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CONTINUOUS DEPENDENCE OF THE SOLUTION OF
RANDOM FRACTIONAL-ORDER DIFFERENTIAL
EQUATION WITH NONLOCAL CONDITIONS

A. M. A. EL-SAYED, F. GAAFAR AND M. EL-GENDY

(Communicated by N. N. Leonenko)

Abstract. In this paper we are concerned with an initial value problem of random fractional-order
differential equation with nonlocal condition. Continuous dependence and some other properties
concerning the existence and uniqueness of the solution will be proved.

1. Introduction

The existence of solutions of nonlocal problems of differential equation of integer
orders and fractional orders have been studied by some authors (see [4], [6], [7] and
([14]-[17]) for example).

Also stochastic problems are discussed in many papers, the reader is referred to
([11-3D, [5], ([8]-{13]) and [18].

Consider the random differential equation of fractional order
DX (t) = c(t)f(X (1)) +b(t), 1 € (0,T] (D

with the nonlocal condition
n
X(0)+ Y aX(n%)=Xo, a>0, %< (0,T), 2)
k=1

where Xj is a second order random variable and gy, are positive real numbers.
Here we study the existence of a unique mean square continuous solution of the

problem (1)—(2). The continuous dependence on the random variable X, and the deter-
ministic coefficient a; will be proved. The problem (1) with the integral condition

T
X(0)+ / X (s)dv(s) = Xo. 3)
0

will be considered. It must be noted that, in [4] the authors proved the existence of
unique solution of the deterministic case of the problem (1)—(2).
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2. Preliminaries

Let I =[0,T] and C = C(I,L,(Q)) be the class of all mean square continuous
second order stochastic process with the norm

X [le= sup IX(0) 1= sup \/E(X())*.

1€[0,T] 1€[0,T]

Now we have the following definitions.

DEFINITION 2.1. [4] Let X € C(1,L(2)) and B € R™ The mean square fractional-
order integral P ofx (1) is defined by

Px (1) Z/MX(S)LIIS

a

where I'(.) denotes the gamma function.

DEFINITION 2.2. [4] The mean square Caputo fractional-order derivative of or-
der o € (0, 1] of the absolutely mean square continuous process X () is defined by

d
DX (t) = Ij‘“EX(t), 0<a<l.

where D denotes the mean square differentiation and X (7) is assumed to be mean
square differentiable.

3. Integral equation representation
Throughout the paper we assume that the following assumptions hold
(H1) the function f satisfies the mean square Lipschitz condition
1/ (X1(2)) = f(Xa () o< K [ X2 () = Xa(2) []2 -
(H2) There exists a positive real number m such that

sup [ f(0) [<m.
t€[0.7]

(H3) ¢(¢) and b(t) are absolutely continuous functions where

c=sup|c(r)], b=sup|b()]
t t

Now we have the following lemma.
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LEMMA 3.1. The solution of the nonlocal random problem (1) and (2) can be
expressed by the integral equation

X(t)=a (Xo - i aklag(t7x(t))t=‘fk> +1%g(1,X (1)) 4)

k=1

~1
n
where a = <l—|— Y ak> .

k=1

Proof. For simplicity let

c(t)f(x(1)) +b(1) = g(t,x(1))-

If X(r) satisfies (1)-(2), then by using the properties of the stochastic fractional calcu-
lus, equation (1) can be written as

1'X (1) = (1, X (1)).
Operating by I% on both sides in the last equation, we obtain
X(t) =X (0) =1%g(t,X (1))

substituting for the value of X (0) from equation (2), we obtain

X(t)=Xo— i aX () +1%(1,X(1)).
k=1

For t = 13, we have

X(5) = Xo— 3 aX (%) + 180X (1)) s,

k=1
then
X(t) =X (1) —1%g(t, X (1)) +1%g(t, X (1)) =z,
So
= Xo— Zak( %g(t,X (1)) +1%g(t,X (1)) =5, ) +1%g(t,X (1))
=Xo— ZakX )+ Zakl g(t,X(t Zakla (6, X (1)) li=g +1%8(t,X (1))
k=1 - =
and

k=1

(l—l—ia;{)X(t):Xo—iaklag(t,X( D=z, ( i )I g(t,X (1)),
k=1 =l



138 A.M. A. EL-SAYED, F. GAAFAR AND M. EL-GENDY

then

“1
:( 2 ) <X —2 kla ‘t rk> —i—Iag(t,X(t))
and finally
X <X0— iakla ‘z ‘rk) —l—Iag(t,X(l‘))

