right] \\ & = c[k \parallel X \parallel_C + m] + b) \left[ \frac{(t_2^{\alpha} - t_1^{\alpha})}{\Gamma(\alpha + 1)} \right] \\ & = \frac{c[k \parallel X \parallel_C + m] + b)}{\Gamma(\alpha + 1)} (t_2^{\alpha} - t_1^{\alpha}) \end{split}$$

which proves that  $F: C \rightarrow C$ .  $\square$ 

For the existence of a unique continuous solution  $X \in C$  of the problem (1)–(2), we have the following theorem.

THEOREM 4.1. Let the assumptions (H1)-(H3) be satisfied. If  $A=\frac{kcT^{\alpha}}{\Gamma(\alpha+1)}<1$ , then the problem (1)-(2) has a unique solution  $X\in C$ .

*Proof.* Let X and  $Y \in C$ , then

$$FX(t) - FY(t) = -a \sum_{k=1}^{n} a_k \int_0^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} c(s) (f(X(s)) - f(Y(s))) ds$$
$$+ \int_0^t \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} c(s) (f(X(s)) - f(Y(s))) ds$$

$$\begin{split} & \| FX(t) - FY(t) \|_2 \\ & \leqslant a \sum_{k=1}^n a_k \int\limits_0^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} c(s) \| f(X(s)) - f(Y(s)) \|_2 \, ds \\ & + \int\limits_0^t \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} | c(s) | \| f(X(s)) - f(Y(s)) \|_2 \, ds \\ & \leqslant ka \sum_{k=1}^n a_k \int\limits_0^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} | c(s) | \| X(s) - Y(s) \|_2 \, ds \\ & + k \int\limits_0^t \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} | c(s) | \| X(s) - Y(s) \|_2 \, ds \\ & \leqslant ka \| X - Y \|_C \sum_{k=1}^n a_k \int\limits_0^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} | c(s) | \, ds + k \| X - Y \|_C \int\limits_0^t \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} | c(s) | \, ds \\ & \leqslant ka \| X - Y \|_C \sum_{k=1}^n |a_k| \int\limits_0^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} \sup_s |c(s)| \, ds \\ & + k \| X - Y \|_C \int\limits_0^t \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} \sup_s |c(s)| \, ds \\ & \leqslant cka \| X - Y \|_C \sum_{k=1}^n a_k \int\limits_0^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} \, ds + ck \| X - Y \|_C \int\limits_0^t \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} \, ds \\ & \leqslant kc \| X - Y \|_C \left[ a \sum_{k=1}^n a_k \int\limits_0^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} \, ds + \int\limits_0^t \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} \, ds \right] \\ & \leqslant kc \| X - Y \|_C \left[ a \sum_{k=1}^n a_k \frac{\tau_k^{\alpha}}{\Gamma(\alpha + 1)} + \frac{t^{\alpha}}{\Gamma(\alpha + 1)} \right] \\ & \leqslant kc \| X - Y \|_C \left[ a \sum_{k=1}^n a_k \frac{\tau_k^{\alpha}}{\Gamma(\alpha + 1)} + \frac{T^{\alpha}}{\Gamma(\alpha + 1)} \right] \end{aligned}$$

$$\leq \frac{kcT^{\alpha}}{\Gamma(\alpha+1)} \parallel X - Y \parallel_{C} \left[ a \sum_{k=1}^{n} a_{k} + 1 \right] \leq \frac{2kcT^{\alpha}}{\Gamma(\alpha+1)} \parallel X - Y \parallel_{C},$$

then

$$\parallel FX - FY \parallel_C \leq 2A \parallel X - Y \parallel_C$$

where

$$A = \frac{kcT^{\alpha}}{\Gamma(\alpha+1)}.$$

Which proves that the operator F given by equation (5) is contraction. Consequently, the integral equation (4) has a unique fixed point  $X \in C$ .

