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Abstract. In this paper, we study a class of linear and nonlinear fractional eigenvalue problems
with fractional derivative of Caputo type. The problem is obtained by fractionalizing a term of
the well-known Sturm-Liouville operator and it covers a wide class of fractional eigenvalue prob-
lems. By applying simple maximum principles, we obtain necessary conditions for the existence
of eigenfunctions and analytical bounds for the eigenvalues. We also establish a uniqueness re-
sult for the nonlinear eigenvalue problem. The results in this paper are discussed in two common
spaces of fractional derivatives.

1. Introduction

The Sturm-Liouville eigenvalue problems have been implemented to model many
physical problems. The theory of the problems is well-developed and many results
concerning the eigenvalues and eigenfunctions have been established. These results
are used in large to study other types of problems. For instance, the facts that the
eigenfunctions of the Sturm-Liouville eigenvalues problems form a complete set, and
eigenfunctions corresponding to different eigenvalues are orthogonal, form the basis of
the spectral methods that have been used to study several types of problems, analyti-
cally and numerically. In recent years, there are several analytical and numerical studies
on fractional eigenvalue problems [4, 5, 9, 11, 20] in general, and on fractional Sturm-
Liouville eigenvalue problems in particular. In [13, 15, 18, 21] classes of fractional
Sturm-Liouville eigenvalue problems with left and right-sided fractional derivatives of
Riemann-Liouville and Caputo types have been discussed. In these studies some of the
well-known results of the Sturm-Liouville problems are extended to the fractional ones.
These results include, orthogonality and completeness of eigenfunctions and countabil-
ity of the real eigenvalues. Analogous results are obtained in [14] for a fractional eigen-
value problem of Riesz fractional derivative. However, these results are not applicable
for the fractional Sturm-Liouville problems with Caputo fractional derivative. The pre-
sented fractional derivatives satisfy many elegance properties, such as the integration
by parts formula, which don’t hold for the Caputo fractional derivative. In [4], a class
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of fractional eigenvalue problem with fractional derivative 1 < δ < 2, of Caputo type
has been studied using maximum principles and method of upper and lower solutions.
Some existence, nonexistence results, as well as, analytical bounds of eigenvalues have
been established. In [17], the existence of positive eigenfunctions for a coupled sys-
tem of fractional Sturm-Liouville problem is established, using the Guo-Krasnoselski
fixed point theorem, where the fractional derivative is of the Riemann-Liouville type.
In [2, 3] spectral analysis is carried out for a class of integral operators associated with
fractional order differential equations. Moreover, a connection between the eigenvalues
of these operators and the zeros of the Mittag-Leffler functions is established. Several
numerical techniques devoted to computing eigenvalues and eigenfunctions of certain
fractional eigenvalue problems were implemented in [6, 7, 10, 12], where the fractional
derivative is either of Caputo or Riemann-Liouville type. In this paper we consider the
fractional eigenvalue problem

Dδ
0+(p(x)y′)+q(x)y = −λw(x)y, 0 < δ < 1, 0 < x < 1, (1.1)

where p, p′,q and the weight function w are continuous on (0,1), p(x) > 0, w(x) > 0
on [0,1] , and the fractional derivative Dδ

0+ is of Caputo type. The problem in Eq.
(1.1) is obtained by fractionalizing the first term of the well-known Sturm-Liouville
operator, and it presents various types of fractional differential equations. For instance,
if p(x) = 1, then the problem reduces to

Dα
0+y+q(x)y = −λw(x)y, 1 < α < 2, 0 < x < 1.

This problem has been discussed in [1]. The problem has been transformed to an equiv-
alent system of fractional equations and then existence and uniqueness results are ob-
tained by applying method of upper and lower solutions to the resulting system.