-1
n

where a = <1+ > ak) . O
k=1

4. Existence and uniqueness

Now define the operator F' by

FX(t)=a (Xo — i akl"‘g(uX(t))t:Tk) +1%(1,X(1)).

k=1
)
Then we can prove the following lemma.
LEMMA 4.2. F:C—C.
Proof. Let X € C, t1, 1 € [0,T] such that |, —1; |< &, then
FX (1) — FX (1)
— ) 1 1 _5 o—1
[ ) X)) + bl - O/ e (X (5) + bl
151 g a1 15} s 1
- 0/ e ) (X() Foloist o X (5) + bl
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and from assumption (H1) we have

1FX @) ll2 = [FO) < FX @) = f£(O) o<k | X (@) [|2,

then we have
[ FX@) <k X(@) 2+ £0) <KX llc +m.
Then

| FX (22) = FX (1) [|2

. / [(lz—s)a—l (n —s)a—l] Le(s) || FX(5) || ds

A
FT(—9%" (4—s2!

*0/[ 10
f2 _sa71

+ [ ||2ds+/ 0(s) | ds

k|| X |l +m]+b7 [(Q;S _

velk || X [le 4m] +b/ 2_s —ds
_ (o —1n)* iy i
= clk || X [lc +m]+b) [_ r(oH_ll) + F(a2+ ) F(al+ 1)]
( tl)a 1

+b)
= clk | X [|c +m] +b) {t’{ i ]

clkl[ X llc +m]+b)
= Tarn &)

which proves that F: C — C. [

For the existence of a unique continuous solution X € C of the problem (1)—(2),
we have the following theorem.

THEOREM 4.1. Let the assumptions (H1)—(H3) be satisfied. If A = k;Tfl) <1,

then the problem (1)—(2) has a unique solution X € C.
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Proof. Let X and Y € C, then

and
| FX(t) = FY (@) ||2

(7 — )"

<o [ Eodmeo) | A0~ 0) s
0

Tk

t

(t—s)*1
+O/ Ty | O X)) =X () 112 ds

T
n k(Tk_s)afl

<kaa 0/ oy | <O IXEO =Y () 2 ds

=~
—

+ 0/ T €0 I1X() = ¥(5) s

T t
n (Tk_s)a—l (t—s)a_l
<kal| XY e Y [ [es) [dsk | XY o [ o es) 1ds
kgl ) I'(a) J I'a)
n ¥ (Tk_s)a—l
Shall X le 3 ] | s c(s) |ds
k=1 0 s
! (t_s)oc—l
+k|| X-Y / sup | c(s) | ds
| ||c0 @) Spl (s) |
n % (T _S)afl ! (t _s)ocfl
<cka|| X~ ||c ak/ k ds+ck|X—Y Hc/ ds
IZI 0 I'(a) J I'a)

Tk

i n _ Jo—1 ! _ Jo—1
kel XY ¢ aZak/(T" (SX)) ds+/(t ) ds}
L 0 0
o

I( (o)

2 ¥ t
<ke|X—-Y k
| le “,Zfla"r(a+1)+r(a+1)

<ke||X-Y
c llc agakr
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T X =Yl laiak+1 < kel 1X—Y|c
S T(a+1) = S T(o+1) ’
then
| FX—FY [[c<2A[[ XY |c
where
_ keT®
CT(a+1)

Which proves that the operator F given by equation (5) is contraction. Consequently,
the integral equation (4) has a unique fixed point X € C.

To obtain the equivalence of equation (4) with the random initial value problem
(1)—(2), let X be the solution of problem (1)—(2). As in [4] we can obtain

1

—g o—1
X0 = LX) = 5 [ L2 x(9)as

dt dt dr) (o)
et d
= g(taX(t))‘I:OW +HIT s (L X(1)).

Operate by I' =% in both sides to obtain
DX (1) = g(t,X (1)) = c(1)f(X (1)) + ().

