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POSITIVE SOLUTIONS OF A SYSTEM OF FRACTIONAL
FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH NONLOCAL BOUNDARY CONDITIONS

SVATOSLAV STANEK

(Communicated by N. Vasylyeva)

Abstract. We study the system of two fractional functional differential equations with the Ca-
puto fractional derivative. Using the Guo—Krasnoselskii fixed point theorem on cones and the
nonlinear Leray—Schauder alternative the existence of positive solutions to the system satisfying
nonlocal boundary conditions is proved. The boundary conditions are given by linear bounded
functionals. Examples are given to illustrate our results.

1. Introduction

Let T > 0 be given, J = [0,T], Ry =[0,00) and X =C(J) x C(J). Let ||x|| =
max{|x(t)|: # € J} and ||(x1,x2)|[1 = |[x1] + ||*2]| be the norm in C(J) and X, respec-
tively. Besides, Py = {x € C(J): x(¢t) > 0for t € J} and X} = {(x1,x2) € X: x1(¢) >
0,x(t) >0forteJ}.

Let o/ be the set of all linear bounded functionals ¢: C(J) — R which are non-
negative, that is,

xeC(J), x=>0o0nJ ={(x) >0,

and [|¢]] < 1, where ||£|| is the norm of ¢.

REMARK 1. The Riesz representation theorem says that linear bounded function-
als ¢ on C(J) are given by the Riemann-Stieltjes integral as

(0= [ x5z, xecw) )

and ||¢|| =var] g, where var] g denotes the total variation of g over J. Hence function-
als ¢ belonging to the set <7 are represented by (1), where g : J — R is nondecreasing
and g(T)—g(0) < 1.

In particular, if v: J — R is nondecreasing, v(T) —v(0) < 1 and {r,} C (0,0),
Yoita < 1, {t.} CJ, t; #1; for i # j, then the functionals

T [=S)
0(x) = /0 X)W (1) dr, zz(x):n;rnx(tn),
belong to <7 .
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We discuss the system of fractional differential equations
D%x1(1) +a(t)‘Dﬁx2(t) = LA (x1,x2)(1),
Dxy(1) +b(t) DHx1 (1) = Lo (x1,x2) (1),
where 0<u<a<1,0<B<y<l,a,beC(),a<0,b<0onJand &: X, —
P is continuous, j = 1,2. Here, D denotes the Caputo fractional derivative. Further

conditions on .Z; will be specified later.
Together with system (2) we investigate the boundary conditions

xj(0) =¢;(xj), tLjed, j=1,.2. 3)

@)

DEFINITION 1. We say that (x1,x) € Xy is a solution of system (2) if D%xy,
DYx, € C(J) and equality (2) holds for 7 € J. A solution of (2) satisfying the boundary
condition (3) is said to be a solution of problem (2), (3).

If a solution (x1,x;) of (2) satisfies ||(x1,x2)[[1 > 0, then we say that it is a positive
solution of system (2). Similarly, for positive solutions of problem (2), (3).

We recall the definitions and properties of the Riemann-Liouville fractional inte-
gral and the Caputo fractional derivative [8, 3].
The Riemann-Liouville fractional integral I®x of order 8 > 0 of a function x: J —

R is defined as 51
. _
5. [Tlt—5)
I°x(t) _/0 T x(s)ds,

where T is the Euler gamma function. I° is the identical operator.
The Caputo fractional derivative D%x of order 8 > 0, 8 ¢ N, of a function
x:J— R is given as

ar ot (t _S)n—é—l n=1 (k) (0)
P50 =g [ s (x(” “Xh ) ds,

k=0
where n =[] + 1, [8] means the integral part of the fractional number & .
In particular,

o _g/t(’—s)é B _ds B
Dx(t) = i Ta=0) (x(s) —x(0))ds = dtI (x(#) = x(0)), & €(0,1).

It is well known that 1%: C(J) — C(J) for & € (0,1); I91Vx(r) = I°"x(t) fo
x€C(J) and 8,v € (0,00); D2I%x(t) = x(¢) for x € C(J) and & > 0; %le(t) =x(r
for x € C(J);if 8 € (0,1), x,D%x € C(J), then I°D%x(r) = x(1) — x(0).

r
)

REMARK 2. If (x1,x;) is a solution of system (2), then DHxy, DPx, € c(). It
follows from the conditions o > p, ¥y > [ and the equalities D*x; = I* HD%x,
DBx, = [V BDYx,

Let f; € C(J x Ri) and f; >0, j=1,2. Let Z/(xl,xg)(t) ij(t,xl(t),)CQ(l)).
Then . : Xy — Py is continuous, and therefore the special case of (2) is the system

D% (1) +a(t) DPxy (1) = fi(t,x1(1),x2(t)),

4)
DYy (t) +b(2) D x1(t) = fat,x1(2),x2(2)).
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The solvability of systems of fractional differential equations with local and non-
local boundary conditions was extensively considered in the literature (see [1], [5], [6],
[9]-[16] and references therein). In these papers associated homogeneous systems have
the form either

