

AN ORDERING ON GREEN'S FUNCTION AND A LYAPUNOV-TYPE INEQUALITY FOR A FAMILY OF NABLA FRACTIONAL BOUNDARY VALUE PROBLEMS

JAGAN MOHAN JONNALAGADDA

(Communicated by F. Atici)

Abstract. In this article, we consider a family of two-point Riemann–Liouville type nabla fractional boundary value problems involving a fractional difference boundary condition. We construct the corresponding Green's function and deduce its ordering property. Then, we obtain a Lyapunov-type inequality using the properties of the Green's function, and illustrate a few of its applications.

1. Introduction

In this article, we construct the Green's function $G(b, \beta; t, s)$ of the following two-point nabla fractional boundary value problem

$$\begin{cases} \left(\nabla_a^{\alpha} u\right)(t) + h(t) = 0, & t \in \mathbb{N}_{a+2}^b, \\ u(a) = 0, & \left(\nabla_a^{\beta} u\right)(b) = 0. \end{cases}$$

$$\tag{1.1}$$

Here $1<\alpha<2$, $0\leqslant\beta\leqslant1$, $a,b\in\mathbb{R}$ with $b-a\in\mathbb{N}_2$, $h:\mathbb{N}_{a+2}^b\to\mathbb{R}$, ∇_a^α and ∇_a^β are the Riemann–Liouville type α^{th} and β^{th} -order nabla difference operators, respectively. Observe that the pair of boundary conditions in (1.1) reduces to conjugate [6, 12, 20], right-focal [18] and right-focal type [19] boundary conditions as $\beta\to0^+$, $\beta\to1^-$ and $\beta\to(\alpha-1)$, respectively. In Section 3, we obtain an ordering property on $G(b,\beta;t,s)$ with respect to b and β .

Lately, there has been an increased interest in establishing Lyapunov-type inequalities for discrete fractional boundary value problems. For the first time, Ferreira [10] deduced a Lyapunov-type inequality for a discrete boundary value problem involving the Riemann–Liouville type α^{th} -order (1 < $\alpha \le 2$) forward difference operator. Following Ferreira's work, authors of [8, 11] established Lyapunov-type inequalities for various classes of delta fractional boundary value problems. In this line, Ikram [16]

Keywords and phrases: Fractional order, backward (nabla) difference, boundary value problem, Green's function, Lyapunov-type inequality, nabla Mittag-Leffler function.

Mathematics subject classification (2010): 34A08, 39A10, 39A12, 34B15.

developed Lyapunov-type inequalities for certain nabla fractional boundary value problems of Caputo type. Recently, the author [18, 19] obtained Lyapunov-type inequalities for the nabla fractional difference equation

$$(\nabla_a^{\alpha} u)(t) + q(t)u(t) = 0, \quad t \in \mathbb{N}_{a+2}^b,$$

associated with two-point conjugate (C), left focal (LF), right focal (RF), left-focal type (LFT) and right-focal type(RFT) boundary conditions:

(C)
$$u(a) = u(b) = 0$$
;

(LF)
$$(\nabla u)(a+1) = u(b) = 0$$
;

(RF)
$$u(a) = (\nabla u)(b) = 0$$
;

(LFT)
$$(\nabla_a^{\alpha-1}u)(a+1) = u(b) = 0;$$

(RF)
$$u(a) = (\nabla_a^{\alpha - 1} u)(b) = 0.$$

Motivated by these developments, in this article, we obtain a Lyapunov-type inequality for the two-point nabla fractional boundary value problem

$$\begin{cases} \left(\nabla_a^{\alpha} u\right)(t) + q(t)u(t) = 0, & t \in \mathbb{N}_{a+2}^b, \\ u(a) = 0, & \left(\nabla_a^{\beta} u\right)(b) = 0, \end{cases}$$
 (1.2)

where $q: \mathbb{N}_{a+2}^b \to \mathbb{R}$, and demonstrate a few of its applications.