To obtain the equivalence of equation (4) with the random initial value problem (1)–(2), let X be the solution of problem (1)–(2). As in [4] we can obtain

$$\frac{d}{dt}X(t) = \frac{d}{dt}I^{\alpha}g(t,X(t)) = \frac{d}{dt}\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}g(s,X(s))ds$$
$$= g(t,X(t))|_{t=0}\frac{t^{\alpha-1}}{\Gamma(\alpha)} + I^{\alpha}\frac{d}{dt}g(t,X(t)).$$

Operate by  $I^{1-\alpha}$  in both sides to obtain

$$D^{\alpha}X(t) = g(t,X(t)) = c(t)f(X(t)) + b(t).$$

For t = 0, we find the nonlocal condition (2) is satisfied as following, since we have

$$X(0) = a \left( X_0 - \sum_{k=1}^{n} a_k I^{\alpha} g(t, X(t)) |_{t=\tau_k} \right)$$

and

$$X(\tau_k) = a\left(X_0 - \sum_{k=1}^n a_k I^{\alpha} g(t, X(t))|_{t=\tau_k}\right) + I^{\alpha} g(t, X(t))|_{t=\tau_k}$$

then

$$\begin{split} \sum_{k=1}^{n} a_k X(\tau_k) &= \sum_{k=1}^{n} a_k \left[ a \left( X_0 - \sum_{k=1}^{n} a_k I^{\alpha} g(t, X(t)) |_{t=\tau_k} \right) + I^{\alpha} g(t, X(t)) |_{t=\tau_k} \right] \\ &= a \sum_{k=1}^{n} a_k X_0 - a \sum_{k=1}^{n} a_k \sum_{k=1}^{n} a_k I^{\alpha} g(t, X(t)) |_{t=\tau_k} + \sum_{k=1}^{n} a_k I^{\alpha} g(t, X(t)) |_{t=\tau_k} \end{split}$$

$$X(0) + \sum_{k=1}^{n} a_k X(\tau_k)$$

$$= a \left( X_0 - \sum_{k=1}^{n} a_k I^{\alpha} g(t, X(t))|_{t=\tau_k} \right) + a \sum_{k=1}^{n} a_k X_0$$

$$-a \sum_{k=1}^{n} a_k \sum_{k=1}^{n} a_k I^{\alpha} g(t, X(t))|_{t=\tau_k} + \sum_{k=1}^{n} a_k I^{\alpha} g(t, X(t))|_{t=\tau_k}$$

$$= X_0 \left( a + a \sum_{k=1}^n a_k \right) + \left( -a \sum_{k=1}^n a_k - a \sum_{k=1}^n a_k \sum_{k=1}^n a_k + \sum_{k=1}^n a_k \right) I^{\alpha} g(t, X(t))|_{t=\tau_k}$$

$$= aX_0 \left( 1 + \sum_{k=1}^n a_k \right) + \left( -a \sum_{k=1}^n a_k \left( 1 + \sum_{k=1}^n a_k \right) + \sum_{k=1}^n a_k \right) I^{\alpha} g(t, X(t))|_{t=\tau_k}$$

$$= aa^{-1}X_0 + \left( -aa^{-1} \sum_{k=1}^n a_k + \sum_{k=1}^n a_k \right) I^{\alpha} g(t, X(t))|_{t=\tau_k}$$

$$= X_0$$

which proves the equivalence.  $\Box$ 

### 5. Continuous dependence

Consider the nonlocal random condition

$$X(0) + \sum_{k=1}^{n} a_k X(\tau_k) = \tilde{X}_0, \qquad \tau_k \in (0, T)$$
 (6)

DEFINITION 5.3. The solution  $X \in C$  of the nonlocal random problem (1)–(2) is continuously dependent (on the data  $X_0$ ) if  $\forall \varepsilon > 0$ ,  $\exists \delta > 0$  such that  $\|X_0 - \tilde{X}_0\|_2 \le \delta$  implies that  $\|X - \tilde{X}\|_C \le \varepsilon$ .

