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Abstract. In the present work, a numerical scheme is constructed for approximation of time
fractional Black-Scholes model governing European options. The present numerical scheme has
the capability to overcome spurious oscillation in the case of volatility. In the present numerical
method, the Laplace transform, radial kernels and quadrature rule are used. The time variable
is eliminated by the use of Laplace transform which significantly reduced the computational
cost as compared to the time-marching schemes. The spatial operator is discretized using radial
kernels in the local setting which results in sparse differentiation matrices. By Laplace transform
the solution is represented as integral along a smooth contour in the complex plane which is
then evaluated by quadrature. The proposed numerical scheme is used to price several different
European options.

1. Introduction

An option is an important financial derivative and to price an option is the most
significant problem in the financial market. The Black-Scholes model is used for eval-
uating European or American call and put options on a paying stock [29]. The Black-
Scholes (BS) model was proposed in the year 1973 by the authors Black-Scholes [2].
It is well known that the option prices by the BS model is enough close to the actual
prices, yet it has some shortcomings like accurately capturing jumps or movements in
the financial markets for narrow time steps [4].

One way to deal high volatility in stokes market, a modeling through stochastic
processes of fractional order have been suggested. Although stochastic partial differ-
ential equations of fractional order are the generalization of Ito stochastic differential
equations, which involves many difficulties to obtain its theoretical solutions. Luckily
we have of hand a fractional calculus. This lead the way to define and use a time and
space fractional Black-Scholes models for stock exchange dynamics [19]. Differential
equations of fractal order have become useful tools for the analysis of fractal dynamics
and fractal geometry [15], and with the introduction of fractional order derivatives, the
fractional order PDEs have been extensively used in the financial and stochastic models
[30]. The use of fractional order PDEs provide stochastic models that better represent
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the statistical nature of financial time series in terms of their statistical self-affine (ran-
dom fractal) properties, non-Gaussian characteristics and time memory (which are not
an inherent characteristic of the classical BS equation).

For the study of an option diffusion process a time fractional Black-Scholes model
was investigated in [23]. Wyss studied time fractional BS model to price European call
options in [40]. For the study of stock exchange dynamics, time and space fractional
Black-Scholes models were investigated in [18, 19]. The exotic options in the markets
with the jumps have been studied using a space fractional-order BS models in [5]. In
the work [6] the author showed that the European option obeying a partial integro-
differential model. Leonenko, et al. [21] used a time-fractional diffusion equation
to develop the Black-Scholes formalism. A multi parameter fractional Black-Scholes
model was developed by Liang et al. [24] with variable stock price.

In the financial markets with the introduction of fractional order models various
types for analytic methods have been developed for the solution of BS model. For
example the integral transform methods [40, 19, 24, 8, 9], homotopy analysis and ho-
motopy perturbation methods [14, 20], wavelet methods [16], or separation of variables
procedure [9]. The the exact solutions by these methods are mostly in the form of infi-
nite series or convolution of some functions which makes them hard to compute. Some
efficient numerical techniques have been developed for solving differential equations of
fractional order [25], for example, the finite difference methods [41, 42, 26], the finite
element methods [43], the finite volume methods [27], the spectral methods [44, 45],
the meshless methods [28, 39, 38], the predictor-corrector methods [10, 5].

In this work we consider the Black-Scholes PDE [46] of fractional order α

∂ α
t u(S,t)+

1
2

σ2S2 uSS(S,t)+RS uS(S, t)−R u(S,t) = 0, (1)

hold for all (S, t) ∈ (0,∞)× (0,Te) .

u(0,t) = P(t), u(∞,t) = Q(t), u(s,Te) = v(s), (2)

where σ � 0 denote the volatility of the stock price S , R is the risk-free rate, Te is
the expiry time, and 0 < α < 1. It is shown in the work [19], that it is not sufficient to
replace time-derivative by a fractional order time derivative in the classical BS model
to get the desired results. The fractional Black-Scholes model is an extension of the
Black-Scholes model, which displays the long-range dependence observed in empirical
data. We will approximate this model by a numerical scheme which is based on Laplace
transform, quadrature and radial kernels.

2. Preliminaries

DEFINITION 1. The Caputo derivative of fractional order is given by

Dα
τ v(τ) =

1
Γ(p−α)

∫ τ

0

1
(τ − s)α+1−p

dp

dsp v(s)ds, (3)
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where, p−1 < α < p ∈ Z+ .