2. Preliminaries

Denote the set of all real numbers by \mathbb{R} . Define

$$\mathbb{N}_a := \{a, a+1, a+2, \ldots\} \text{ and } \mathbb{N}_a^b := \{a, a+1, a+2, \ldots, b\}$$

for any $a, b \in \mathbb{R}$ such that $b - a \in \mathbb{N}_1$. Assume that empty sums and products are taken to be 0 and 1, respectively.

DEFINITION 2.1. (See [7]) The backward jump operator $\rho : \mathbb{N}_a \to \mathbb{N}_a$ is defined by

$$\rho(t) = \max\{a, (t-1)\}, \quad t \in \mathbb{N}_a.$$

DEFINITION 2.2. (See [22, 23]) The Euler gamma function is defined by

$$\Gamma(z):=\int_0^\infty t^{z-1}e^{-t}dt,\quad \Re(z)>0.$$

Using the reduction formula

$$\Gamma(z+1) = z\Gamma(z), \quad \Re(z) > 0,$$

the Euler gamma function can be extended to the half-plane $\Re(z) \leqslant 0$ except for $z \neq 0, -1, -2, \dots$

DEFINITION 2.3. (See [14]) For $t \in \mathbb{R} \setminus \{..., -2, -1, 0\}$ and $r \in \mathbb{R}$ such that $(t + r) \in \mathbb{R} \setminus \{..., -2, -1, 0\}$, the generalized rising function is defined by

$$t^{\overline{r}} = \frac{\Gamma(t+r)}{\Gamma(t)}.$$

Also, we use the convention that if $t \in \{..., -2, -1, 0\}$ and $r \in \mathbb{R}$ such that $(t+r) \in \mathbb{R} \setminus \{..., -2, -1, 0\}$, then

 $t^{\overline{r}} := 0.$

DEFINITION 2.4. (See [7]) Let $u: \mathbb{N}_a \to \mathbb{R}$ and $N \in \mathbb{N}_1$. The first order backward (nabla) difference of u is defined by

$$(\nabla u)(t) := u(t) - u(t-1), \quad t \in \mathbb{N}_{a+1},$$

and the N^{th} -order nabla difference of u is defined recursively by

$$(\nabla^N u)(t) := (\nabla(\nabla^{N-1} u))(t), \quad t \in \mathbb{N}_{a+N}.$$

DEFINITION 2.5. (See [14]) Let $u: \mathbb{N}_{a+1} \to \mathbb{R}$ and $N \in \mathbb{N}_1$. The N^{th} -order nabla sum of u based at a is given by

$$\left(\nabla_a^{-N}u\right)(t) := \frac{1}{(N-1)!} \sum_{s=a+1}^t (t - \rho(s))^{\overline{N-1}} u(s), \quad t \in \mathbb{N}_a,$$

where by convention $(\nabla_a^{-N}u)(a) = 0$. We define $(\nabla_a^{-0}u)(t) = u(t)$ for all $t \in \mathbb{N}_{a+1}$.

DEFINITION 2.6. (See [14]) Let $u : \mathbb{N}_{a+1} \to \mathbb{R}$ and v > 0. The v^{th} -order nabla sum of u based at a is given by

$$\left(\nabla_a^{-\nu}u\right)(t):=\frac{1}{\Gamma(\nu)}\sum_{s=a+1}^t(t-\rho(s))^{\overline{\nu-1}}u(s),\quad t\in\mathbb{N}_a,$$

where by convention $(\nabla_a^{-\nu}u)(a) = 0$.

DEFINITION 2.7. (See [14]) Let $u: \mathbb{N}_{a+1} \to \mathbb{R}$, v > 0 and choose $N \in \mathbb{N}_1$ such that $N-1 < v \le N$. The Riemann–Liouville type v^{th} -order nabla difference of u is given by

$$\left(\nabla_a^{\mathsf{v}} u\right)(t) := \left(\nabla^N \left(\nabla_a^{-(N-\mathsf{v})} u\right)\right)(t), \quad t \in \mathbb{N}_{a+N}.$$

THEOREM 2.1. (See [2]) Assume $u : \mathbb{N}_a \to \mathbb{R}$, v > 0, $v \notin \mathbb{N}_1$, and choose $N \in \mathbb{N}_1$ such that N - 1 < v < N. Then,

$$\left(\nabla_a^{\nu}u\right)(t) = \frac{1}{\Gamma(-\nu)} \sum_{s=a+1}^t (t - \rho(s))^{\overline{-\nu - 1}} u(s), \quad t \in \mathbb{N}_{a+1}.$$