We discuss three types of boundary conditions for Eq. (1.1):

1. Dirichlet boundary conditions

y(0) = y(1) = 0, (1.2)

2. Neumann boundary conditions

y′(0) = y′(1) = 0, (1.3)

3. Robin boundary conditions

y(0)−αy′(0) = 0, y(1)+ βy′(1) = 0, α,β > 0. (1.4)

This article is organized as follows. In Section 2, we review basic definitions of frac-
tional calculus and present some basic results. In Section 3, We apply simple maximum
principles to establish necessary conditions for the existence of eigenfunctions and to
obtain analytical bounds of eigenvalues for the linear Sturm-Liouville problems. We
then apply these results to study nonlinear fractional Sturm-Liouville eigenvalue prob-
lems in Section 4. Estimates of eigenvalues, as well as, uniqueness results will be es-
tablished. In Section 5, Some illustrative examples and discussions are presented. The
results are discussed in two common spaces for the fractional boundary value problems
of order γ , 1 < γ < 2.
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2. Basic definitions and preliminary results

In the following, we present the definitions and some preliminary results of the
Riemann-Liouville fractional integral and the Caputo fractional derivative, see [16, 19].

DEFINITION 2.1. A real function f (x) , x > 0, is said to be in the space Cμ , μ ∈
R if there exists a real number p > μ , such that f (x) = xp f1(x), where f1(x)∈C[0,∞),
and it is said to be in the space Cm

μ if f (m) ∈Cμ , m ∈ N.

DEFINITION 2.2. The left Riemann-Liouville fractional integral of order δ > 0,
of a function f ∈Cμ , μ � −1, is defined by

Iδ
0+ f (x) =

1
Γ(δ )

∫ x

0
(x− s)δ−1 f (s)ds, x > 0. (2.1)

DEFINITION 2.3. For δ > 0, m− 1 < δ < m , m ∈ N , x > 0, and f ∈ Cm
−1 , the

left Caputo fractional derivative is defined by

Dδ
0+ f (x) =

1
Γ(m− δ )

∫ x

0
(x− s)m−1−δ f (m)(s)ds, (2.2)

where Γ is the well-known Gamma function.

The Caputo derivative is related to the Riemann-Liouville fractional integral, Iδ
0+ ,

of order δ ∈ R
+ , by

Dδ
0+ f (x) = Im−δ

0+ f (m)(x). (2.3)

It is known that

(
(Iδ

0+Dδ
0+) f

)
(x) = f (x)−

m−1

∑
k=0

f (k)(0)
k!

xk, (2.4)

(
(Dδ

0+Iδ
0+) f

)
(x) = f (x). (2.5)

The following results will be used throughout the text.

PROPOSITION 2.1. ([8]) If f ∈C1[0,1] , then (Dδ
0+ f )(0) = 0 , 0 < δ < 1.

PROPOSITION 2.2. Let f ∈ C[0,x0]. If f (x) � 0, and not identically zero on
[0,x0], then (Iδ

0+ f )(x0) > 0 , 0 < δ < 1.

Proof. Since f (x) � 0, is not identically equals to zero and continuous, then there
exists an interval (α,β ) inside [0,x0] where f (x) > 0. As r(s) = (x0 − s)δ−1 is inte-
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grable, applying the mean value theorem for integrals we have

(Iδ
0+ f )(x0) =

1
Γ(δ )

∫ x0

0
(x0− s)δ−1 f (s)ds � 1

Γ(δ )

∫ β

α
(x0− s)δ−1 f (s)ds

=
f (ξ )
Γ(δ )

∫ β

α
(x0− s)δ−1ds

=
f (ξ )

Γ(δ +1)
((x0 −α)δ − (x0−β )δ ) > 0, α < ξ < β ,

which proves the result. �

PROPOSITION 2.3. Let z(x)∈C1[0,1] be such that satisfy the boundary condition
z(1)+ β z′(1) = 0, for some β � 0 .

1. If z(0) � 0 and z(x) attains its maximum x = 1, then z(x) = 0 on [0,1] .

2. If z(0) � 0 and z(x) attains its minimum x = 1, then z(x) = 0 on [0,1] .

Proof.