Here, we study the continuous dependence (on the random data  $X_0$ ) of the solution of the random fractional-order differential equation (1) and (2).

THEOREM 5.2. Let the assumptions (H1)-(H3) be satisfied. Then the solution of the nonlocal random problem (1)-(2) is continuously dependent on the random data  $X_0$ .

Proof. Let

$$X(t) = a \left( X_0 - \sum_{k=1}^n a_k \int_0^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s)f(X(s)) + b(s)) ds \right)$$
$$+ \int_0^t \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s)f(X(s)) + b(s)) ds$$

be the solution of the nonlocal random problem (1)–(2) and

$$\tilde{X}(t) = a \left( \tilde{X}_0 - \sum_{k=1}^n a_k \int_0^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s) f(\tilde{X}(s)) + b(s)) ds \right)$$

$$+ \int_0^t \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s) f(\tilde{X}(s)) + b(s)) ds$$

be the solution of the nonlocal random problem (1) and (6). Then

$$X(t) - \tilde{X}(t)$$

$$= a(X_0 - \tilde{X}_0) - a \sum_{k=1}^n a_k \int_0^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} c(s) (f(X(s)) - f(\tilde{X}(s))) ds$$

$$+ \int_0^t \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} c(s) (f(X(s)) - f(\tilde{X}(s))) ds$$

Using our assumptions, we get

$$\begin{split} & \parallel X(t) - \tilde{X}(t) \parallel_{2} \\ & \leqslant a \parallel X_{0} - \tilde{X}_{0} \parallel_{2} + a \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid c(s) \mid \parallel f(X(s)) - f(\tilde{X}(s)) \parallel_{2} ds \\ & + \int_{0}^{t} \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid c(s) \mid \parallel f(X(s)) - f(\tilde{X}(s)) \parallel_{2} ds \\ & \leqslant a \parallel X_{0} - \tilde{X}_{0} \parallel_{2} + ka \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid c(s) \mid \parallel X(s) - \tilde{X}(s) \parallel_{2} ds \\ & + k \int_{0}^{t} \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid c(s) \mid \parallel X(s) - \tilde{X}(s) \parallel_{2} ds \\ & \leqslant a \parallel X_{0} - \tilde{X}_{0} \parallel_{2} + ka \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha)} \sup_{s} \mid c(s) \mid \sup_{s} \parallel X(s) - \tilde{X}(s) \parallel_{2} ds \\ & + k \int_{0}^{t} \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} \sup_{s} \mid c(s) \mid \sup_{s} \parallel X(s) - \tilde{X}(s) \parallel_{2} ds \\ & \leqslant a \parallel X_{0} - \tilde{X}_{0} \parallel_{2} + kc \parallel X - \tilde{X} \parallel_{C} \left[ a \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha + 1)} ds + \int_{0}^{t} \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} ds \right] \\ & \leqslant a \parallel X_{0} - \tilde{X}_{0} \parallel_{2} + kc \parallel X - \tilde{X} \parallel_{C} \left[ a \sum_{k=1}^{n} a_{k} \frac{T^{\alpha}}{\Gamma(\alpha + 1)} + \frac{T^{\alpha}}{\Gamma(\alpha + 1)} \right] \\ & \leqslant a \parallel X_{0} - \tilde{X}_{0} \parallel_{2} + kc \parallel X - \tilde{X} \parallel_{C} \frac{2T^{\alpha}}{\Gamma(\alpha + 1)}, \end{split}$$

then

$$\parallel X - \tilde{X} \parallel_C \leqslant \frac{A\delta}{(1 - 2A)}.$$

This complete the proof.  $\Box$ 

Now consider the random fractional-order differential equation (1) with the nonlocal condition

$$X(0) + \sum_{k=1}^{n} \tilde{a}_k X(\tau_k) = X_0, \quad \tau_k \in (0, T)$$
 (7)

DEFINITION 5.4. The solution  $X \in C$  of the nonlocal random problem (1)–(2) is continuously dependent (on the coefficient  $a_k$  of the nonlocal condition) if  $\forall \varepsilon > 0$ ,  $\exists \delta > 0$  such that  $|a_k - \tilde{a}_k| \leq \delta$  implies that  $||X - \tilde{X}||_C \leqslant \varepsilon$ .