For ¢ = 0, we find the nonlocal condition (2) is satisfied as following, since we have

X(0)=a (Xo - i aklag(t7x(t))t=fk>

k=1
and
X(w)=a (Xo - akI“g(t»X(t))lmk) +1%(t,X (1)) li=x,
k=1
then
n n n
EakX(Tk) = Eak al Xo— Zaklag(t,X(t))\,:Tk +1%(t,X(1))]i=1
k=1 k=1 k=1
=ay aXo—a a Y alg(t,X(1))]i=r, + X, al®(t,X(1))]i=r,
k=1 k=1 k=1 k=1
and

X(0)+ S aX (1)
k=1

=ua (Xo -y aklag(t7X(t))t:Tk> +ay aXo
k=1

k=1 =

n n n
—a Y, ax Y, ald“g(t.X (t))li=g + X, axl®g(t, X (1))li=,
k=1 k=1 k=1
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n n n n
) + (—a Dar—aY a Y a+ ak) I%g(t,X (t))li=
k=1 =1 k=l k=l

)1 8(6,X(1))]i=,

142

I M=

—XO a-+ta
k

[

aa™! i ar+ i ak) 1%g(t,X (1)) li==,

= aa71X0 +
k=1

k=1

:XO

which proves the equivalence. [

5. Continuous dependence

Consider the nonlocal random condition
(6)

n
0)+ Y aX(n)=Xo, 7<€(0,7)
k=1
DEFINITION 5.3. The solution X € C of the nonlocal random problem (1)—(2) is
continuously dependent (on the data Xp) if Ve > 0, 38 > 0 such that || Xo — Xp [.< &

implies that || X — X [|c< &.
Here, we study the continuous dependence (on the random data Xy ) of the solution

of the random fractional-order differential equation (1) and (2)

THEOREM 5.2. Let the assumptions (H1)—(H3) be satisfied. Then the solution
of the nonlocal random problem (1)—(2) is continuously dependent on the random data

Xo.
Proof. Let

be the solution of the nonlocal random problem (1)—(2) and

X =da Xo — na Tk@cs ~S N N
X(0) =a|% kzlk()/ o) (X)) +b(5))d

t _ gt 3
_’_/u(c(s)f(X(s))—i—b(S))dS



FRACTIONAL-ORDER DIFFERENTIAL EQUATION WITH NONLOCAL CONDITIONS
be the solution of the nonlocal random problem (1) and (6). Then

X(1) = X(1)

=a(Xo—Xo) —a Zak
k=1

o\;‘
g:\
|
U;
\_/
=
~
~—~
@)
PN
[
N—
N—

I
~
—

>
P
[
N—
N—
N—
QU
[N

[ (1—s)! ;
4 O/ T SO~ FR(5))ds

Using our assumptions, we get
1 X () =X() 2
<al|Xo—Xol2+a)a / c(s) 1 f(X () = f(X(s)) |2 ds
k=1

S)OC 1 3
+/ o 7060 %6 2 s

a —X anafkw c(s S—~S N
<all% x02+kkzlk0/ oy | <O X -X()

S)Otl
+k/ T €6 11X(5) = %) 1 s

a—1

n Tk

~ Tr — ~
<allXo—Xo |2 +kazak/7( kr sup | c(s) | sup || X (s) —X(s) [|2 ds
&y (@) s s

_g)e-l N
k[ L sup ) s 1 X(5) ~X(5) 2 ds

r
) ()
) ) n T—S Sal
<allXo—Xo 2 +ke [ X=X ¢ |a X a / k d”/ (30
k=17
T T
Xy — X, kel X —-X
< all Xo—Xo [|l2 +ke || le azakr(a—kl) T(a+1)
<alXo—Xo |l +ke || X=X | =i
S all %o = 4o ll2 ke “Tlo+1)’
then
X% o 22
S (=24y

This complete the proof. [J
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Now consider the random fractional-order differential equation (1) with the non-
local condition

M=

X(0)+ ), aX(m) =Xo, 7 <(0,T) @)

k=1

DEFINITION 5.4. The solution X € C of the nonlocal random problem (1)—(2)
is continuously dependent (on the coefficient a; of the nonlocal condition) if Ve > 0,
38 > 0 such that | a; —d; |< & implies that || X — X |c< €.

Here, we study the continuous dependence (on the coefficient a; of the nonlocal
condition) of the solution of the random fractional-order differential equation (1) and

2).

THEOREM 5.3. Let the assumptions (H1)—(H3) be satisfied. Then the solution
of the nonlocal random problem (1)—(2) is continuously dependent on the coefficient ay,
of the nonlocal condition.