DEFINITION 2. The Laplace transform in the variable τ of a given function v is
defined as

v̂(z) = L {v(τ)} =
∫ ∞

0
e−zτv(τ)dτ, (4)

if improper integral converges.

LEMMA 1. Assume the function v(τ) is continuous over 0 � τ � τn , if there are
some constants C1 , C2 , with the property,

| e−C2τ v(τ) |< C1,∀ τ > τn, (5)

then the Laplace transform of v(τ) exists.

LEMMA 2. If v(τ) ∈ Cp[0,∞) , with α ∈ (p− 1, p) ∈ Z+ , then the Caputo frac-
tional derivative has a Laplace transform given by

L {Dα
τ v(τ)}(z) = zα v̂−

p−1

∑
i=0

zα−i−1v(i)(0). (6)

3. Laplace transformed radial kernel method

The more general form of model (1) is given by

∂ α
t u(x, t)+L u(x,t) = f1(x,t), for x ∈ Ω ⊂ R

d , and d � 1, (7)

subject to the initial and boundary conditions

u(x,0) = u0(x), x ∈ Ω, Bu(x,t) = f2(t), for x ∈ ∂Ω, (8)

where ∂ α
t is the derivative of fractional order α given as

∂ α
t u(x,t) =

1
Γ(1−α)

∫ t

0

∂u(x,s)
∂ s

ds
(t− s)α , α ∈ (0,1), (9)

where L and B are linear spatial differential operators. Let u(t) be a smooth function
then its Laplace transform is defined by

L {u(t)} = û(z) =
∫ ∞

0
u(t)e−ztdt, (10)

the Laplace transform of fractional order derivative is given by

L {∂ α
t u(t)} = û(z)zα −

k−1

∑
i=0

zα−1−iu(i)(0), k−1 < α < k ∈ Z
+. (11)
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The Laplace transforms of equations (7)-(8) are given by

L {û(x,z)}+
[
zα û(x,z)− zα−1u0

]
= f̂1(x,z), for x ∈ Ω, (12)

B{û(x,z)} = f̂2(z), for x ∈ ∂Ω. (13)

The transformed system can be represented by

[L + Izα ]{û(x,z)} = f̂1(x,z)+ zα−1u0, for x ∈ Ω, (14)

B{û(x,z)} = f̂2(z), for x ∈ ∂Ω. (15)

Then we need to solve the above system for the transformed solution û of the
original solution u(t) . So if u denote the solution of problem (1) then its Laplace
transform û gives holomorphic extension in a complex Banach space X

û : C\Σθ → X , (16)

which lies outside to the acute sector defined by

Σθ = {z ∈ C : |arg(−z)| � θ}, 0 < θ <
π
2

. (17)

In a sector complement to Σθ , and for which the function û(z) satisfy the condition

‖û(z)‖ = O(1/|z|).

In other words, there exists a constant M > 0 such that

‖û(z)‖ � M
|z| ,z ∈ C\Σθ . (18)

The inversion formula corresponding to (10) is read as

u(t) =
1

2πι

∫
Θ

etzû(z) dz,t > 0, (19)

where the path Θ connects the points c− ι∞ to c+ ι∞ , and is chosen in a way which
guarantee evaluation of (19) accurately. Let the parametric form of the path Θ be
defined by the mapping χ : (a,b)→ C , then u(t) may be approximated by discretizing
the integral

u(t) =
1

2πι

∫ b

a
etχ(x)û(χ(x))χ ′(x) dx, t > 0. (20)

using some quadrature rule. This classic approach is followed in [35, 34, 22], which
employed the equal width rule. Thus for given h > 0, N � 1, and letting xk = hk ,
−N � k � N , then approximation to u(t) , t � 0, is given by

uN(t) =
h

2πι

N

∑
k=−N

etχ(xk)û(χ(xk))χ ′(xk), t > 0. (21)
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Talbot’s classic algorithm for inverting û , the interval (−π ,π) is used in place of (a,b) ,
while in [34, 22] the interval (−∞,+∞) is used for (a,b) . This setting is much suited
to derive the error bounds of the corresponding truncated trapezoidal rule

∫ +∞

−∞
q(x) dx 	 h

N

∑
k=−N

q(hk), N � 1,h > 0. (22)

From equation (17), for given θ , select d > 0 and β such that

d < min{β ,π/2−β}, and θ +d + β < π/2. (23)

Define ζ (w) = −sin(β + ιw) , w = x + ιy , it is shown in work of [22] that the
mapping ζ transform the horizontal straight line {Im w = y, where y ∈ (−d,d)} , into
a hyperbola with a left branch