Here, we study the continuous dependence (on the coefficient  $a_k$  of the nonlocal condition) of the solution of the random fractional-order differential equation (1) and (2).

THEOREM 5.3. Let the assumptions (H1)-(H3) be satisfied. Then the solution of the nonlocal random problem (1)-(2) is continuously dependent on the coefficient  $a_k$  of the nonlocal condition.

Proof. Let

$$X(t) = a \left( X_0 - \sum_{k=1}^n a_k \int_0^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s)f(X(s)) + b(s)) ds \right)$$
$$+ \int_0^t \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s)f(X(s)) + b(s)) ds$$

be the solution of the nonlocal random problem (1)–(2) and

$$\tilde{X}(t) = \tilde{a} \left( X_0 - \sum_{k=1}^n \tilde{a}_k \int_0^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s)f(\tilde{X}(s)) + b(s)) ds \right)$$

$$+ \int_0^t \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} (c(s)f(\tilde{X}(s)) + b(s)) ds$$

be the solution of the nonlocal random problem (1) and (7).

Then

$$\begin{split} &X(t)-\tilde{X}(t)\\ &=(a-\tilde{a})X_0-a\sum_{k=1}^na_k\int\limits_0^{\tau_k}\frac{(\tau_k-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(X(s))ds+\tilde{a}\sum_{k=1}^n\tilde{a}_k\int\limits_0^{\tau_k}\frac{(\tau_k-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(\tilde{X}(s))ds\\ &-\left(a\sum_{k=1}^na_k-\tilde{a}\sum_{k=1}^n\tilde{a}_k\right)\int\limits_0^{\tau_k}\frac{(\tau_k-s)^{\alpha-1}}{\Gamma(\alpha)}b(s)ds+\int\limits_0^t\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)[f(X(s))-f(\tilde{X}(s))]ds \end{split}$$

Now we have

$$|a - \tilde{a}| = \left| \left( 1 + \sum_{k=1}^{n} a_k \right)^{(-1)} - \left( 1 + \sum_{k=1}^{n} \tilde{a}_k \right)^{(-1)} \right|$$

$$= \left| \sum_{k=1}^{n} (\tilde{a}_k - a_k) \left( 1 + \sum_{k=1}^{n} a_k \right)^{(-1)} \left( 1 + \sum_{k=1}^{n} \tilde{a}_k \right)^{(-1)} \right|$$

$$\leqslant \left| \sum_{k=1}^{n} (\tilde{a}_k - a_k) \right| \leqslant n\delta$$

and

$$\begin{split} &\tilde{a}\sum_{k=1}^{n}\tilde{a}_{k}\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(\tilde{X}(s))ds-a\sum_{k=1}^{n}a_{k}\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(X(s))ds\\ &=\tilde{a}\left(1+\sum_{k=1}^{n}\tilde{a}_{k}\right)\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(\tilde{X}(s))ds\\ &-a\left(1+\sum_{k=1}^{n}a_{k}\right)\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(X(s))ds\\ &-\tilde{a}\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(\tilde{X}(s))ds+a\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(X(s))ds\\ &=\tilde{a}(\tilde{a}^{-1})\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(\tilde{X}(s))ds-a(a^{-1})\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(X(s))ds\\ &-\tilde{a}\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(\tilde{X}(s))ds+a\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(X(s))ds \end{split}$$