1. Assume by contradiction z(x) is not identically zero on [0,1] . Since z(x) attains
its maximum at x = 1, then simple maximum principle implies z′(1−) � 0. Since
z(0) � 0, we have z(1) > 0, and thus

z(1)+ β z′(1) � z(1) > 0,

and a contradiction is reached.

2. Assume by contradiction z(x) is not identically zero on [0,1] . Since z(x) attains
its minimum at x = 1, then simple maximum principle implies z′(1−) � 0. Since
z(0) � 0, we have z(1) < 0, and thus

z(1)+ β z′(1) � z(1) < 0,

and a contradiction is reached. �

3. The linear fractional eigenvalue problem

We start with the linear fractional eigenvalue problem (1.1–1.4) and obtain ana-
lytical results in the spaces C2

−1[0,1] and C2[0,1] . Applying the Riemann-Liuoville
fractional integral operator Iδ

0+ to Eq. (1.1) yields

p(x)y′ = p(0)y′(0)− Iδ
0+

(
(q(x)+ λw(x))y(x)

)

= p(0)y′(0)− 1
Γ(δ )

∫ x

0
(x− s)δ−1(q(s)+ λw(s))y(s) ds. (3.1)
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3.1. Analytical results on the space C2
−1[0,1]

LEMMA 3.1. Consider the fractional eigenvalue problem (1.1) subject to the Dirich-
let boundary conditions (1.2). If

q(x)+ λw(x) < 0, x ∈ [0,1]

then the problem has no eigenfunctions in the space C2
−1[0,1] .

Proof. Assume that the problem possesses a nonzero eigenfunction y(x) on [0,1],
we shall reach a contradiction. Since y ∈C2

−1 then y′ is continuous on [0,1] and y′(0)
is well defined. We consider three cases for y′(0) , we have

1. If y′(0)< 0. Let x0 ∈ (0,1) be the first point such that y′(x0)= 0. Because y(x) is
not identically zero on [0,1] and y(0) = y(1) = 0, then y(x) attains its maximum
or minimum on (0,1) , and thus the existence of x0 ∈ (0,1) is guaranteed. Since
y′(0) < 0 it holds that

y(x) � 0, on [0,x0].

Substituting in Eq. (3.1) yields

0 = p(x0)y′(x0) = p(0)y′(0)− 1
Γ(δ )

∫ x0

0
(x0 − s)δ−1(q(s)+ λw(s))y(s) ds

< − 1
Γ(δ )

∫ x0

0
(x0− s)δ−1(q(s)+ λw(s))y(s) ds � 0,

and a contradiction is reached.

2. If y′(0) > 0. Let x0 ∈ (0,1) be the first point such that y′(x0) = 0. Since y′(0) >
0, it holds that

y(x) � 0, on [0,x0].

Substituting in Eq. (3.1) yields

0 = p(x0)y′(x0) = p(0)y′(0)− 1
Γ(δ )

∫ x0

0
(x0 − s)δ−1(q(s)+ λw(s))y(s) ds

> − 1
Γ(δ )

∫ x0

0
(x0− s)δ−1(q(s)+ λw(s))y(s) ds � 0,

and a contradiction is reached.

3. If y′(0) = 0, then Eq. (3.1) reduces to

0 = p(x0)y′(x0) = − 1
Γ(δ )

∫ x0

0
(x0 − s)δ−1(q(s)+ λw(s))y(s) ds. (3.2)

Let x0 ∈ (0,1) be the first point such that y′(x0) = 0, and y(x0) �= 0. Then y(x)
is not identically zero and of one sign on [0,x0]. If

y(x) � 0, on [0,x0],
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then by Proposition 2.2 we have

− 1
Γ(δ )

∫ x0

0
(x0 − s)δ−1(q(s)+ λw(s))y(s) ds > 0,

which contradicts Eq. (3.2). Analogously, if

y(x) � 0, on [0,x0],

then by Proposition 2.2 we have

− 1
Γ(δ )

∫ x0

0
(x0 − s)δ−1(q(s)+ λw(s))y(s) ds < 0,

which contradicts Eq. (3.2). �

LEMMA 3.2. Consider the fractional eigenvalue problem (1.1) subject to the Robin
boundary conditions (1.4). If q(x) + λw(x) < 0 on [0,1] , then the problem has no
eigenfunctions in the space C2

−1[0,1] .