(
Re z

sin(β − y)

)2

−
(

Im z
cos(β − y)

)2

= 1

Therefore, ζ maps the stripe Sd contained in the region y = ±d . Let λ > 0 be a
parameter then we have the mapping

z = σ(w) = λ (1+ ζ (w)). (24)

In view of equation (23), it is clear that χ transforms the stripe Sd into a region which
laying outside of the sector defined by ∑θ . In equation (19), contour Θ which is the
left branch of hyperbola and the image of real axis under χ . This gives

u(t) =
∫ +∞

−∞
Qt(x) dx,t > 0,

where Qt : Sd → X ,t > 0, is the mapping

Qt(w) =
1

2πι
exp(tχ(w))û(χ(w))χ ′(w).

THEOREM 1. [22] For fixed d , β satisfying (23) such that λ > 0 , when N � 1 ,
and h = lnN

N , xk = kh, where k ∈ Z , let the approximate solution be denoted by uN(t)
and u(t) be the exact solution, and

uN(t) = h
N

∑
k=−N

Qt(xk),t > 0, (25)

then

‖uN(t)−u(t)‖� CLl(λ t sin(β −d))eλ t
(

1

e
2πnd
lnN −1

+
1

e
sinβλ tN

2

)
, (26)

CL =C1(β ,d,M) = 2M
π

√
(sin(d + β )+1)/(1− sin(β +d)) , l(x) = (| ln(1−e−x)|

+1),x > 0 . which shows, ‖uN(t)−u(t)‖= O(e
−cN
lnN ) .
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In addition to approximate the solution u(t) at different time levels t0 � t � T ,
T = ∧t0 , t0 � 0, ∧ � 1, the transformed values U(xk) for −N � k � N can be com-
puted in parallel. By selecting the optimal values of parameters in χ , the uniform error
can be maintained in interval [t0,∧t0] , with moderate ∧ � 1.

4. Localized kernel approximation

To discretize the transform problem (14)-(15) we used the localized meshless
method [36, 37]. Consider the nodal points {u(xi), i = 1,2, ...,m} corresponding to
smooth function u(x) , such that {x1, ...,xm} ⊂ Ω ⊂ Rd ,d � 1. The function u(x) is
approximated by local kernel method at xi ∈ Ω ,

u(xi) = ∑
x j∈Ωi

ai
jψ i(‖xi− x j‖), (27)

where, ai = [ai
1,a

i
2, ...,a

i
n] is vector of unknown coefficients, and ri j = ‖xi − x j‖ is the

norm between notes xi and x j , ψ(r) , r � 0 is a radial kernel (radial basis function)
and Ωi ⊂Ω is a local domain for around each xi , contains n neighboring nodes around
the node xi . So we have m small size linear systems each of order n×n given by⎛

⎜⎜⎜⎝
ui

1
ui

2
...

ui
n

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ψ i
11 ψ i

12 · · · ψ i
1n

ψ i
21 ψ i

22 . . . ψ i
2n

...
...

. . .
...

ψ i
n1 ψ i

n2 . . . ψ i
nn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ai
1

ai
2
...

ai
n

⎞
⎟⎟⎟⎠ , i = 1,2, ...,m,

which can be denoted by

ui = Ψiai, i = 1,2, ...,m, (28)

where ψ i
k j = ψ i(‖xk − x j‖),xk,x j ∈ Ωi , the matrix Ψi is called system matrix.

Similarly apply the operator L we get

L u(xi) = ∑
x j∈Ωi

ai
jL ψ i(‖xi − x j‖), (29)

In vector form we have,
L u(xi) = vi ·ai, (30)

where vi is given by
vi = L ψ i(‖xi− x j‖),x j ∈ Ωi, (31)

the unknown coefficients can be eliminated from equation (28)

ai = (Ψi)−1ui, (32)

putting the values of ai in (30) to have,
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L u(xi) = vi(Ψi)−1ui = wiui (33)

where,
wi = vi(Ψi)−1. (34)

This gives the localized discretized form of the linear operator

L u ≡ Λu, (35)

here Λ is m×m differentiation matrix, with n non-zeros values while m− n zeros
values in each row, where n denote the nodes local sub-domain Ωi for each i .