D%, (1) =0, DPxy(1)=0,
or (DY denotes the Riemann—Liouville fractional derivative of order y)

D% (1) =0, DPxy(t)=0,
where o, B € (1,0). This form plays the important role to obtain operators whose fixed
points are solutions of considered problems. Moreover, the nonlinearities of systems

are given by functions fi, f>.
For example Henderson and Luca [6] considered the problem

D%xy () + A f1(t,x1(2),x2()) =0, n—1<o<n,
Dﬁ)Q(l)+[,Lf2(t7xl(l),xz(l)):07 m_1<ﬁ <m,

X (0) =% (0) = =x""2(0) =0, x,(1) :/Ong(s)dHl(s),
1
(0) =x5(0) = =x""2(0) =0, x,(1) = /O x1(s)dHs(s),

where n,m >3, A, are parameters, f; is continuous on J X Ri and H; is a function
of bounded variation. Existence results for positive solutions were proved by the non-
linerar alternative of the Leray—Schauder type and the Guo—Krasnoselskii fixed point
theorem on cones.

Zhao and Liu [16] discussed the problem

‘Daxl (l) +f1(h)€2(t)) =0,
Dx2 (1) + fo(t,x1(2)) =0,
A0y =0y =0, 0<j<n—1,j#1,

1 1
x’l(1)zx/0 x1(s)ds, x;(l)zx/o xa(s)ds,

wheren—1<a<n,n>3,0<A<2and f; € C(J xR,) is nonnegative. Existence
and uniqueness results are established by using the monotone method, fixed point index
theorems on cones and the properties of Green’s function.

In [1] the authors studied the problem

cDocxl (t) =fi (t7x1(t)7x2(t)chyx2(t)) ’
Dxy(1) = fo (12010, D71 (1) 32(0))

1(0) = i (x2), /Osz(s) ds = o (1),

x2(0) = ha(x1), /OTxl (s)ds = x2 (&),

where o, 8 € (1,2], 7,6 € (0,1), n,&E € (0,T), f; € C([0,T] x R?) and h;: C[0,T] —
R is continuous. By using the Banach fixed point theorem and the Leray—Schauder
nonlinear alternative, the existence and uniqueness of solutions was proved.
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Shah at al. [13] studied the problem

D%x1 (1) = fi(t,x1(1),x2(1)),

DPxs (1) = folt,x1(1),x2(2)),
x1(0) =hi(x1), xi(1) = dx1(n),

1(0) = (x2), x2(0) =yx2(8),

where o, € (1,2], 0< 8,y < 1, f; € C(J x R?) and h;: C(J) — R is continuous.
The existence of solutins was proved by a coincidence degree theory approach for con-
densing maps.

In contrast to papers [1], [5], [6] and [9]-[16], associated homogeneous system of
(2) has the form

D%y (1) +a(t) DPxy(1) =0,
DYy (1) +b(t) D x1(1) =0,
where 0 < u < e <1, 0 < 8 < y< 1, and the nonlinearities are operators .%},.% .
The aim of this paper is to discuss the existence of positive solutions to problem
(2), (3). To this end we introduce an integral operator .7 : X, — X, and show that
fixed points of 7 are solutions to problem (2), (3) (Lemma 5 below). Existence of
a fixed point of 77 is proved by the Guo—Krasnoselskii fixed point theorem on cones

(Lemma 7 below) and the nonlinear Leray—Schauder alterative (Lemma 8 below).
We work with the following conditions on .Z;:

(Hi) % takes bounded sets into bounded sets, j=1,2.

(Hy) There exists € > 0 such that either
Li(x1,x0)(t) =€ forteJ, (x1,x2) € Xy,
or

L (x1,x0)(t) =€ forreJ, (x1,x) € Xy .

(Hz) There exists a nondecreasing positive function w € C(R4.) such that

lim m =0
X—r00 X
and
[-Z (1, x2) | < w((l(x1,x2) (1) for (x1,x2) € Xy, j=1,2.
- 12,600 .
(Ha) 1im(g, v)ex, lmo)lhi—0 Tam, =0 /=12

(Hs) Either
|1 (x1,x0) || - F(o+1)

(v 2) X [|(xp )1 —e || (x1,%2) (|1 re

or

L2 (x1,x2)]| _ T(y+1)
()X, () li—es [[(x1,22) |1 TY
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It is obvious that (H3) = (H;).

The paper is organized as follows. In Section 2 we introduce an operator 2, prove
its properties and discuss the existence of solutions to an auxiliary linear fractional sys-
tem satisfying the boundary condition (3). In Section 3, a key operator 7 is introduced
and its properties are given. The existence results for positive solutions of problem (2),
(3) are stated and proved in Section 4. Some examples are given to illustrate the results.

2. Preliminaries

We need a generalization of the Gronwall lemma for singular kernels [7, Lemma
7.1.1].