Proof. Assume that the problem possesses a nonzero eigenfunction y(x) on [0,1],
we shall reach a contradiction. We consider three cases for y′(0) , we have

1. If y′(0) < 0, then the boundary conditions yield y(0) < 0. Let x0 ∈ (0,1] be the
first point such that y′(x0) = 0. By Proposition 2.3 we have x0 ∈ (0,1). Since
y′(0) < 0 it holds that

y(x) � 0, on [0,x0].

Substituting in Eq. (3.1) yields

0 = p(x0)y′(x0) = p(0)y′(0)− 1
Γ(δ )

∫ x0

0
(x0 − s)δ−1(q(s)+ λw(s))y(s) ds

< − 1
Γ(δ )

∫ x0

0
(x0− s)δ−1(q(s)+ λw(s))y(s) ds � 0,

and a contradiction is reached.

2. If y′(0) > 0, then the boundary conditions yield y(0) > 0. Let x0 ∈ (0,1] be the
first point such that y′(x0) = 0. By Proposition 2.3 we have x0 ∈ (0,1). Since
y′(0) > 0, it holds that

y(x) � 0, on [0,x0].

Substituting in Eq. (3.1) yields

0 = p(x0)y′(x0) = p(0)y′(0)− 1
Γ(δ )

∫ x0

0
(x0 − s)δ−1(q(s)+ λw(s))y(s) ds

> − 1
Γ(δ )

∫ x0

0
(x0− s)δ−1(q(s)+ λw(s))y(s) ds � 0,

and a contradiction is reached.
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3. If y′(0) = 0, then the boundary conditions yield y(0) = 0. Let x0 ∈ (0,1] be
the first point such that y′(x0) = 0, and y(x0) �= 0. By Proposition 2.3 we have
x0 ∈ (0,1). Thus y(x) is not identically zero and of one sign on [0,x0] , and Eq.
(3.1) reduces to

0 = p(x0)y′(x0) = − 1
Γ(δ )

∫ x0

0
(x0 − s)δ−1(q(s)+ λw(s))y(s) ds. (3.3)

If
y(x) � 0, on [0,x0],

then by Proposition 2.2 we have

− 1
Γ(δ )

∫ x0

0
(x0 − s)δ−1(q(s)+ λw(s))y(s) ds > 0,

which contradicts Eq. (3.3). Analogously, if

y(x) � 0, on [0,x0],

then by Proposition 2.2 we have

− 1
Γ(δ )

∫ x0

0
(x0 − s)δ−1(q(s)+ λw(s))y(s) ds < 0,

which contradicts Eq. (3.3). �

COROLLARY 3.1. Consider the fractional eigenvalue problem (1.1) subject to the
Dirichlet (1.2) or Robin (1.4) boundary conditions. If the problem possesses an eigen-
function y ∈C2

−1[0,1] , then the following holds true for the corresponding eigenvalue
λ ,

λ � inf
{
− q(x)

w(x)

}
, x ∈ [0,1].

Proof. Assume by contradiction that λ < inf{− q(x)
w(x)} , x∈ [0,1], then it holds that

λ < − q(x)
w(x)

, for all x ∈ [0,1],

or
λw(x)+q(x) < 0, for all x ∈ [0,1],

which contradicts the result in Lemma 3.1 for the Dirichlet boundary conditions and
the result in Lemma 3.2 for the Robin boundary conditions. �

REMARK 3.1. For the case of the Neumann boundary conditions, no analytical
results for eigenvalues and eigenfunctions are achieved in the space C2

−1[0,1]. However,
in the next section, some results will be established in the space C2[0,1] .
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3.2. Analytical results on the space C2[0,1]

We first mention that, the results obtained in Section 3.1 are valid for the space
C2[0,1], since C2[0,1]⊆C2

−1[0,1] , while the converse is not true. In the space C2[0,1] ,
we establish new results for the case of Neumann boundary conditions, and sharper
bounds for the case of Dirichlet and Robin conditions.