then

$$\begin{split} &\tilde{a}\sum_{k=1}^{n}\tilde{a}_{k}\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(\tilde{X}(s))ds-a\sum_{k=1}^{n}a_{k}\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(X(s))ds\\ &=-\int_{0}^{\tau_{k}}\frac{(\tau_{k}-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)[f(X(s))-f(\tilde{X}(s))]ds+a\int_{0}^{\tau_{k}}f(s,X(s))ds-\tilde{a}\int_{0}^{\tau_{k}}f(\tilde{X}(s))ds\\ &-\tilde{a}\int_{0}^{\tau_{k}}f(X(s))ds+\tilde{a}\int_{0}^{\tau_{k}}f(X(s))ds \end{split}$$

$$=-\int\limits_0^{\tau_k}\frac{(\tau_k-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)[f(X(s))-f(\tilde{X}(s))]ds+[a-\tilde{a}]\int\limits_0^{\tau_k}\frac{(\tau_k-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)f(X(s))ds\\+\tilde{a}\int\limits_0^{\tau_k}\frac{(\tau_k-s)^{\alpha-1}}{\Gamma(\alpha)}c(s)[f(X(s))-f(\tilde{X}(s))]ds.$$

From assumption (H2) we have

$$|| f(X(t)) ||_2 \le k || X(t) ||_2 + | f(0) | \le k || X ||_C + m.$$

also we have

$$\begin{split} & \left[ a \sum_{k=1}^{n} a_k - \tilde{a} \sum_{k=1}^{n} \tilde{a}_k \right] \int_{0}^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid b(s) \mid ds \\ &= \left[ a \left( 1 + \sum_{k=1}^{n} a_k \right) - \tilde{a} \left( 1 + \sum_{k=1}^{n} \tilde{a}_k \right) \right] \int_{0}^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid b(s) \mid ds \\ & - \left[ a - \tilde{a} \right] \int_{0}^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid b(s) \mid ds \\ &= \left[ aa^{-1} - \tilde{a}\tilde{a}^{-1} \right] \int_{0}^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid b(s) \mid ds - \left[ a - \tilde{a} \right] \int_{0}^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid b(s) \mid ds \\ &= - \left[ a - \tilde{a} \right] \int_{0}^{\tau_k} \frac{(\tau_k - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid b(s) \mid ds, \end{split}$$

$$\| X(t) - \tilde{X}(t) \|_{2}$$

$$\leq |a - \tilde{a}| \| X_{0} \|_{2}$$

$$+ \left\| -a \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha)} c(s) f(X(s)) ds + \tilde{a} \sum_{k=1}^{n} \tilde{a}_{k} \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha)} c(s) f(\tilde{X}(s)) ds \right\|_{2}$$

$$+ \left| a \sum_{k=1}^{n} a_{k} - \tilde{a} \sum_{k=1}^{n} \tilde{a}_{k} \right| \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha)} |b(s)| ds$$

$$+ \int_{0}^{t} \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} |c(s)| \| f(X(s)) - f(\tilde{X}(s)) \|_{2} ds$$