THEOREM 2.2. (See [14]) Let v, $\mu > 0$ and $u : \mathbb{N}_a \to \mathbb{R}$. Then,

$$\left(\nabla_a^{\nu}\left(\nabla_a^{-\mu}u\right)\right)(t) = \left(\nabla_a^{\nu-\mu}u\right)(t), \quad t \in \mathbb{N}_a.$$

THEOREM 2.3. (See [14, 17]) We observe the following properties of gamma and generalized rising functions.

- *I.* $\Gamma(t) > 0$ *for all* t > 0.
- 2. $t^{\overline{\alpha}}(t+\alpha)^{\overline{\beta}} = t^{\overline{\alpha+\beta}}$.
- 3. If $t \leqslant r$, then $t^{\overline{\alpha}} \leqslant r^{\overline{\alpha}}$.
- 4. If $\alpha < t \le r$, then $r^{-\alpha} \le t^{-\alpha}$.
- 5. $\nabla (t+\alpha)^{\overline{\beta}} = \beta (t+\alpha)^{\overline{\beta}-1}$.
- 6. $\nabla(\alpha t)^{\overline{\beta}} = -\beta(\alpha \rho(t))^{\overline{\beta} 1}$.

THEOREM 2.4. (See [14]) Let $v \in \mathbb{R}^+$ and $\mu \in \mathbb{R}$ such that μ , $\mu + v$ and $\mu - v$ are nonnegative integers. Then,

$$\begin{split} &\nabla_a^{-\nu}(t-a)^{\overline{\mu}} = \frac{\Gamma(\mu+1)}{\Gamma(\mu+\nu+1)}(t-a)^{\overline{\mu+\nu}}, \quad t \in \mathbb{N}_a, \\ &\nabla_a^{\nu}(t-a)^{\overline{\mu}} = \frac{\Gamma(\mu+1)}{\Gamma(\mu-\nu+1)}(t-a)^{\overline{\mu-\nu}}, \quad t \in \mathbb{N}_a. \end{split}$$

THEOREM 2.5. (See [14]) Assume v > 0 and $N - 1 < v \le N$. Then, a general solution of

$$(\nabla_a^{\nu} u)(t) = 0, \quad t \in \mathbb{N}_{a+N},$$

is given by

$$u(t) = C_1(t-a)^{\overline{v-1}} + C_2(t-a)^{\overline{v-2}} + \ldots + C_N(t-a)^{\overline{v-N}}, \quad t \in \mathbb{N}_a,$$

where $C_1, C_2, \cdots, C_N \in \mathbb{R}$.

3. Properties of Green's function

First, we deduce the unique solution of (1.1).

THEOREM 3.1. The discrete boundary value problem (1.1) has the unique solution

$$u(t) = \sum_{s=a+2}^{b} G(b, \beta; t, s) h(s), \quad t \in \mathbb{N}_{a}^{b},$$
 (3.1)

where the Green's function $G(b, \beta; t, s)$ is given by

$$G(b,\beta;t,s) = \begin{cases} \frac{1}{\Gamma(\alpha)} \frac{(b-s+1)^{\overline{\alpha-\beta-1}}}{(b-a)^{\alpha-\beta-1}} (t-a)^{\overline{\alpha-1}}, & t \in \mathbb{N}_a^{\rho(s)}, \\ \frac{1}{\Gamma(\alpha)} \left[\frac{(b-s+1)^{\overline{\alpha-\beta-1}}}{(b-a)^{\alpha-\beta-1}} (t-a)^{\overline{\alpha-1}} - (t-s+1)^{\overline{\alpha-1}} \right], & t \in \mathbb{N}_s^b. \end{cases}$$
(3.2)