5. Stability

The discretized form of the system (13)-(14) can be represented as

Πû = g, (36)

where Π is m×m differentiation matrix, the stability constant of system (36) is defined
by

cs = sup
û �=0

‖û‖
‖Πû‖ . (37)

The value cs is bounded for every discrete norms ‖.‖ on Rm . Hence we have

‖Π‖−1 � ‖û‖
‖Πû‖ � cs, (38)

Similarly in case of Pseudoinverse Π† of Π , we get

‖Π†‖ = sup
v�=0

‖Π†v‖
‖v‖ . (39)

writing

‖Π†‖ � sup
v=Πû �=0

‖Π†Πû‖
‖Πû‖ = sup

û �=0

‖û‖
‖Πû‖ = cs. (40)

Hence equations (38) and (40) give the bounds for stability constant cs .

6. Numerical examples and application

In this section, the proposed method is applied to approximate time fractional
Black-Scholes model. The present numerical scheme is used to price various Euro-
pean options governed by Black-Scholes model of fractional order. Three model prob-
lems which are the most interesting problems in the financial markets are considered



82 M. UDDIN AND M. TAUFIQ

to demonstrate the accuracy and convergence of the proposed numerical scheme. We
used the hyperbolic contour as discussed above in the form

σ(xk) = η + λ (1− sin(β − ιxk)) (41)

with the following values of optimal parameters which determined the contour σ of
integration.

η = 2,β = 0.3812,λ =
δ rbN
εT

,xk = hk,

with δ = 0.1, rb = 2πr , r = 0.3431, h = ε/N , ε = cosh−1( 1
δτ sin(β ) ) , τ = t0/T ,

t0 = 0.1, T = 5.

Problem 1. In the first problem we consider fractional order model with the fol-
lowing boundary and initial conditions

∂ α
t u(x,t) = A

∂ 2u(x,t)
∂x2 +B

∂u(x,t)
∂x

−Cu(x,t)+ f (x,t), (42)

u(x,0) = x2(1− x), u(0,t) = 0, u(1,t) = 0, (43)

where the source term

f =(1−x)x2
(

2t1−α

Γ(2−α)
+

2t2−α

Γ(3−α)

)
−[

A(2−6x)+B(2x−3x2)−Cx2(1− x)
]
(t+1)2,

is selected such that exact solution of (42) becomes u(x,t) = x2(1− x)(t + 1)2 . Here
we take the parameters values as σ = 0.25, R = 0.05, α = 0.7, A = 1

2 σ2 , C = R B =
R−A . The results in the form of L∞ error norm and estimate error Lest = (e

−cN
lnN , c = 1)

of the present numerical scheme are compared with the available results shown in Table
1. Here m denotes the number of nodes in Ω , while n is the number of nodes in Ωi ,
ε is a scale factor of the kernel ψ(r,ε) =

√
1+(εr)2 and κ is system matrix condi-

tion number. Figure 1 shows error versus quadrature nodes, and numerical solution at
different times in [0,1] .
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Figure 1: Error versus quadrature nodes and numerical solutions at different times of
the present numerical method, corresponding to problem 1.
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Table 1: Numerical results using Laplace transform-based local kernel method corre-
sponding to model problem 1.
m n N L∞ Lest ε κ
50 10 10 0.0091 0.0130 4.5000 1.3509e+012

30 5.1786e-004 1.4769e-004 4.5000 1.3509e+012
50 2.3613e-005 2.8134e-006 4.5000 1.3509e+012

20 10 50 4.4704e-005 2.8134e-006 1.7000 2.0443e+012
30 2.6867e-005 2.8134e-006 2.7000 1.0877e+012
60 2.4746e-005 2.8134e-006 5.5000 1.0663e+012
50 10 50 2.3613e-005 2.8134e-006 4.5000 1.3509e+012

20 4.7345e-005 2.8134e-006 6.2000 1.1457e+012
30 6.4062e-005 1.8134e-006 6.6000 1.2867e+012

[46](δ t=1/160, N=100) 1.0064e-004

Example 2. In the second problem we consider an other fractional model having
the following boundary and initial conditions

∂ α
t u(x,t) = A

∂ 2u(x,t)
∂x2 +B

∂u(x,t)
∂x

−Cu(x,t)+ f (x,t), (44)

u(x,0) = x3 + x2 +1, u(0,t) = (t +1)2, u(1, t) = 3(t +1)2, (45)

where the source term

f =(x3 + x2 +1)
(

2t1−α

Γ(2−α)
+

2t2−α

Γ(3−α)

)
− [

A(2+6x)+B(2x+3x2)

