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KALLMAN-ROTA TYPE INEQUALITY FOR DISCRETE
EVOLUTION FAMILIES OF BOUNDED LINEAR OPERATORS
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Abstract. Let 2" be a complex Banach space and 27 be the set of all nonnegative integers.
Let #00( %, Z") be the space of all 2" -valued bounded sequences which decays to zero at
0 and at . Using the space #po(Z%4,2 ), we give Kallman-Rota type inequality for the
discrete evolution family % = {U(m,n) : m,n € £y, m > n} of bounded linear operators. We
also present the same inequality for (r,q)-resolvent operators, which arises in the solution of
fractional difference equation. In particular, if <7 is the algebraic generator of o -times family of
bounded and linear operators, arising from the well posedness of fractional difference equations
of order 8 + 1, then we prove that the inequality

T(a+p+2)°
INo+ DI (a+2B+3)

[l x| < 8n* ez

holds for all x € D(<7?).

1. Introduction

A well-known result established by Hardy, Littlewood and Pélya (see [9], p. 187)
asserts that | f'||5 < 2||f|l2lf"[l2 for any function f on %, where f, f, f" €
L*(%#+). In[12], Kallman and Rota proved that

|.7x|* < 4||x||||.«7%x||, forall x € D(7?), (1.1)

where o7 is the infinitesimal generator of a strongly continuous contraction semigroup
on a Banach space (2, ]|.||), and x, @/x are in the domain of <7. In [14] Kraljevié
and Kurepa extended the above result for bounded and strongly continuous semigroups
with the bound constant # > 0, as |.&Zx||> < 4#°?|x||||/%x|, for x € D(<7?). In
[12], it was shown that the Hardy-Littlewood-Pélya inequality implies the Kallman-
Rota inequality for Cy-semigroups. A special interest has been taken to improve, and in
some cases to obtain, the optimal constant 4 in the inequality (1.1). For Hilbert spaces,
in [6] Goldstein showed that the optimal constant for a Cy-contraction semigroup is 2.
In C-Euclidean spaces for analytic semigroups, different optimal constants are obtained
by different approaches, see [10, 19]. In [3] Buse and Dragomir studied Kallman-Rota
inequality by using the evolution semigroup approach in continuous case.
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Keywords and phrases: Banach space, discrete evolution family, discrete evolution semigroup,
Kallman-Rota inequality, abstract fractional difference equation.
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On the other hand in the last decade, the study of existence and qualitative prop-
erties of fractional difference equations has drawn a great deal of interest, for instance,
see [1, 8, 7, 11]. Miller and Ross [18] defined a fractional sum via the solution of a
linear difference equation. More recently, Atici and Eloe [2] introduced the Riemann-
Liouville like fractional difference equation by using the definition of fractional sum
of Miller and Ross, and developed some of its properties that allow us to obtain so-
lutions of certain fractional difference equations, such solutions lead to the idea of
(r,q) -resolvent operators theory, see [15, 17]. Discrete (r,q)-resolvent operators treat
different families of bounded linear operators in a unified way, where r and g represent
sequences 7, and g, such that r, € I'(2.,.2") and g, € H#o0(Z,, Z), respectively.

Our main result of this paper is to give Kallman-Rota inequality with the help of
discrete evolution family %/, over Banach space 2. Also we present the same in-
equality by using certain discrete (r,q)-resolvent families which arises from fractional
difference equation. Our approach is based on “CP-condition”. We also give applica-
tions of our results.

2. Preliminaries

In the following we introduce few sequence spaces which needed in next sections.

o oo(Zy, Z), consisting of all 2" -valued sequences f, such that f(n) gives
zero at 0 and at oo.

o [P(Z  Z), 1 <p < oo is the usual Lebesgue-Bochner space of all measurable
sequences N : 2, — 2, which are equal almost everywhere, such that

1

IVl = (i)llMs)ll”) < oo,

o I1(Z,,2) is the space of all sequences Q : 2 — 2, such that
10|y == sup [|Q(s)]| < .
n=0

Let 2 be areal or complex Banach space and .Z(.2") the Banach algebra of all
linear and bounded operators acting on 2 . The norm in 2 and in .Z(2") will be
denoted by ||-||. Let 2% be the set of all non-negative integers. The family % :=
{U(n,m) :n,m € 2 ,n > m} is called discrete evolution family of bounded linear
operators on 2, if it satisfies the following properties:

o U(n,n)=1, forall ne Z,.
o U(n,m)U(m,r)=U(n,r), forall n>m>r, n,m;re %,.