LEMMA 1. Let 0< 8 <1, d € C(J) be nonnegative and V be a positive constant.
Suppose that w € C(J) is nonnegative and

!
w(r) < d(t) +v/ (t— )% w(s)ds, 1€l
0
Then )
w(t) <d(t)+ VK/ (t— )% d(s)ds, tel,
0
where K = K(8) is a positive constant.
Introduce operator Aj: C(J) — C(J), j=1,2, as
1) = a(t)["Pb()1* Hx(1),
1) = b(O)I* Ha() 1" Bx(1),

where a,b are from (2). Since a <0, b <0 on J,

Alx(

Azx(

Ajmaps Py into P, j=1,2. (5)

For n € N, let A;? be nthiteration of A, thatis, A? =AjoAjo---0oAj,and A?- be the
—_————

identical operator in C(J).

Finally, introduce operator 2; acting on C(J) by the formula
2x(t) = EAIJ‘-x(I), j=1.2.
k=0

Forv>0,let E,:R— R,
o k

B y
Ev(y) = kzzor(kwr 1)

be the classical Mittag—Leffler function [8, 3].

The properties of 2; are summarize in the following two lemmas. Let

p=o—B+y—u, M=|allb].
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LEMMA 2. For each x € C(J) the series Y A’j‘-x is uniformly convergent on J
and

D ’A’j‘-x(t)‘ <|IXEy (MtP), 1ed, j=1,2. 6)
=0

Proof. We first prove that
‘Ak ’<Mklkp|x()\, tel, xeCl), keN, j=1,2. %

It is clear that |A ;x| < MIP|x| for x € C(J). We now proceed by induction. Suppose
that [Ax| < M"I"P|x| for x € C(J) and some n € N. Then

NP = [N3A ] <M [Ag] <ML, xe ().

Therefore estimate (7) is valid.
Choose x € C(J). Since

1 —Sk —1 k,
1kp|x()\—/0 %Msﬂdsgxu%

we have (note that AQx = x)

k - .
z Ao <1 3 ka = Il Ep (M1P) < [¥|Ep (MTP), j=1,2.
Consequently, o AK ;x is uniformly convergenton J and (6) follows. [

LEMMA 3. 2;:C(J) — C(J), £, is a linear bounded operator,
125x(0)| < |K|Ep (MP), 1€, xeCU), j=1,2, ®)
and for x € C(J),
a(t) "B 2yx(t) = 21a(t)1"Px(1), .
b()I* M 21x(t) = 2ob(1)I* Hx(1). ©)
Proof. Let x€ C(J) and j=1,2. By Lemma 2, the series Y, A’J‘-x is uniformly
convergent on J, and since A’j‘-x € C(J) for k € N, we have 2;x € C(J).
Inequality (8) follows from (6). The linearity of 2; and (8) imply that 2; is a
linear bounded operator.
In order to prove (9) it is sufficient to show that

a7 BASx(t) = Aka()17Bx(r),
b(t)I* HAkx(t) = ASb() 1% Hx(t),
In view of A?-x = x, (10) holds for k = 0. Suppose that
al” P Nix = Nlal"Px  for some n e NU{0}.

e NU{0}, xe C(J). (10)

Then
al’" PAIH x = al" P AL A x = Njal? P Agx = Atal? P pr*Har" Py
= NiAjal" Py = AT ar" Py,
We have proved by induction that the first equality of (10) holds. Similarly, we
can verify its second equality. [
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COROLLARY 1. 2; maps Py into Py and
0< 2x(t) < ||x|Ep (MTP), tel , xePy, j=1,2. (11)
Proof. In view of (5), we see that 2; maps P, into P, . Estimate (11) follows
from (8). [
We now consider the auxiliary linear system of fractional differential equations

D%x, () + a(t) DPxa2 (1) = r (1),

DVxy(t) +b(1) D*x1 (1) = ra (1), (12
where ry,r € C(J).
LEMMA 4. Let r,r, € C(J) and
x1(1) = 1 (0) +1924 (1 (1) = a1 Pra(r)) (13)
x2(1) = (x2) + 1725 (ra2(1) — b() % Hry (1)) . (14)

Then (x1,x2) € X and it is the unique solution of problem (12), (3).

Proof. Itis obvious that (x1,x2) € X and x;(0) =¢;(x;), j=1,2. Hence (x1,x2)
satisfies the boundary condition (3).
We prove that ‘D%x, D¥xp € C(J). In view of