−C(x3 + x2 +1)
]
(t +1)2,

is chosen so that the exact solution of (44) is u(x,t) = (x3 + x2 + 1)(t + 1)2 . Here we
take the parameters values as α = 0.7, R = 0.5, A = 1, C = R , B = R−A . The re-
sults in the form of L∞ error norm and estimated error Lest = (e

−cN
lnN , c = 1) of the

present numerical scheme are compared with the available results shown in Table 2.
Here m denotes the number of nodes in the global domain Ω , while n is the num-
ber of nodes in the local sub-domain Ωi , ε is the shape parameter of radial kernel
ψ(r,ε) =

√
1+(εr)2 and κ is the matrix condition number. Figure 2 shows error

versus quadrature nodes, and numerical solution at different times in [0,1] .
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Figure 2: Error versus quadrature nodes and numerical solutions at different times of
the present numerical method, corresponding to problem 2.
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Table 2: Numerical results using Laplace transform-based local kernel method corre-
sponding to model problem 2.
m n N L∞ Lest ε κ
50 10 10 0.1834 0.0130 4.5000 1.3509e+012

30 0.0104 1.4769e-004 4.5000 1.3509e+012
50 5.9369e-004 2.8134e-006 4.5000 1.3509e+012

20 10 50 8.1328e-004 2.8134e-006 1.7000 2.0443e+012
30 4.5944e-004 2.8134e-006 2.7000 1.0877e+012
60 5.8654e-004 2.8134e-006 5.5000 1.0663e+012
50 10 50 5.9369e-004 2.8134e-006 4.5000 1.3509e+012

20 6.4655e-004 2.8134e-006 6.2000 1.1457e+012
30 6.3545e-004 2.8134e-006 6.6000 1.2867e+012

[46](δ t=1/160, N=100) 1.3065e-004

Example 3. In the last problem we consider the BS model of fractional order
which governing the European option

∂ αu(S, t)
∂ tα =

1
2

σ2S2 ∂ 2u(S,t)
∂S2 +(R−D)S

∂u(S,t)
∂S

−Ru(S,t), (S,t) ∈ (0,∞)× (0,Te),
(46)

u(b1,t) = P(t), u(b2,t) = Q(t), u(s,Te) = v(s), (47)

Case 1. We applied the proposed transform-based localized kernel method to
solve the BS equation governing the European model. Here we take the initial v(s) =
max{0,S−K} and boundary values P(t) = 0 and Q(t) = 0 of the B-S model (46).
This represent a time fractional B-S model governing European double barrier knock-
out call option.

The solution curves corresponding to double barrier option price at different val-
ues of fractional order α are shown in Figure 3. The parameters σ = 0.45, R = 0.03
Te = 1 (year), K = 10 b1 = 3, b2 = 15 and the dividend is D = 0.01. Similar types
of parameters values are considered which are used in [46]. The plots in Figure 3 are
well consistent with the results in [46]. It is shown in Figure 3 that when S is less than
a critical value K i.e strike price, lower prices values are obtained. while for fat tails,
the higher prices are obtained when (S > K ). It is concluded that the present numerical
scheme successfully capture jump or large movement in the process.

Case 2. For the purpose of comparison while computing the European call op-
tion, the same boundary and initial conditions P(t) = 0, and Q(t) = b2K exp(−RTet)
and v(S) = max{0,S−K} . The parameters σ = 0.25, R = 0.05, b1 = 0.1, b2 = 100,
Te = 1 (year) and K = 50 .

Case 3, Again for European put option the initial and boundary values v(S) =
max{0,S−K} , P(t) = K exp(−RTet) and Q(t) = D = 0 and used with other parame-
ters σ = 0.25, R = 0.05, b1 = 0.1, b2 = 100, Te = 1 (year) and K = 50 as considered
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in [46]. The solution curves corresponding to call option price as well as put option
price are shown in Figures 4 and 5, respectively.
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Figure 3: Double barrier option prices obtained by the Laplace transform based local
kernel method for different values of α .

7. Conclusion

In this paper the Laplace transform is combined with the localized radial kernel
method to approximate the solution of time fractional Black-Scholes equation. The sta-
bility conditions and the error bounds of the proposed scheme is discussed. As the time
fractional models are the generalization of integral order models. Approximation of
such types of PDEs either by analytical methods or by numerical methods is a difficult
task as compared to integral order PDEs. The present numerical scheme successfully
and very accurately approximate the time fractional BS equation. Similar time frac-
tional order PDEs can be solved by the proposed numerical scheme very efficiently and
accurately.
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