It is well known that the evolution family %/ is exponentially bounded, if there exist
o €% and #5 > 0 such that,

U (n,m)|| < #ee® "™, forall n>me Z,, (2.1)
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and uniformly bounded if there exists % > 0 such that,
|U(n,m)|| < W <eo, forall n>me Z;. (2.2)

For more details about discrete evolution families we refer [4, 5, 13, 20, 21, 23, 22].
Here we define some conditions of (r,q)-resolvent operators. Let r, € I' (2, Z)
and g, € #00(Z;, Z), and let <7 be a bounded operator defined on a Banach space
2. Following [17], a bounded linear operator family (K,),>0 C £ (%) is called
(r,q) -resolvent family, with algebraic generator <7 if the following holds:
(i) Kno/x= o Kyx forall x e D(<7); n> 0 and Ko = qol .

n
(ii) Kpx=qux+ Y r(n,s)szfl(sx; xeD(),n>0.
s=0
In addition, if there is some constant 1 > 1, such that ||K,| < ngy,, for all n >

0, then the family (K,),>o is called exponentially bounded. The usual convolution
product r % g is denoted by,

n
(r*q)" = 2 Fn—s)4(s)> N > 0.
s=0

In the case that r;, is a positive sequence a.e., then

and 2 r*rg = o0 ifandonlyif z rg = oo,

= \)

DEFINITION 2.1. We say that the pair (r,q) satisfies CP-condition if for any u >
0 there exists ny > 0 such that

pg(ny) = (rxr*q)(ny). (2.3)

Let go(n) = % for o >0 and e,, = e!" for p € 2. Let 1y, be the
characteristic sequence. It is easy to check that (gg,gp), with 0,9 > 0, (e1,e;),
(e—1,e—1) and (ej,e_;) satisfies (2.3), however the pair (e_j,e;) does not satisfy it,

because

n
Zezs7 s>0,

n
e_1xe_1*xe| = Ze‘"”e‘s
s=0 s=0

n
=ne " 2 e2“'7 s> 0.
s=0

In the following lemma and example, we show some necessary conditions to get pairs
(r,q), which satisfy the CP-condition.
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LEMMA 2.2. Let r, €11(Z,, ) be apositive sequence and q, € Hoo(Z 1, Z).

(i) If g, >0, q is decreasing sequence and 'Y, ry = oo, then the pair (r,q) satisfies
s=0
the CP-condition.

(ii) The pair (ry, 11, ) satisfies the CP-condition if and only if 'Y, ry = eo.
s=0

Proof. (i) Fixed u > 0. We apply Bolzano’s theorem to the sequence g := g —
r*rxq. Note that g(0) > 0 and

r*rxqgpu

n
lim > lim ) r#ry = +oo,
s=0

n—oo qn n—oo

and then lim,_... g, = —eo. We conclude that there exists n, > 0 such that pg(n,) =
(rxrsq)(ny).

that
I
N rerg=p
s=0

for all ¢ > 0. We may conclude that ), r*rg = oo and then Y, ry = . The converse
s=0 s=0
statement is proven in a similar way. [

0 < B < 1 satisfy the CP-condition.

3. Evolution semigroups

Let 2" be either space #oo(Z+, 2") or IP(Z, Z) and % = {U(n,m); n,m €
Z,, n>m} be an exponentially bounded discrete evolution family of bounded linear
operators on Banach space 2. Forevery n € 2, and each f € 2, the sequence

n— (7(s)f)(n) =Um,n—s)f(n—s): Z - 2 (3.1)

belongs to .2 and the family T = {7 (n) : n € %, } is a discrete semigroup on 2",
[16].

LEMMA 3.1. The discrete semigroup T = {7 (n) : n € %4} described by (3.1)
actson IP(Z, X).

Proof. Let f, be a sequence on the space 2" such that || f(0)||, =0= f(0). It
can be seen that for all n € %, , we have

(Z)f)n):=Um,n—s)f(n—s): % — Z .
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Taking norm on both sides we get
1T )N = IU(n,n—s)f(n=s)l,
= (X NU@n—s)fm—s)7)
s=0

= -

< (S 1won-9 <lisn-o1r)’

==

< (Zrure-ar)

n 1
=7 (T rn=9)l")’
s=0
=W f(n=s)llp <e,
belong to I1P(%4, Z"). Hence, the lemma is proved. [