1) =x1(0) = I' 21 (ri (1) — a()I" P ra (1)),
1"V (xa(1) =x2(0)) = 1' 2o (r2 (1) = b()I* 11 (1)),
it follows that
x1(t) = 2i(n (1) —a)I" Pra(1)),
chx2() Do(r2(t) = D)1 Hri(1)),
and therefore D%x;,Dx; € C(J), because r; —al TBry, ry— I Hry € c\J).
We now show that (x,x,) satisfies (12) for 7 € J. Since
I'"%(xy (1) = x1(0)) = I' 2, (r1 (t) — a(t)[" Pra (1)),
1" P (xa(1) = x2(0)) = 17 P 23 (ra (1) = b1 H 11 (1)),
we obtain (cf. (9))
D% +aDPxy = 2, (r1 —al”_ﬁrg) +al7’_ﬁ£22(r2 —bI*Hry)
= 9111 — 21al" Bry+al" P Dory — al" P 2,b1% H1,
= 211 —al" P 2yry + al" P 257y — 21a1" P DI Fr)
= 21— 2\A1r1 =r1.
Similarly,
1"V (xy(1) = x2(0)) = 1' 25 (ra (1) = B()I* 71 (1)),
I H (i () —x1(0) =11 2 (11 (1) — a(t) 1" Pra (1)),
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and
DVxy +bDHx1 = D(ry —bI* Hr) +bI*F 2, (r) —al’Pr,)
= Dory — DobI® M| +bI* M D — DI* M D al" Pr,
== — 32b1a7“r1 + o@zblaiurl — o@gblaiualyfﬁ 1)
= e@zrz - e@zl\grz =n.
Consequently, (x1,x;) satisfies (12) for 7 € J.

It remains to prove that (x1,x;) is the unique solution of problem (12), (3). Let
(y1,¥2) be another solution of this problem and let w; =x;—y;, j=1,2. Then w;(0) =
£j(w;) and the equalities

D%w (1) +a(t) DPw,y (1) = 0,

DYwy(t) +b(t) DHwy(r) = 0,
hold for ¢ € J. Since (cf. Remark 2) Dtw; = % HD%y,, DBy, = 1" BDNw,, we
conclude that

15)

D%w (1) +a() 7P D'wy (1) = 0,
DYwy () + b(t)I*H D%\ (1) = 0.
Hence
D% (1) — a( )" o)1 HD%W, (1) =0, 1€,
and so

u(t) = a() " Po() 1% Fu(r), tel, (16)
where u = D%w; . It follows from (16) that |u(z)| < MIP |u(z)|, hence that

1 (t— )P 1
|u(l)|<M/O%u(s)|ds, el (17)

If p € (0,1), then (17) together with Lemma 1 yield u = 0. If p € [1,2), then

MTP=1 gt
)| < "oy [, Wolds, v

and u = 0 now follows from the Gronwall-Bellman lemma. We have proved that
u =0, that is, D%w; = 0. Then w; is a constant function on J and it follows from
wi =/£1(wy) and [|¢1|| < 1 that w; = 0. Therefore (cf. (15)) DYw, =0 and the analyze
similar to wy gives wp = 0. To summarize, (wi,w;) = (0,0). O

3. Operator 7 and its properties

Keeping in mind Lemma 4, define operators .%1,.54 : Xy — C(J), j=1,2, as
A (x1,x2) () = 01 (x1) + 1% 21 K1 (x1,22) (1),
A (x1,5%2) (1) = Lo (x2) + 172275 (x1,22) (1),
where % : X, — C(J),
S0 (x1,x2) (1) = L1 (x1,x2) (1) —a(t)ly_ﬁ.,iﬂz(xhxz)(t),
Ha(x1,x2)(t) = La(x1,2%2) (1) = DI H L1 (x1,x2) (1)
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Finally, let an operator ¢ : X, — X be given by the formula
H(x1,%2) = (M (x1,%2), 75(x1,%2)) -
The following two lemmas state that fixed points of .7 are positive solutions to
problem (2), (3) and 7 is completely continuous.

LEMMA 5. J: Xy — X1 and if (x1,x2) is a fixed point of F, then (x1,x3) is
a solution of problem (2), (3).

Proof. Since Z(x1,x2)(t): Xy — Py and a <0, b <0 on J, we conclude that
. Xy — Py, which together with Corollary 1 and the non-negativity of /; give
¢ Xy — Py. Consequently, 57 : Xy — X, .

Let (x1,x2) be a fixed point of 2 and let r;(r) = Z;(x1,x2)(t), j=1,2. Then
(x1,%0) € X,

H(x1,x0) =r) — al’ Br,, S5 (x1,x2) = rp — bI* Hry,
and equalities (13), (14) hold. Hence Lemma 4 guarantees that (x,x;) is a solution of
problem (2), (3). O

LEMMA 6. Let (Hy) hold. Then J is a completely continuous operator.

Proof. 7 is completely continuous if and only if the operators .7 and 7% are
completely continuous. We only prove that 7 is completely continuous, because for
6 the proof is similar.

Step 1. 777 is continuous.