LEMMA 3.3. Consider the fractional eigenvalue problem (1.1) subject to the Robin
boundary conditions (1.4). If q(x)+ λw(x), is > 0 or < 0 on [0,1] , then the problem
has no eigenfunctions in the space C2[0,1] .

Proof. As C2[0,1]⊆C2
−1[0,1] , by Lemma 3.2 the result is true for the case q(x)+

λw(x) < 0, x ∈ [0,1]. We consider the case q(x)+ λw(x) > 0, x ∈ [0,1]. By Propo-

sition 2.1 we have

(
Dδ

0+(p(x)y′)
)

(0) = 0, which together with q(0) + λw(0) > 0

implies that y(0) = 0, by the continuity of the solution y in Eq. (1.1). Since α > 0 the
boundary conditions yield y′(0) = 0. Thus Eq. (3.1) yields

p(x)y′(x) = − 1
Γ(δ )

∫ x

0
(x− s)δ−1(q(s)+ λw(s))y(s) ds. (3.4)

Assume that the problem possesses a nonzero eigenfunction y(x) on [0,1], we shall
reach a contradiction. Let x0 ∈ [0,1] be the first point such that y′(x0) = 0, and y(x0) �=
0. As y(0) = 0 and using the result in Proposition 2.3 we have x0 ∈ (0,1). If y(x0) >
0 then it holds that y(x) is not identically zero on [0,x0] and y(x) � 0, on [0,x0].
Substituting in Eq. (3.4) and using Proposition 2.2, we have

0 = p(x0)y′(x0) = − 1
Γ(δ )

∫ x0

0
(x0 − s)δ−1(q(s)+ λw(s))y(s) ds < 0, (3.5)

and a contradiction is reached. Analogously, if y(x0) < 0, then it holds that y(x) is not
identically zero on [0,x0] and y(x) � 0, on [0,x0]. Substituting in Eq. (3.4) and using
Proposition 2.2, we have

0 = p(x0)y′(x0) = − 1
Γ(δ )

∫ x0

0
(x0 − s)δ−1(q(s)+ λw(s))y(s) ds > 0, (3.6)

and a contradiction is reached. �

LEMMA 3.4. Consider the fractional eigenvalue problem (1.1) subject to the Neu-
mann boundary conditions (1.3). If q(x)+ λw(x), is > 0 or < 0 on [0,1] , then the
problem has no eigenfunctions in the space C2[0,1] .

Proof. We first assume that q(x) + λw(x) > 0, x ∈ [0,1]. By Proposition 2.1

we have

(
Dδ

0+(p(x)y′)
)

(0) = 0, which together with q(0)+ λw(0) > 0 implies that

y(0) = 0, by the continuity of the solution y in Eq. (1.1). Thus Eq. (3.1) yields

0 = p(1)y′(1) = − 1
Γ(δ )

∫ 1

0
(1− s)δ−1(q(s)+ λw(s))y(s) ds. (3.7)
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Assume that the problem possesses a nonzero eigenfunction y(x) on [0,1], we shall
reach a contradiction. We have two cases;

1. There exits x0 ∈ (0,1) such that y′(x0) = 0, and y(x0) �= 0. Then a contradiction
is reached by applying analogues steps in the proof of Lemma 3.3.

2. Otherwise y(x) is of one sign on [0,1] . Then the right hand side of Eq. (3.7) is
either negative or positive and a contradiction is reached.

By applying analogous steps one can prove the result for q(x)+ λw(x) < 0, x ∈
[0,1]. �

COROLLARY 3.2. Consider the fractional eigenvalue problem (1.1) subject to the
Neumann (1.3) or Robin (1.4) boundary conditions. If the problem possesses an eigen-
function y ∈ C2[0,1], then the following holds true for the corresponding eigenvalue
λ ,

inf
{
− q(x)

w(x)

}
� λ � sup

{
− q(x)

w(x)

}
, x ∈ [0,1].