The discrete semigroup T, defined by (3.1) is called evolution semigroup associ-
ated to % on the space 2. The “infinitesimal generator” of the discrete semigroup is
denoted by &7 is define as <7 := .7 (1) —I. It is clear that

n—1
T (n)x—x= Zﬂ(s)szfx, forall ne Z,, xe 2. (3.2)
s=0

LEMMA 3.2. Let T = {7 (n)}ncz, be the evolution semigroup associated to the
discrete evolution family % on the space 2 and let x,f € Z . The following two
statements are equivalent:

(i) dx= —]:.
(ii) x(n) = E,OU(n,s)f(s) forallne %,

Proof. (i) = (ii) For n =0 the assertion is obvious. Let n € %, n > 1. From
(3.2) follows:

n—1 n—1
T (n)x—x= 2{)9(5)427')6:— ;):7(5)]‘

(Z (n)x—x)(n) = — ;)(7@)]‘)(")
n—1
x(n) = (7 (n)x) (n) + ( %9(5)1‘) (n)
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(ii) = (i) Let n > 1, successively one has:
(x)(n) = [(F (1) = D)x](n)
=U(n,n—1)x(n—1)—x(n), using (3.1)

n—1
= ;)U(n,S)f(S) —x(n)

- i)mn,s)f(s) U () f(n) — ()
— fn)

Hence proved that statements (i) and (i) are equivalent. [J

4. Main results

Now we are in the position to prove our main results about Kallman-Rota type
inequality.

LEMMA 4.1. Let T = {7 (n):n€ %} be a discrete semigroup. If T is uni-
formly bounded, that is, there is a positive constant W such that sup,c », |7 (n)|| <
W, then

|7 x||> < 4772 ||x|| |||, forall x € D(<7?). (4.1)

For proof see [12].
Now we state the same inequality for evolution semigroups on the space 2 as
given in section 2.

THEOREM 4.2. Let % be a uniformly stable evolution family of bounded linear
operators acting on X, and let f, € 2 . Suppose that the following conditions are
Sfulfilled:

(i) i U(n,s)f(s) belong to X .
s=0

(i) i Lio,...p (s)(n—s)U(n,s)f(s) belongto 2.
s=0 '
Then the following inequality holds

where W is a constant from the estimation of (2.2) and 1o,y is the characteristic
function.

n 2 n
> U f )], <201l < || X Loy (V=90 n5)f )|, » 42
s=0 . s=0 g

Proof. Let T be the evolution semigroup associated to %/ on the space 2~ and
let <7 be its algebraic generator. Let f be any arbitrary element of the space 2", From
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n
condition (i) we know that Y, U(n,s)f(s) is also an element of 2", so let us denote
s=0
n
> U(n,s)f(s) by 0, ie.
s=0

s=0
Then by using Lemma 3.2 we have
A Oy = — [y 4.3)
Also we claimed that i U(n,s)0(s) € Z°, because,
s=0
N U(n,s)0(s) = 2 U(n,r) 2 U(r,s)f(s) where n>r>s>0
s=0 r=0 s=0
=2 2 0. ()U(ns)f(s)
r=05=0
=2 2 0. ()U(ns)f(s)
s=0r=0

n

= iU(n,0>f(0)+ SUm)f(1)+...
r=0

n
+ Y U(n,n)f(n), wheren>r=>s>0
r=0

=nUn,0)f(0)+ (n—1)U(n, 1)f(1)+...+(n—r)U(n,r)f(r)
=Y Lio,...n (s)(n—s)U(n,s)f(s), wheren>r>52>0

ie. 3 Un,s)d(s) = %1{07,,,,,}@)(;1—s)U(n,s) £(s).

s=0 K
n

The condition (ii) i Lio,...n(s)(n—=s5)U(n,s)f(s) € Z impliesthat ¥, U(n,s)d(s) €
=0 s=0

5
. Let b, = i U(n,s)0(s) i.e. by, € 2 . Then again by Lemma 3.2, we get
=0

s=

Applying <7 on both sides we get

d(ﬂbn) = d(_ﬁn)
= -V, (using (4.3))
= _(_fn)7

by =foe X. (4.4)
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As f,, is an element from 2", so b, belong to 27, i.e. b € D(dz). If we replace x
by b, and .7x, o/*x from (4.3) and (4.4) respectively, from (4.1), we get

3 Lo, (=097
s=0

n 2
Y Umfs)|, <47 lfll
s=0 ’

Hence this completes the proof. [J

Now we prove some applications of inequality (4.2) on the spaces J#yo(Z, %)
and [,(Z, %), as corollaries.