Let {(un,vy)} C X4 be a convergent sequence and let (u,v) € X4 be its limit.
Then lim, e ||-Z;(ttn,va) — Lj(u,v)|| =0, j= 1,2, and so lim, e || (Un,vn) —
1 (u,v)|| = 0. This together with the continuity of ¢; and 2, give

lim {77 (un, vi) — i (u,v) || = 0.
Step 2. 777 takes bounded sets into bounded sets.
Let  C X+ be bounded. Then there exist positive constants Ly, L, such that
()1 <Li, 0<Z(u,v)(t) <Ly, tel, (uv)eQ, j=1,2,
and so

I'(y—p+1

w14 AT
*\'Ty-B+1) )

r-B
LKMW@SM<H-WW )><m ted, (uy) e,

where

Hence (cf. (8))

TOC

< ) Fo T

|74 (u,v) (1) < £y (u) + || £ (u,v) || Ep (MT )F(OC+1)
WE, (MTP)T*
_ WE, ML) 1™
< Nl + =y
E,(MTP)T®
<L1+M ted, (u,v) €Q,

Ma+1) 7
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and therefore 771 (Q) = {74 (u,v): (u,v) € Q} is bounded in Py .
Step 3. 74 takes bounded sets into equicontinuous sets.
Let Q,L and W be from Step 2. Let (u,v) € Q and 0 <) <17, <T. Then

|74 (u,v)(22) = A4 (u,v) (00)] = 1% 2170 (,v) (12) = 1% 211 (u,v) (1)

1 _Sotfl_ —Sa71
< [ F(oc()tz 9w ds

+/t2 tz_s |20 () (s)] ds

t1 +2(t—11)* — 15

Io+1)
Since the function 7% is uniformly continuous on the interval J, we see that the family
21 (Q) is equicontinuous on J.

To summarize, we conclude from Steps 1-3 and the Arzela—Ascoli theorem that
7] is completely continuous. [J

< WE,(MTP)

4. Existence results for problem (2), (3)

In the first part of this section, we prove the existence of positive solutions to
problem (2), (3) (Theorems 1 and 2 below) by the well known Guo—Krasnoselskii fixed
point theorem on cones [4] (Lemma 7 bellow).

LEMMA 7. Let Y be a Banach space and 9 C'Y be a cone in Y. Assume that
Q,Qy are open subset of Y with 0 € Qp, Q| C Qy, andlet .S : PN (Qz\Ql) -9
be a completely continuous operator such that either

| ul| Z [ull, ue 200Q) and ||.Lu|| < |lull, ue 7N,

or
[ ull < |lull, ue 200Q and ||Lu|| = [|ull, u € ZN L,

Then . has a fixed point in 9N (ﬁz \ Ql) .

We are now in the position to state and prove the existence results for problem (2),

(3).

THEOREM 1. Let (H») and (H3) hold. Then there exist 0 < r| < ry and a positive
solution (x1,x3) € X4 of problem (2), (3) such that ry < ||(x1,x2)[[1 < r2.

Proof. We apply Lemma 7 for Y =X, 2 =X., . = and Q; = {(x],x) €
X: [|(x1,%2)||1 < ri}, i=1,2, where r1,ry will be specified later.

It is clear that X is a cone in X. By Lemmas 5 and 6, J7: X, — X, is a
completely continuous operator. The next part of the proof is divided into two steps.

Step 1. There exists r; > 0 such that |77 (x1,x2)||1 = || (x1,x2)[]1 for (x1,x2) € X+
and ||(X1,XQ)H1 =Tr.

In view of (5), we have 2;x(r) > A?x(t) =x(t) forxe Py and j=1,2.
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Suppose that (cf. (H2)) 23 (x1,x2)(¢t) > € fort € J and (x1,x2) € X4 . Then (note
that %5 (x1,x;) > 0 because %;: X+ — Py)

K (x1,:) () Z Z1(x1,x2)(1) 2 €, A (x1,x2) () =0,
and therefore for 7 € J and (x;,x2) € X4
er”
C(a+1)’
Hence (note that £;(x;) > 0 for x; € P, since {; € </)

1% 2,81 (x1,x2) (1) = 1221 (x1,x2)(7) > 1" 2,7 (x1,%2)(t) = 0.

et
C(a+1)’
H(x1,%2)(t) = I' D2 K5 (x1,x2)(t) = 0
for r € J and (x1,x2) € X . Consequently,

A (x1,x2) (1) = 1% 211 (x1,%2)(1) >

eT™

172 (e, 2) |1 = 1|24 (ers) || + (| A5 (x1, x2) | > CESk

(x17x2) € X+'

Let ¢; = eT%/T'(a+1). Then
A (x1,x02) |1 = c1,  (x1,x2) € Xy

If % (x1,x2)(t) > € for t €J and (x1,x2) € X1, we have in an analogous way
that
et?

T(y+1)

Hi(x1,22)(1) 2 0, A (x1,:0)(1) >

and
|7 (x1,x2)|[1 = 2, (x1,%2) € Xy,

where ¢; = eT7/T(y+1). Let r; = min{cy,c,}. We have proved that
|77 (x1,x2)|[1 = r1, for (x1,x2) € X5
In particular,
17 (x1,x2) |1 = (| (x1,2) |11 for (x1,x2) € X, || (xp,x2)[[1 =71

Step 2. There exists r > ry such that || (x1,x2)|[1 < ||(x1,x2) |1 for (x1,x2) €
Xy and ||(x1,x2)||1 = 72.
In view of (H3), we have

_lall TP
Ogﬂ(xlaxﬁ(t)g 1+r(,y_ﬁ+1)