Proof. The proof is analogous to the proof of Corollary 3.1. �

4. The nonlinear fractional eigenvalue problem

We consider the following class of nonlinear fractional eigenvalue problem

Dδ
0+(p(x)y′)+q(x)y = −λk(x,y), 0 < δ < 1, 0 < x < 1, (4.1)

where k(x,y) is continuous and smooth with respect to the variable y . We establish
uniqueness results and analytical bounds of eigenvalues in the spaces C2

−1[0,1] and
C2[0,1]. We have

LEMMA 4.1. Consider the fractional eigenvalue problem (4.1) subject to the Di-
richlet (1.2) or Robin (1.4) boundary conditions. If q(x) + λ ∂k(x,y)

∂y < 0, for all y ∈
C2
−1[0,1] and x ∈ [0,1], then the problem has at most one eigenfunction y ∈C2

−1[0,1] .

Proof. Assume that the problem possesses two solutions y1 and y2 , and let μ =
y1− y2. We have

Dδ
0+(p(x)μ ′)+q(x)μ = −λ (k(x,y1)− k(x,y2)), 0 < δ < 1, 0 < x < 1. (4.2)

Applying the mean value theorem we have

k(x,y1)− k(x,y2) =
∂k
∂y

(ψ)(y1− y2) =
∂k
∂y

(ψ)μ ,

where ψ = νy1 +(1−ν)y2 for some 0 < ν < 1. Thus Eq. (4.2) reduces to

Dδ
0+(p(x)μ ′)+

(
q(x)+ λ

∂k
∂y

(ψ)
)

μ = 0.
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If y1 and y2 are of Dirichlet type then μ = y1 − y2 satisfies the same homogenous
Dirichlet conditions (1.2). Since q(x) + λ ∂k

∂y (ψ) < 0, then by Lemma 3.1 we have
μ = 0 and thus y1 = y2. If y1 and y2 are of Robin type then so is μ = y1 − y2, which
together with q(x)+ λ ∂k

∂y (ψ) < 0, proves that μ = 0 by virtue of Lemma 3.2. �

COROLLARY 4.1. Consider the fractional eigenvalue problem (4.1) with k(x,0)=
0, and subject to the Dirichlet (1.2) or Robin boundary conditions (1.4). Assuming that
the problem possesses an eigenfunction then for the corresponding eigenvalue λ , we
have

1. If there exists a positive constant ρ such that ∂k(x,y)
∂y � ρ , for all y ∈ C2

−1[0,1]
and x ∈ [0,1], then it holds that

λ � inf
{−q(x)

∂k/∂y

}
.

2. If there exists a negative constant κ such that ∂k(x,y)
∂y � κ , for all y ∈ C2

−1[0,1]
and x ∈ [0,1], then it holds that

λ � sup
{−q(x)

∂k/∂y

}
.

Proof.

1. Assume by contradiction that there exists and eigenvalue λ with λ < inf{ −q(x)
∂k/∂y}.

Then λ < −q(x)
∂k/∂y , for all x∈ [0,1]. Since ∂k(x,y)

∂y � ρ > 0, we have q(x)+λ ∂k/∂y
< 0, and thus the problem possesses at most one solution by Lemma 4.1. Since
k(x,0) = 0, then y = 0 is the unique solution and thus the problem has no eigen-
function and a contradictions is reached.

2. Assume by contradiction that there exists and eigenvalue λ with λ > sup{ −q(x)
∂k/∂y}.

Then λ >
−q(x)
∂k/∂y , for all x∈ [0,1]. Since ∂k(x,y)

∂y � ρ < 0, we have q(x)+λ ∂k/∂y
< 0, and thus the problem possesses at most one solution by Lemma 4.1. Since
k(x,0) = 0, then y = 0 is the unique solution and thus the problem has no eigen-
function and a contradictions is reached. �

LEMMA 4.2. Consider the fractional eigenvalue problem (4.1) subject to the Neu-
mann (1.3) or Robin (1.4) boundary conditions. If q(x)+λ ∂k(x,y)

∂y , is > 0 or < 0 , for all

y∈C2[0,1] and x ∈ [0,1], then the problem has at most one eigenfunction y ∈C2[0,1] .