$$\begin{split} &\leqslant \mid a - \tilde{a} \mid \mid \mid X_{0} \mid \mid_{2} + \left| \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha)} c(s) [f(X(s)) - f(\tilde{X}(s))] ds \right| \Big|_{2} \\ &+ \left| \left| [a - \tilde{a}] \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha)} c(s) [f(X(s)) ds \right| \Big|_{2} \\ &+ \left| \tilde{a} \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha)} c(s) [f(X(s)) - f(\tilde{X}(s))] ds \right| \Big|_{2} \\ &+ \left| a \sum_{k=1}^{n} a_{k} - \tilde{a} \sum_{k=1}^{n} \tilde{a}_{k} \right| \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid b(s) \mid ds \\ &+ \int_{0}^{t} \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} \mid c(s) \mid \mid \mid f(X(s)) - f(\tilde{X}(s)) \mid |_{2} ds \\ &\leqslant n\delta \mid \mid X_{0} \mid \mid_{2} + kc \mid \mid X - \tilde{X} \mid \mid_{C} \int_{0}^{\tau_{k}} \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} ds + cn\delta[k \mid \mid X \mid \mid_{C} + m] \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha)} ds \\ &+ c\tilde{a}k \mid \mid X - \tilde{X} \mid \mid_{C} \int_{0}^{t} \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} ds + nb\delta \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha)} ds \\ &+ kc \mid \mid X - \tilde{X} \mid \mid_{C} \int_{0}^{t} \frac{(t - s)^{\alpha - 1}}{\Gamma(\alpha)} ds \\ &\leqslant n\delta \left[ \mid \mid X_{0} \mid \mid_{2} + c[k \mid \mid X \mid \mid_{C} + m] \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha + 1)} + b \int_{0}^{\tau_{k}} \frac{(\tau_{k} - s)^{\alpha - 1}}{\Gamma(\alpha + 1)} \right] + \frac{skcT^{\alpha}}{\Gamma(\alpha + 1)} \mid X - \tilde{X} \mid \mid_{C} \\ &\leqslant n\delta \left[ \mid \mid X_{0} \mid \mid_{2} + c[k \mid \mid X \mid \mid_{C} + m] \frac{T^{\alpha}}{\Gamma(\alpha + 1)} + b \frac{T^{\alpha}}{\Gamma(\alpha + 1)} \right] + \frac{3kcT^{\alpha}}{\Gamma(\alpha + 1)} \mid X - \tilde{X} \mid \mid_{C} \end{aligned}$$

then

$$\|X - \tilde{X}\|_{C} \leqslant n\delta \left[ \|X_0\|_2 + c[k \|X\|_C + m] \frac{T^{\alpha}}{\Gamma(\alpha + 1)} + b \frac{T^{\alpha}}{\Gamma(\alpha + 1)} \right] + 3A \|X - \tilde{X}\|_{C}$$

so

$$\parallel X - \tilde{X} \parallel_{C} \leq \frac{n\delta \left[ \parallel X_{0} \parallel_{2} + c[k \parallel X \parallel_{C} + m] \frac{T^{\alpha}}{\Gamma(\alpha+1)} + b \frac{T^{\alpha}}{\Gamma(\alpha+1)} \right]}{(1 - 3A)}$$

This complete the proof.

### 6. Nonlocal integral condition

Let v(t) is a nondecreasing function such that

$$a_k = v(t_k) - v(t_{k-1}), \quad \tau_k \in (t_{k-1}, t_k)$$

where  $0 < t_1 < t_2 < t_3 < \ldots < T$ . Then, the nonlocal condition (2) will be in the form

$$X(0) + \sum_{k=1}^{n} X(\tau_k)(v(t_k) - v(t_{k-1})) = X_0.$$

From the mean square continuity of the solution of the nonlocal problem (1)–(2), we obtain from [18]

$$\lim_{n \to \infty} \sum_{k=1}^{n} X(\tau_k)(v(t_k) - v(t_{k-1})) = \int_{0}^{T} X(s) dv(s),$$

that is, the nonlocal conditions (2) is transformed to the mean square Riemann-Steltjes integral condition

$$X(0) + \int_{0}^{T} X(s)dv(s) = X_{0}.$$

Now, we have the following theorem.

THEOREM 6.4. Let the assumptions (H1)-(H3) be satisfied, then the stochastic differential equation (1) with the nonlocal integral condition (3) has a unique mean square continuous solution represented in the form

$$X(t) = a \left( X_0 - \int_0^T \int_0^s \frac{(\tau_k - \theta)^{\alpha - 1}}{\Gamma(\alpha)} (c(\theta) f(X(\theta)) + b(\theta)) d\theta dv(s) \right)$$
$$+ \int_0^t \frac{(t - \theta)^{\alpha - 1}}{\Gamma(\alpha)} (c(\theta) f(X(\theta)) + b(\theta)) d\theta$$

where  $a^* = (1 + v(T) - v(0))^{-1}$ .