Bl T #
m) w(|l(x1,x2)]]1),

)W(H(Xl,m)ﬂl),

0< 2 (x1,x)() < (l +

which together with (8) give

0< 2,4 (x1,%2)(t) < Ep (MTP) l+w
X <11\ A HA2 X Ep F(y—ﬁ—i—l)

bl T "
MNo—pu+1)

)W(H(Xl,m)ﬂl),

0 < Do Hi(x132)(6) < Ep (MTP) (1 n )w<||<x1,x2>||1>.
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Therefore
0 <I1%2, 8 (x1,x2) (1) < Ryw(||(x1,%2)][1),
0 < 172065 (x1,%2) () < Row(||(x1,x2) 1),

where

T“E, (MTP VP
T ><1+r||a|| )

I'a+1) (y—=B+1)
_ TTE,(MTP) (BT *
2T Ty ( r(a—u+1>>'

Let d = max{]|¢1]|,||¢2]|}, R =max{R,R2}. Then d < 1 and
174 (e, x2) | < e[l l] + Row(ll Gense2) 1) < e[|+ Rw (]| (e x2)
175 (e, x2) | < |2 [le2l| 4+ Row (| Cersx2) 1) < |z l| + Rw(]] (31, x2)

Hence

1),
1)

172 (e, x2) [l < dlf(xen,x2) [+ 2Rw([[ (v, x2) 1), (e, x2) € Xy (18)

Since, by (H3), limy_..w(x)/x =0, we have limy_.(d + 2Rw(x)/x) =d < 1, and
therefore there exists r» > r; such that d +2Rw(x)/x < 1 for all x > r,. In particular,
dx+2Rw(x) < x for x = ry, that is,

d||(x1,x2) ([ +2Rw(|[ (x1,x2)[[1) < [|(x1,x2)[[1 for [[(x1,x2)[[1 =r2.  (19)
Combining (18) with (19) yields
|2 (x1,x2) [0 < [[(x1,x2) |1 for (x1,x2) € X, [|(x1,x2)[[1 = 72

To summarize, we conclude from Steps 1 and 2 that for the sets Q; = {(x1,x2) €
X4 [[(x1,%2)||1 < i} the inequalities

[ (x1,x2)[[1 = [|(x1,%2)[[1 for (x1,x2) € X1 NIy,
|77 (x1,22) |1 < ||(x1,x2)|[1 for (x1,x2) € X4+ NIy,

hold. Hence there exists at least one fixed point (x,x) of J# in X; N (Q\ Q).
Therefore r; < ||(x1,x2)]|1 < r, and Lemma 5 gives that (x,x;) is a positive solution
of problem (2), (3). U

EXAMPLE 1. Let r;: J X Ri — R4 be continuous and bounded, j=1,2, r; >
e>0onJxR2, ¢,y:J—J becontinuous, v € (0,1/2) and 7; € (0,1), i = 1,2,3.
Letto/:X+—>P+,

L)1) = 13 (0.2200) + il + (n (0(0),
v(1)
L)) = [ ol (s)26) (16 + ()™ ) ds.

Then .Z; is continuous and satisfies (H) and (H3) for w(x) = K+2(1+KT) +
2(1+ KT)x", where K = sup{r;(t,x;,x2): (t,x1,x2) € J xR%, j=1,2} and n =
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max{2V, Ty, T, 73 }. Hence, by Theorem 1, there exists at least one positive solution
(x1,x2) of the system

Dx1(1) +a(t) DPxa (1) = ri (1,30 (1), 22(0) + rzal|” + (ea ()™

ra (5,31 (), x2(s)) ((xl ()% + (xz(s))%)ds,

satisfying the boundary condition (3).

w(t) (20)

DYxy (1) + b(r) DM (1) = /O

For the solvability of problem (4), (3) we have the following result.

COROLLARY 2. Let fj € C(J xR%) and f; >0, j=1,2. Let

(P1) there exists € > 0 such that either
Silt,x1,x00) =€ fort €J, x1,x € Ry
or
fo(t,x1,x0) =€ fort €J, x1,x € Ry,
(Py) there exists a nondecreasing w € C(R4.) such that limy_... w(x)/x =0 and

filt,x,x) Sw(xi+x2) fortelJ, xi,xx eRy, j=1,2.

Then there exists at least one positive solution (x1,x) of problem (4), (3).

Proof. Let Zj(x1,x2)(t) = fi(t,x1(¢),x2(2)) for t € J, (x1,x) € X4, j=1,2.
Then system (4) can be written as (2). Conditions (P;) and (P») guarantee that .Z;
satisfies (H»), (Hs). The existence result for problem (4), (3) now follows from Theo-
reml. O

EXAMPLE 2. Let 7; € (0,1), i =1,2,3. Then fi(r,x,x) =¢' +x3'In (1 +x7),

H(t,x1,x2) = |sint| + x> +x;° satisfy conditions (P;) and (P,) for € =1 and w(x) =

el +xM1n (1 +x2) +x™ +xB . Hence Corollary 2 guarantees that the system
D% +a(t) DPxy = ¢ + x5 n (1+23),
D¥xy+b(t) DFxy = |sint| +x7 +x7°,

has at least one positive solution (xj,x;) satisfying the boundary condition (3).