Proof. The proof is analogous to the proof of Lemma 4.1 and using the results of
Lemmas 3.3 and 3.4. �
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COROLLARY 4.2. Consider the fractional eigenvalue problem (4.1) with k(x,0)=
0 , and subject to the Neumann (1.3) or Robin (1.4) boundary conditions. Assuming that
the problem possesses an eigenfunction then for the corresponding eigenvalue λ , we
have

1. If there exists a positive constant ρ such that ∂k(x,y)
∂y � ρ , for all y∈C2[0,1] and

x ∈ [0,1], then it holds that

inf
{−q(x)

∂k/∂y

}
� λ � sup

{−q(x)
∂k/∂y

}
.

2. If there exists a negative constant κ such that ∂k(x,y)
∂y � κ , for all y ∈ C2[0,1]

and x ∈ [0,1], then it holds that

inf
{−q(x)

∂k/∂y

}
� λ � sup

{−q(x)
∂k/∂y

}
.

Proof. The proof is analogous to the proof of Corollary 4.1 and using the results
of Lemma 4.2. �

5. Illustrative examples and discussions

We first consider Eq. (1.1) with p(x) = w(x) = 1 and q(x) = 0, subject to the
Dirichlet boundary conditions. We have

Dδ+1
0+ y = −λy, 0 < δ < 1. (5.1)

The results of Corollary 3.1 implies the eigenvalue(s) λ � 0. It is not difficult to see
that

φ(x) = xEγ(−λxγ) =
∞

∑
n=0

(−λ )n

Γ(nγ +1)
xnγ+1

is a solution to the above fractional eigenvalue problem that satisfies φ(0) = 0, where
γ = δ + 1, and Eγ is the well-known Mittag-Leffler function. To find the eigenvalues
we impose the condition φ(1) = 0, that yields

Eγ(−λ ) =
∞

∑
n=0

(−λ )n

Γ(nγ +1)
= 0. (5.2)

The above equation possesses solution for certain values of λ , which are the eigenval-
ues of the problem.

REMARK 5.1. The eigenvalue problem in Eq. (5.1) subject to the Neumann (1.3)
or Robin (1.4) boundary conditions has no solution y∈C2[0,1] by Corollary 3.2. How-
ever, the eigenvalue problem with the Neumann boundary conditions possesses the so-
lution

φ(x) = Eγ (−λxγ) =
∞

∑
n=0

(−λ )n

Γ(nγ +1)
xnγ ,
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where λi are the solutions of Eg. (5.2). This solution φ doesn’t belong to the space
C2[0,1]. That is the space C2[0,1] is too restrictive, and a wider space, such as C2

−1[0,1] ,
should be considered for the case of Neumann and Robin boundary conditions.

As a second example we consider the nonlinear fractional eigenvalue problem

Dδ
0+(p(x)y′)+q(x)y = −λ sinh(y), 0 < δ < 1, 0 < x < 1, (5.3)

y ∈ C2
−1[0,1] , subject to the boundary conditions of Dirichlet or Robin type. Since

k(x,y) = sinh(y) satisfies k(x,0) = 0, and ∂k
∂y = cosh(y) > 1, then Corollary 4.1 implies

the following. If q(x) � 0, we have

−q(x) � −q(x)
cosh(y)

< 0,

and thus
λ � inf

[0,1]
{−q(x)}.

If q(x) � 0, we have

0 <
−q(x)
cosh(y)

< −q(x),

and thus
λ � 0.

If q(x) = 0, then λ = 0 and the only solution of Eq. (5.3) is, y(x) = 0, and thus the
problem has no eigenvalues.
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