COROLLARY 4.3. Let {v}y, or v:Zy — Z beasequence such that it decays
to zero at 0 and oo, so lim,_.. vV, = 0. Suppose that the sequences

n

n—y(n):= 2 v(s)
and
n—J(n) =Y (n—s)v(s)

verifies the condition lim,_...y(n) = lim,_..J(n) = 0.
Then the following inequality holds:

sup\iv( <4sup [v(s) x\z

neZy =0 neZ,

Proof. We apply Theorem 4.2 for 2" = #40(Z, %) and for U(n,m)x = x where
n>m>0andxec . O

COROLLARY 4.4. Let v, y, J be as in Corollary 4.3 and A, be a positive non-
decreasing sequence on %, . The following inequality holds:
2 n
X (n=s)A(s)v(s)

5=0
<4 sup |v(s)| x sup |-
ne %, A(n)? T ez, ne %, A(n)

Proof. Follows by Theorem 4.2 for 2" = #0(Z, %) and U(n,m) = /}L((Z’; . O

COROLLARY 4.5. Let 1 < p<ocoand f €1P(%.,%). If the sequences

n

n— gn Zf and n— h(n) = Z(n—s)f(s)

s=0

belong to 1P(24, %), then the following inequality holds:

I ;)f(S)Ilp <4Ifllp < | Z )l -
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Proof. We apply Theorem 4.2 for 2" = 1P(%,, %) and for U(n,m)x = x where
n>m>0andxe 2. 0O

Now we state the same inequality for (r,¢)-resolvent, when both sequences r, €
N2, 2) and g, € Hoo( 2, Z°) are positive.

THEOREM 4.6. Let (r,q) be the pair satisfying the CP-condition and

Crgr=sup T2 2 Dntn 4.5)

w0 (q*7);
Assume that < is the algebraic generator of the (r,q)-resolvent {K,},>0, such that
1Kl < Mg, n >0, (4.6)
with N > 1. Then the Kallman-Rota inequality,
7[> < 81°Crg x| |7 x], (4.7)

holds for all x € D(7?).

Proof. Forall x € D(</?) and n € 2, we have K,x € D(«/) and &/ K,x € D(/),
hence

Kuwx = (r« K)px+ qux
rx o [(r+ o K)px + qnx] + gnx

(rx r*;zﬂ[()nx—k (r+q)nd x+ qnx.

Therefore,
(o q)n?x|| < (| Kxl| + || (r 75 272 K) x| + [| gax]|

n
= | Kuxl| + || X (% 7)) * Kol + [l g
s=0

n

< Kaxl + X, (75 ) (ug) | Ko x| + [ x|
s=0
c 2

< Kl + 3 (1) (o 1K 1|27 + (| g
s=0

< NGullxll+ 1 Y (15 7) (g G5l x| + gullx]|, using (4.6)
s=0

1 q)n?x[| < Nullx]| + 1 (r5 % q)all x| + qallx]|,
or, equivalently,

n rxrxq),
o] <202 ] TN GLAL YN “.8)

(rxq) (r*q)n
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Let d = 2n||x|| and e = n||.<7x||, we define

Gn —|—e(r* r&q)n
(r*q)n (r*q)n

yn=d

(Ve (r*r+q)n—Vd\/qn)* +2\/E\/(r*r*Q)nQn'

n= (4.9)
> (r*q)n

As (Ve\/(r*r*q),—d\/gn)* > 0, the equation (4.9) can be written as

v > 2/dey | T g s, (4.10)
(r+q);
and
Y = 2Vde w, 4.11)
(r+q);

for those n > 0 such that \/e\/(r*r+*q), — Vd\/gn = 0. Since the pair (r,q) satisfies
the CP-condition, we conclude that there exists ny > 0, depending on d and e, such
that

d
zq(no) = (rxrxq)(np). (4.12)
Hence,
g = 2o [T D g e (@.13)
(r+q)z, (r*q)n,

From (4.8) we deduce that for all x € D(e7?),

|1/ < miny(n <2ny/2)x[ 2]/ ’"*’*"""". (4.14)

Putting (4.5) in (4.14), we get
7[> < 81>Crg x| |7 x][.
Hence the proof is complete. [
In the next main result, we used the sequence &, , defined by

T(o+b+2)?
T(a+ D) (a+2b+3)’

ha(b) = b>—1, (4.15)

for all & > —1, and it will play an important role in several estimates, see Theorem 4.8
below. In the following proposition, we collect some interesting properties of /.



KALLMAN-ROTA TYPE INEQUALITY FOR BOUNDED LINEAR OPERATORS 321

PROPOSITION 4.7. Let o > —1 and hy be defined by (4.15). Then ho(—1) =
1, 0 < hy(b) <1, hy is a decreasing sequence in (—1,+e0) for any o > —1 and
limy—ohg(b) =1 forany b € (—1,+00).