Proof. Applying $\nabla_a^{-\alpha}$ on both sides of (1.1) and using Theorem 2.5, we have

$$u(t) = -\left(\nabla_a^{-\alpha} h\right)(t) + C_1(t-a)^{\overline{\alpha-1}} + C_2(t-a)^{\overline{\alpha-2}}, \quad t \in \mathbb{N}_a, \tag{3.3}$$

for some C_1 , $C_2 \in \mathbb{R}$. Using u(a) = 0 in (3.3), we get $C_2 = 0$. Applying ∇_a^{β} on both sides of (3.3) and using Theorems 2.2 and 2.4, we have

$$\left(\nabla_a^{\beta} u\right)(t) = -\left(\nabla_a^{\beta - \alpha} h\right)(t) + C_1 \frac{\Gamma(\alpha)}{\Gamma(\alpha - \beta)}(t - a)^{\overline{\alpha - \beta - 1}}, \quad t \in \mathbb{N}_a. \tag{3.4}$$

Using $(\nabla_a^{\beta} u)(b) = 0$ in (3.4), we get

$$C_1 = \frac{1}{(b-a)^{\overline{\alpha-\beta-1}}\Gamma(\alpha)} \sum_{s=a+1}^{b} (b-s+1)^{\overline{\alpha-\beta-1}} h(s).$$

Substituting the values of C_1 and C_2 in (3.3), we have

$$\begin{split} u(t) &= \frac{(t-a)^{\overline{\alpha-1}}}{(b-a)^{\overline{\alpha-\beta-1}}\Gamma(\alpha)} \sum_{s=a+1}^{b} (b-s+1)^{\overline{\alpha-\beta-1}} h(s) - \frac{1}{\Gamma(\alpha)} \sum_{s=a+1}^{t} (t-s+1)^{\overline{\alpha-1}} h(s) \\ &= \frac{1}{\Gamma(\alpha)} \sum_{s=a+2}^{t} \left[\frac{(b-s+1)^{\overline{\alpha-\beta-1}}}{(b-a)^{\overline{\alpha-\beta-1}}} (t-a)^{\overline{\alpha-1}} - (t-s+1)^{\overline{\alpha-1}} \right] h(s) \\ &+ \frac{1}{\Gamma(\alpha)} \sum_{s=t+1}^{b} \left[\frac{(b-s+1)^{\overline{\alpha-\beta-1}}}{(b-a)^{\overline{\alpha-\beta-1}}} (t-a)^{\overline{\alpha-1}} \right] h(s) \\ &= \sum_{s=a+2}^{b} G(b,\beta;t,s)(t,s) h(s). \end{split}$$

The proof is complete. \Box

REMARK 1. Observe that

- 1. $G(b,\beta;t,a+1) = 0$ for $t \in \mathbb{N}_a^b$.
- 2. $G(b,\beta;a,s) = 0$ for $s \in \mathbb{N}_{a+2}^b$.

Brackins [6], Gholami et al. [12] and the author [18, 19, 20] have derived the Green's functions G(b,0;t,s), G(b,1;t,s) and $G(b,\alpha-1;t,s)$ of the two-point nabla fractional boundary value problem associated with conjugate, right-focal and right-focal type boundary conditions, respectively, and also obtained a few properties.

THEOREM 3.2. (See [6, 12, 18, 19, 20]) G(b,0;t,s), G(b,1;t,s) and $G(b,\alpha-1;t,s)$ are nonnegative for $(t,s) \in \mathbb{N}_a^b \times \mathbb{N}_{a+2}^b$.

Next, we obtain a few properties of $G(b, \beta; t, s)$.

Lemma 3.3. If $0 \leqslant \beta_1 < \beta_2 \leqslant 1$, then $G(b, \beta_1; t, s) < G(b, \beta_2; t, s)$ for $(t, s) \in \mathbb{N}^b_{a+1} \times \mathbb{N}^b_{a+2}$.