*Proof.* Taking the limit of equation (3) we get the proof.  $\Box$ 

#### REFERENCES

- L. ARNOLD, Stochastic differential equations: theory and applications, A Wiley-Interscience Publication Copyright by J. Wiley and Sons, New York, 1974.
- [2] A. T. BHARUCHA-TEID, Fixed point theorems in probabilistic analysis, Bulletin of the American Mathematical Society 82 (5), 1976.
- [3] A. M. A. EL-SAYED, On the stochastic fractional calculus operators, Journal of Fractional Calculus and Applications 6 (1) 2015, pp. 101–109.

- [4] A. M. A. EL-SAYED, R. O. ABD EL-SALAM SH. A., On the stability of a fractional-order differential equation with nonlocal initial condition, Electronic Journal of Qualitative Theory of Differential Equations 29 (2008) pp. 1–8.
- [5] A. M. A. EL-SAYED, R. O. ABDELRAHMAN AND M. EL-GENDY, On the maximal and minimal solutions of the nonlocal problem of Itô Stochastic Differential Equation, Nonlinear Analysis and Differential Equations 4 (6) 2016, pp. 269–281.
- [6] A. M. A. EL-SAYED AND E. O. BIN-TAHER, A nonlocal Problem for a multi-term fractional order differential equation, Journal of Math. Analysis 5 (29) 2011, pp. 1445–1451.
- [7] A. M. A. EL-SAYED AND E. O. BIN-TAHER, An arbitraty fractional order differential equation with internal nonlocal and integral conditions, Advances in pure mathematics 1 (3) 2011, pp. 59–62.
- [8] A. M. A. EL-SAYED, E. E. EL-ADDAD AND H. F. A. MADKOUR, On some equivalent problems of stochastic differential equations of fractional order, Journal of Fractional Calculus and Applications 6 (2) 2015, pp. 115–122.
- [9] A. M. A. EL-SAYED, M. A. EL-TAWIL, M. S. M. SAIF AND F. M. HAFIZ, The mean square Riemann-Liouville stochastic fractional derivative and stochastic fractional order differential equation, Math. Sci. Res. J. 9 (6) 2005, pp. 142–150.
- [10] A. M. A. EL-SAYED, F. GAAFAR AND M. EL-GENDY, Continuous dependence of the solution of Ito stochastic differential equation with nonlocal conditions, Applied Mathematical Sciences 10 (40) 2016, pp. 1971–1982.
- [11] D. ISAACSON, *Stochastic integrals and derivatives*, The Annals of Mathematical Statistics **40** (5) 1969, pp. 1610–1616.
- [12] K. Ito, On stochastic differential equations, Mem. A. M. S. 4, 1951, pp. 1–51.
- [13] S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, Journal Of Mathematical Analysis And Applications 67, 1979, pp. 261–273.
- [14] K. MILLER, AND B. ROSS, An introduction to the fractional calculus and fractional differential equations, John Wiley, New York, 1993.
- [15] I. PODLUBNY, Fractional differential equations, Acad. press, San Diego-New York-London, 1999.
- [16] I. PODLUBNY, AND A. M. A. EL-SAYED, On two definitions of fractional calculus, Slovak Academy of science-Institute of Experimental phys, preprint UEF 03-96 (ISBN 80-7099-252-2), 1999.
- [17] S. SAMKO, A. KILBAS, AND O. L. MARICHEV, Fractional integrals and derivatives, Gordon and Breach Science Publisher, 1993.
- [18] T. T. SOONG, Random differential equations in science and engineering, Mathematics in Science and Engineering 103, 1973.

(Received March 14, 2016)

A. M. A. El-Sayed Faculty of Science Alexandria University Egypt

e-mail: amasyed@alexu.edu.eg

F. Gaafar Faculty of Science Damanhour University Egypt

 $e ext{-}mail:$  fatmagaafar2@yahoo.com

M. El-Gendy Faculty of Science Damanhour University Egypt

e-mail: maysa\_elgendy@yahoo.com