THEOREM 2. Let (Hy), (Hs) and (Hs) hold. Then there exist 0 <r; < ry and a
positive solution (x1,xy) € X+ of problem (2), (3) such that ry < ||(x1,%2)|l1 < r2.

Proof. As in the proof of Theorem 1, we apply Lemma 7.
Step 1. There exists r; > 0 such that |77 (x1,x2)||1 < || (x1,x2)]]1 for (x1,x2) € X4
and ||(X1,XQ)H1 =Tr].
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Let
a||T7P |p|| T+
Ri=14+——"1—  Ry=14——t
! T(y—p+1) 2 T(e—u+1)
« _ RiEp(MTP)T®  RE,(MTP)TY
G N (25 VI
1—d

=———  d=max{||4], 4]},

XK e ety

where (1, ¢, are from (3). In view of (Hy), there exists r; > 0 such that
1L (e, x2) ] < S (Gersx2) 1 for (x1,22) € X, [[(xp,x2)[[1 <71y = 1,2
Hence for these (x1,x;) and j we have
12 (e, x2) || < SB[ (x1,x2) |11
and (cf. (8))
12 (x1,%2) || < SR;Ep(MTP)|| (x1,x2) 1
Therefore for (x1,x2) € X, ||(x1,x)]| <r and j=1,2,
175 Ger, x2) [| < (1€ |+ SKGl (e x2) -
Consequently, for (x1,x2) € X+, |[(x1,x2)| < 71,
17 (x1,x2)[[1 < (d +S(Ki 4 K2)) (| (e, x2) 1= [l Gens x2) 1
In particular,
[ (x1,x2)[[1 < |(xrsx2) 1, (enax2) € Xy [[(xnsx2) [0 =7

Step 2. There exists r, > ry such that ||.72(x1,x2)|[1 = [|(x1,x2)|]1 for (x1,x2) €
X+ and H()Cl,xz)Hl =n.

Let (cf. (Hs))

[, x0)||  Tla+1)
> = .
(e1 )X [ i) 1= [ (e, x2) r
Then there exists p; > r; such that
Io+1)
TOC

Hence for these (x1,x;) the estimates

[-Z1 (x1,x2)[| = | (er,x2) 1 for (x1,x2) € X, [[(x1,%2)[11 = p1-

I'o+1)
18 (e 2)| > =2 Gr,22)

A (x1,x2) (1) = 19211 (x1,x2)(¢), 1€,
hold. Since 2;x(t) > x(¢) for x € P, we have

H(e1,)(0) 2 19 (x1,0) (1) > 22D

Z o e 1 1) ) ) te‘]7
T“F(OH— l)”('xl x2)||1

and so
|74 (x1,x2) || = || (x1, 2201, (x1,%2) € Xy, || (x1,x2) |1 = 1
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Consequently,
|7 (x1,2) 11 = |74 (x1,x2) | = [|(x1,x2) 11, (x1,x2) € X, ([, x2)[[1 > pre (21)
If

|Za,x)l T+ 1)
(e1x) X | () 1= [[(v1,x2) 1 rr
then there exists p, > r; such that
F(y+1)
TY

We can now proceed analogously to the above part of this step and have

|76 (x1,x2) || 2 [|(x1,x2) |1 for (x1,x2) € Xy, [ (x1,22)[[1 = p2- (22)
Let r, = max{py,p2}. Then it follows from (21) and (22) that

|22 (x1,%2) || >

[ (x1,x2)[[1 for (x1,x2) € Xy, [[(x1,%2)[[1 = p2-

|7 (x1,22) |[1 = [[(x1,%2) |1 for (x1,x2) € Xy, |[(x1,%2) |1 = 72

As a result, we conclude from Steps 1 and 2 and Lemma 7 that 57 (x,x;) =
(x1,%2) for some (x1,x2) € X1, r1 <||(x1,x2) |1 < r2. This fact together with Lemma 5
give that (x1,x;) is a positive solution of problem (2), (3). O

EXAMPLE 3. Let ri,rp, € C(J), r1 >0, r, >0 on J, ¢:J — J be continuous
and 7; € (1,00), i=1,2,3,4. Let Z;: X, — Py,

L (x1,x2)(0) = r () (e[ + 12l =)

1
L (x1,:0)(1) = /0 ra(s) (x1(9))™ ds + (x2( (1)) ™.
Then .Z; is continuous, satisfies condition (H,) and it follows from the estimates
21 (xe1,x2) (1) < [l (G x2) [+ 1 Gers ) [12)
ZLy(x1,x2) (1) < ([l T Ger,x2) [ 4 (1 Gen x2) [

that . fulfils condition (Hj).
If ||x1]] = ||x2]| , then

T T T
S Y 1 S 25 1| N [ €SP 9
[ | ( > T 2 T 2

Similarly, if |jxa|| > [|x1]|, then [lx1]| = (|| (x1,x2)]|1/2)™. Hence (for (x1,x2) € X4,
e, x2) 1 = 1)

1 1
|0 2)] > mingr0): 1 € Spmin{ 5 b

where 1 = min{7;, >}, and therefore %] satisfies condition (Hs). By Theorem 2,
there exists at least one positive solution of the system

D21 (1) + ) DPxa(r) = ri(0) (b | + el ).
D) +b0) D51 (1) = [/ 1als) (1 9) dit Calp0)) ™

satisfying the boundary condition (3). We note that problem (23), (3) has also the trivial
solution (x1,x) = (0,0).