Proof. Using (2) of Theorem 2.3, we rewrite $G(b, \beta_1; t, s)$ in terms of $G(b, \beta_2; t, s)$ as follows:

$$G(b, \beta_1; t, s)$$

$$= \begin{cases} \frac{1}{\Gamma(\alpha)} \frac{(b-a+\alpha-\beta_1-1)^{\overline{\beta_1-\beta_2}}}{(b-s+\alpha-\beta_1)^{\overline{\beta_1-\beta_2}}} \frac{(b-s+1)^{\overline{\alpha-\beta_2-1}}}{(b-a)^{\overline{\alpha-\beta_2-1}}} (t-a)^{\overline{\alpha-1}}, & t \in \mathbb{N}_a^{\rho(s)}, \\ \frac{1}{\Gamma(\alpha)} \left[\frac{(b-a+\alpha-\beta_1-1)^{\overline{\beta_1-\beta_2}}}{(b-s+\alpha-\beta_1)^{\overline{\beta_1-\beta_2}}} \frac{(b-s+1)^{\overline{\alpha-\beta_2-1}}}{(b-a)^{\overline{\alpha-\beta_2-1}}} (t-a)^{\overline{\alpha-1}} - (t-s+1)^{\overline{\alpha-1}} \right], & t \in \mathbb{N}_s^b. \end{cases}$$

Since $\beta_2 - \beta_1 < (b-s+\alpha-\beta_1) < (b-a+\alpha-\beta_1-1)$, from (4) of Theorem 2.3, we have

$$(b-a+\alpha-\beta_1-1)^{\overline{\beta_1-\beta_2}} < (b-s+\alpha-\beta_1)^{\overline{\beta_1-\beta_2}}, \tag{3.5}$$

implying that

$$G(b, \beta_1; t, s) < G(b, \beta_2; t, s), \quad (t, s) \in \mathbb{N}_{a+1}^b \times \mathbb{N}_{a+2}^b$$

The proof is complete. \Box

THEOREM 3.4. $G(b,\beta;t,s) \ge 0$ for $(t,s) \in \mathbb{N}_a^b \times \mathbb{N}_{a+2}^b$.

Proof. The proof follows from Remark 1, Theorem 3.2 and Lemma 3.3.

LEMMA 3.5. Assume $b_1 < b_2$ and $(t,s) \in \mathbb{N}_{a+1}^b \times \mathbb{N}_{a+2}^b$.

- 1. If $0 \le \beta < (\alpha 1)$, then $G(b_1, \beta; t, s) < G(b_2, \beta; t, s)$.
- 2. If $(\alpha 1) < \beta \le 1$, then $G(b_1, \beta; t, s) > G(b_2, \beta; t, s)$.
- 3. If $\beta = (\alpha 1)$, then $G(b, \beta; t, s)$ is independent of b.

Proof. Consider

$$\begin{split} \nabla_b \big[G(b,\beta;t,s) \big] &= \frac{(t-a)^{\overline{\alpha-1}}}{\Gamma(\alpha)} \nabla_b \Big[\frac{(b-s+1)^{\overline{\alpha-\beta-1}}}{(b-a)^{\overline{\alpha-\beta-1}}} \Big] \\ &= \frac{(b-a)^{\overline{\alpha-\beta-2}} (b-s+1)^{\overline{\alpha-\beta-2}} (t-a)^{\overline{\alpha-1}} (s-a-1) (\alpha-\beta-1)}{(b-a)^{\overline{\alpha-\beta-1}} (b-a-1)^{\overline{\alpha-\beta-1}} \Gamma(\alpha)} \\ &= \frac{(b-s+1)^{\overline{\alpha-\beta-2}} (t-a)^{\overline{\alpha-1}}}{(b-a-1)^{\overline{\alpha-\beta}} \Gamma(\alpha)} (s-a-1) (\alpha-\beta-1). \end{split}$$

Clearly, (s-a-1) > 0, $\Gamma(\alpha) > 0$ and it follows from (1) of Theorem 2.3 that

$$(t-a)^{\overline{\alpha-1}} = \frac{\Gamma(t-a+\alpha-1)}{\Gamma(t-a)} > 0,$$

$$(b-s+1)^{\overline{\alpha-\beta-2}} = \frac{\Gamma(b-s+\alpha-\beta-1)}{\Gamma(b-s+1)} > 0,$$

and

$$(b-a-1)^{\overline{\alpha-\beta}} = \frac{\Gamma(b-a+\alpha-\beta-1)}{\Gamma(b-a-1)} > 0.$$