Proof. We directly check that iy, (—1) = 1. To show that h is decreasing, we
prove that Ahy (D) < 0 for b > —1. Note that

B (o4 b+3)? T(a+b+2)*
Ah (D) := (r(a+ (o +2b+5) T(a+ DT(a+2b+3)

><0,

if and only if
Ma+2b+3) T(a+b+2)?

forall b > —1.
Tat2b15) Tatbr3p o=

The above inequality is obvious, so we conclude that A, is decreasing for any o > —1.
Then 1 = hg(—1) > hy(b) forany b > —1.
It is known that

. B [(o+b+2)?
am hab) = im e e+ 26 13)

2

((a+b+1)!>

im~ "/

o ol (o + 26+ 2)!
—1

and we conclude the proof. [J

In what follows we will deduce from our main result examples concerning differ-
ent types of algebraic generators families arising in applications to abstract evolution
equations. We begin with norm inequalities for generators of o -times f3-resolvents
(Se.,p(n))nez, families. According to the definition given in preliminaries, they sat-
isfy:

n%
Savﬁ(n)x (X+1 +Z ﬁ-ﬁ-lﬂsaﬁ()’ ney—ﬂ x€%7

ie. a (8p41,8a+1)-resolvent for some o, > —1. Recall that for o = 0, the exis-
tence of (Spg(n))scz, is equivalent to the well-posedness of the abstract fractional
difference equation

AP () = atv(n), ne 2., B> —1, (4.16)

with some initial conditions, where Ag 1 denotes the Caputo’s fractional difference,
see [1]. In case o > 0, there families corresponds to ¢ -times solutions of the above
equation.



322 A.ZADA AND U. RIAZ

THEOREM 4.8. Let </ be the algebraic generator of o -times [3-resolvent (S, g(n))ne 2,
for some o, B > —1 and suppose that there is 1 > 1 such that

o

n
<N=e—/——— .
Then for all x € D(/*) we have
I(a+p+2)*
x||* < 8n? x| 4.17
sl < 80 o o Il @.17)

Proof. The pair (gg41,8q+1) satisfies the CP-condition and the following in-
equality

(r*r*q)ngn - T(o+B+2)?
(rxq)? T T(a+1)C(a+2B+3)

holds for any n € 27, . Hence, the conclusion follows from Theorem 4.6. [J

REMARK 4.9. In the case of the well-posed fractional difference equation (4.16),
for different values of o, we find out the qualitative behavior of hy (), given in Propo-
sition 4.7. Then we apply it in the study of the Kallman-Rota type inequality (4.17).

(i) When o — —1 then hy () — 0 for some 8 > —1. As a consequence, we can
choose constant Oy p s smaller as we want, such that

|/ x(|* < g pllx]| | 9°x]|, x € D(a?). (4.18)

(ii) When o =0 then ho(B) = ?Eggf; for B > —1. Note that such sequence is
decreasing so that the constant in case of the second order abstract difference equation
(ho(1) = %), will be always smaller than the constant in case of the first order equation
(ho(0) = 3).

(iif) When o/ — oo then hy () — 1. The situation is different as in case (i) and
(ii): If o0 — oo, then the constant O 3 in (4.18) tends to 8n2. Moreover, again the
constant near to the abstract difference equation of order 2 is smaller than the constant

near to abstract difference equation of order 1, for the same value of o.

The cases B =0 and B =1 in Theorem 4.8 give, respectively, the following
corollaries.

COROLLARY 4.10. Let < be the algebraic generator of the o -times semigroup
(Sa(n))nez, for some oo >0 and suppose that there is 1 > 1 such that

na
<N .
[Sa(n)|| < ”r(a+1)’ neZ,
Then for all x € D(2/?) we have
oa+1
P A NN (4.19)

(a+2)
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COROLLARY 4.11. Let & be the algebraic generator of the O.-times sums cosine

sequence (Cy(n))ncz, for some oo > 0 and suppose that there is 1 > 1 such that

o

n
<N—— .
[Ca(n)] STty ne
Then for all x € D(/*) we have
a+1)(a+2
el < n2 (o e D ], 20

5. Conclusion

We have proved that Kallman-Rota inequality holds for a discrete evolution family

using the space J£y0(Z%,2") and we have also proved the same inequality for (r,q)-
resolvent operators which arises in the solution of fractional difference equation of
order 8 + 1. Finally, some applications of the obtained inequality is given.
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