Proof. Let

—
—
~—
~
~
>
—
o)
N
Nt
+
>
~
[
~—
~—
U
[

Then
X(1)—X(r)
_ (a—d)Xo—aiak 7 (—s)""! $)f(X(s)ds+a S ar 7 (%—s)""! () f(X(s))ds
=1 I'(a) k=1 I'(a)
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Now we have

N

" (=1 " (=1)
<l—|—2ak> —<1+Zﬁk>
k=1

k=1

M:

ak ay <1+2ak

k=1

)| <nb

(-1) .\ D
) <l+zak>
k=1

145

n
Y (a— ax)
k=1

and
n ¥ —g a—1 N n i —g a—1
a3 a [ e R w)as—a Y o [ e rx(o)as
=10 =10
n K —5 o—1 5
. (1 +k§1ak> 0/ (T"F(Oz) c(s)f (X (s))ds
—da S a f (Tk _S)a_lc N N s
<1+ ) k) [ e
~ % (Tk_s)afl N (Tk—S)a 1
~a O/ Moy O R(s)ds + O/ Moy X ()as
T g a1 3 Tk s 1
—ala ) | el RO ds —ala ™) [ el x s
0
~ % (Tk_s)afl N (Tk—S)a 1
~a 0/ Moy O R(s))ds +a [ F2b—els) [X (5)ds
then
n % —s oa—1 N n % —5 oa—1
iy | (T"r( 03) (X ()ds—a S | (T"F( 03) (5) F(X(s))ds
=10 =10
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Tk

/ o X(s)) — )]ds +[a—a

0 0
/k
0

From assumption (H2) we have

X(s))ds

X(s)) = f(X(s))]ds.

Ql

/X @) [2< K[| X (@) [l2 + [ fO) [S K[ X [lc +m.

also we have

I'a)

and

1 X () =X(t) |2
<la—alll Xoll2

s))ds+a S a Tk(Tk_s)ailcs X (5))ds
e SX(5)ds+a 3, ay O/ ey /RO
taYa-a¥al [EI 0 as
k=1 k=1 I(a)
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<la—al| X
la—al]l Xo o+ o

i - o—1 3
/ %c(s)[ﬂxw)) — (R (s))]ds
’ 2

—s o—1
+||la—d 0/ %c(s)f(X(s))ds

2

+O/(t;si [ e(s) (|| F(X(s)) = f(X(s)) [l ds

Tk

Tk
g t—s5)%!
<nd || Xo ||z +ke || X —X ||C/¢ds+cn5 kX |lc+m /
I'a) I'a
0 0
Tk
y : o—1 ol
+cde—X||C/%d +nb6/ LSt S
0
! (1 — )2
~ — S
X—-X —_—
the | X=X o [ o

0

% _s)o-t i — )0t
<nd {IIXO Il +elk || X [l +m] / %“’/ %d]
) —g)o-! —5)*! L=9)”
+ke|| X —X ||c / () Ty ta / IN( T +/

T ] 3kcT™

F(a+l) br(a+1) T(a+1) X=Xl

< nd [ Xo ll2 +elk || X flc 4

then

o o

) T
XX |lc<nd || X k| X b
X=X e nd | o o +elk | X el s 4o

] +3A X -X|c

SO
18 [11Xo ll2 +elk || X [l +m] el + byl

X—X|c<
I X=X fle< =

This complete the proof. [J
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6. Nonlocal integral condition
Let v(¢) is a nondecreasing function such that

ap =v(tr) —v(ti—1), T € (e—1,%)

where 0 <t} <t, <t3 <...<T. Then, the nonlocal condition (2) will be in the form

n

X(0)+ 2 X () (v(tr) — v(tg—1)) = Xo.
k=1

From the mean square continuity of the solution of the nonlocal problem (1)-(2), we
obtain from [18]

e iX(Tk)(V(lk) —v(te-1)) = /TX(S)dV(S)’
i1 0

that is, the nonlocal conditions (2) is transformed to the mean square Riemann-Steltjes

integral condition
T

X(0) + / X (s)dv(s) = Xo.
0
Now, we have the following theorem.

THEOREM 6.4. Let the assumptions (H1)—(H3) be satisfied, then the stochastic
differential equation (1) with the nonlocal integral condition (3) has a unique mean
square continuous solution represented in the form

T s _ avo—l
X(0) =a|X- 0/ 0/ %(o(ew(e))+b<e>>dedv<s>

t (t—0)*!
+O/W(c(6)f(X(9))+b(9))d9

where a* = (1+v(T) —v(0))~".

Proof. Taking the limit of equation (3) we get the proof. [J
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