Thus, if $0 \leqslant \beta < (\alpha - 1)$, then $\nabla_b \big[G(b,\beta;t,s) \big] > 0$ implying that (1) follows. If $(\alpha - 1) < \beta \leqslant 1$, then $\nabla_b \big[G(b,\beta;t,s) \big] < 0$ implying that (2) follows. If $\beta = (\alpha - 1)$, then $\nabla_b \big[G(b,\beta;t,s) \big] = 0$ implying that $G(b,\beta;t,s)$ is independent of b. The proof is complete. \square

DEFINITION 3.1. Denote by

$$H(b,\beta;s) = \frac{(b-s+1)^{\overline{\alpha-\beta-1}}}{(b-a)^{\overline{\alpha-\beta-1}}}, \quad s \in \mathbb{N}_{a+2}^b.$$

REMARK 2. We have

$$H(b,\beta;s) = \frac{\Gamma(b-s+\alpha-\beta)\Gamma(b-a)}{\Gamma(b-s+1)\Gamma(b-a+\alpha-\beta-1)}, \quad s \in \mathbb{N}_{a+2}^b.$$

- (i) It follows from (1) of Theorem 2.3 that $H(b,\beta;s)>0$ for $s\in\mathbb{N}_{a+2}^b$.
- (ii) Since (b-s+1) < (b-a), from (3) of Theorem 2.3, we have

$$(b-s+1)^{\overline{\alpha-1}} < (b-a)^{\overline{\alpha-1}},$$

implying that H(b,0;s) < 1.

(iii) Since $(2-\alpha) < (b-s+1) < (b-a)$, from (4) of Theorem 2.3, we have

$$(b-a)^{\overline{\alpha-2}}<(b-s+1)^{\overline{\alpha-2}},$$

implying that H(b, 1; s) > 1.

Lemma 3.6. If $0 \le \beta_1 < \beta_2 \le 1$, then $H(b, \beta_1; s) < H(b, \beta_2; s)$ for $s \in \mathbb{N}^b_{a+2}$.

Proof. Using (2) of Theorem 2.3, we rewrite $H(b, \beta_1; s)$ in terms of $H(b, \beta_2; s)$ as follows:

$$\begin{split} H(b,\beta_{1};s) &= \frac{(b-s+1)^{\overline{\alpha-\beta_{1}-1}}}{(b-a)^{\overline{\alpha-\beta_{1}-1}}} = \frac{(b-a+\alpha-\beta_{1}-1)^{\overline{\beta_{1}-\beta_{2}}}}{(b-s+\alpha-\beta_{1})^{\overline{\beta_{1}-\beta_{2}}}} \frac{(b-s+1)^{\overline{\alpha-\beta_{2}-1}}}{(b-a)^{\overline{\alpha-\beta_{2}-1}}} \\ &= \frac{(b-a+\alpha-\beta_{1}-1)^{\overline{\beta_{1}-\beta_{2}}}}{(b-s+\alpha-\beta_{1})^{\overline{\beta_{1}-\beta_{2}}}} H(b,\beta_{2};s). \end{split}$$

It follows from (3.5) that

$$H(b, \beta_1; s) < H(b, \beta_2; s), \quad s \in \mathbb{N}_{a+2}^b.$$

The proof is complete. \Box

LEMMA 3.7. Assume $s \in \mathbb{N}_{a+2}^b$.

- 1. If $0 \le \beta < (\alpha 1)$, then $H(b, \beta; s) < 1$.
- 2. If $(\alpha 1) < \beta \le 1$, then $H(b, \beta; s) > 1$.
- 3. If $\beta = (\alpha 1)$, then $H(b, \beta; s) = 1$.

Proof.

1. Since (b-s+1) < (b-a), from (3) of Theorem 2.3, we have

$$(b-s+1)^{\overline{\alpha-\beta-1}} < (b-a)^{\overline{\alpha-\beta-1}}$$

implying that $H(b, \beta; s) < 1$.

2. Since $-(\alpha - \beta - 1) < (b - s + 1) < (b - a)$, from (4) of Theorem 2.3, we have

$$(b-a)^{\overline{\alpha-\beta-1}} < (b-s+1)^{\overline{\alpha-\beta-1}}$$

implying that $H(b, \beta; s) > 1$.