(23)
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In the second part of this section, the existence of positive solutions (Theorem 3
below) is proved by the following nonlinear Leray—Schauder alternative [2, Corollary
8.1].

LEMMA 8. Let Y be a Banach space and let . Y — Y be a completely con-
tinuous operator. Then the following alternative holds: Either the equation x = A.x
has a solution for every A € [0,1] or the set {x €Y : x = A.x for some A € (0,1)} is
unbounded.

THEOREM 3. Let (Hs) hold and let
21(0,0)(t0) +-£2(0,0)(19) > 0 for some 1y € J . (24)

Then problem (2),(3) has at least one positive solution.
Proof. Let £}, 4 : X — Py and 2" : X — C(J), j= 1,2, be defined by the

formulas
=gj*(x17x2)(t) :=%j(|xl|7|x2|)(t)v i=12,

Y (x1,22) (1) = L7 (x1,31) (1) — a()1"P 25 (x1,32) (1),
H5"(x1,22) (1) = L5 (x1,x1) (1) = (T H LY (x1,5%2) (1),
T (x1,%2) (1) = £y (1) + 1% 2,7 (x1,%2) (1),
5" (x1,%2) (1) = Lo (x2) + 172y 5" (x1,%2) (2).

Finally, let J7*: X — X,
A (x1,x2) = (A7 (x1,%2), A7 (x1,32))
We can proceed analogously to the proof of Lemma 6 and show that JZ* is a com-

pletely continuous operator.
Suppose that (xj,x2) = A.7*(x1,x2) for some (x1,x2) € X and A € (0,1]. Then

x(t) = A <£1(x1) +Ia£21,%/1*(x1,x2)(t)>7

x2(1) = A (L200) + 172255 (x1,32) (1) ).

In view of 1% 2, " (x1,x2),1" 2,05 (x1,x2) € Py, we have x;(t) > Al;(x;), j=1,2.
Applying £; to both sides of the last relation we get £;(x;) (1 —A£;(1)) > 0 and since
ALi(1) € (0 1), £j(x;) > 0. Consequently, x; > 0 on J and 7" (x1 X)) = H(x1,x2).
We now argue as in Step 2 of the proof of Theorem 1| and show that condition (H3)
guarantees the estimate

||%(y17y2)||1 (d+R1) (”(Yh)’z)”l)» (Y17Y2) EX+7
where d = max{||¢,||,||¢2]|} and R; is a positive constant. Hence

[Gerx2) 1 < (1227 (x1,x2) [0 = (|20 x02) [ < (d+Ro)w([[ (enx2) ). (25)
Since limy_..w(x)/x =0, we have limy_..(d + R;)w(x)/x = 0, and therefore there
exists r > 0 such that (d 4+ R;)w(x) < x for all x > r. The last relation together with
(25) give ||(x1,x2)][1 <.
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We have proved that every fixed point (x;,x2) of the operator A.77*, A € (0,1],
belongs to the set X, and that the set {(x1,x2) € X : (x1,x2) = A% (x1,x2)} is bounded
in C(J). By Lemma & (for Y =X and . = J¢*), there exists a fixed point (x1,x2) of
A" . Hence (x1,x2) € X+, and so (x1,x;) is a fixed point of 7. In view of Lemma 53,
(x1,x2) is a solution of problem (2), (3). It remains to prove that (xj,x;) is a posi-
tive solution of this problem. Suppose that (x,x;) = (0,0). Then I*2,.#1(0,0)(¢) +
1"2,.%,(0,0)(r) =0 for € J. Hence .#1(0,0)(¢) + .#2(0,0)(r) = 0 on J, which con-
tradicts #1(0,0)(¢) 4+ -#2(0,0)(r) > £1(0,0)(r) + .22(0,0)(z) for r € J and (24). O

EXAMPLE 4. Let @, y,v,17;,.%; be as in Example 1, where rj: J x R2 — R,
is continuous and bounded, j = 1,2, and r(1,0,0) > 0 for some 7y € J. Then
Z;: X, — P is continuous, satisfies condition (H3) and .Z(0,0)(z9) +-22(0,0) (%) =
Z1(0,0)(f9) > 0. By Theorem 3 there exists at least one positive solution (x1,x;) of
system (20) satisfying the boundary condition (3).
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the Czech Republic.
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