3. The proof of (3) is trivial. \Box

LEMMA 3.8. Assume $b_1 < b_2$.

- 1. If $0 \le \beta < (\alpha 1)$, then $H(b_1, \beta; s) < H(b_2, \beta; s)$ for $s \in \mathbb{N}_{\alpha+2}^b$.
- 2. If $(\alpha 1) < \beta \leq 1$, then $H(b_1, \beta; s) > H(b_2, \beta; s)$ for $s \in \mathbb{N}_{a+2}^b$.

Proof. Consider

$$\begin{split} \nabla_b \big[H(b,\beta;s) \big] &= \nabla_b \Big[\frac{(b-s+1)^{\overline{\alpha-\beta-1}}}{(b-a)^{\overline{\alpha-\beta-1}}} \Big] \\ &= \frac{(b-a)^{\overline{\alpha-\beta-2}}(b-s+1)^{\overline{\alpha-\beta-2}}(s-a-1)(\alpha-\beta-1)}{(b-a)^{\overline{\alpha-\beta-1}}(b-a-1)^{\overline{\alpha-\beta-1}}} \\ &= \frac{(b-s+1)^{\overline{\alpha-\beta-2}}}{(b-a-1)^{\overline{\alpha-\beta}}} (s-a-1)(\alpha-\beta-1). \end{split}$$

Clearly, (s-a-1) > 0 and it follows from (1) of Theorem 2.3 that

$$(b-s+1)^{\overline{\alpha-\beta-2}} = \frac{\Gamma(b-s+\alpha-\beta-1)}{\Gamma(b-s+1)} > 0,$$

and

$$(b-a-1)^{\overline{\alpha-\beta}} = \frac{\Gamma(b-a+\alpha-\beta-1)}{\Gamma(b-a-1)} > 0.$$

Thus, if $0 \leqslant \beta < (\alpha - 1)$, then $\nabla_b \big[H(b,\beta;s) \big] > 0$ implying that (1) follows. If $(\alpha - 1) < \beta \leqslant 1$, then $\nabla_b \big[H(b,\beta;s) \big] < 0$ implying that (2) follows. The proof is complete. \square

THEOREM 3.9. The maximum of the Green's function $G(b,\beta;t,s)$ defined in (3.2) is given by

$$\max_{(t,s)\in\mathbb{N}^b_{a+1}\times\mathbb{N}^b_{a+2}}G(b,\beta;t,s) = \begin{cases} \Omega, & 0\leqslant\beta\leqslant(\alpha-1),\\ \max\{\Omega,\Lambda-1\}, & (\alpha-1)<\beta\leqslant1, \end{cases}$$

where

Ω

$$=G\Big(b,\beta;\left|\frac{(a+b+3)(\alpha-\beta-1)+b\beta}{(2\alpha-2-\beta)}\right|-1,\left|\frac{(a+b+3)(\alpha-\beta-1)+b\beta}{(2\alpha-2-\beta)}\right|\Big),$$

and

Λ

$$=G\Big(b,\beta;\left\lfloor\frac{(a+b+3)(\alpha-\beta-1)+b\beta+1}{(2\alpha-2-\beta)}\right\rfloor,\left\lfloor\frac{(a+b+3)(\alpha-\beta-1)+b\beta+1}{(2\alpha-2-\beta)}\right\rfloor\Big).$$

Proof. Assume $(t,s) \in \mathbb{N}_{a+1}^b \times \mathbb{N}_{a+2}^b$. First, we show that for any fixed $s \in \mathbb{N}_{a+2}^b$, $G(b,\beta;t,s)$ is an increasing function of t between a+1 and s-1. Consider the first order nabla difference of $G(b,\beta;t,s)$ with respect to t.

$$\nabla_{t} \left[G(b, \beta; t, s) \right] = \frac{H(b, \beta; s)}{\Gamma(\alpha)} \nabla_{t} (t - a)^{\overline{\alpha - 1}} = \frac{H(b, \beta; s)(t - a)^{\overline{\alpha - 2}}}{\Gamma(\alpha - 1)}$$
$$= \frac{H(b, \beta; s)\Gamma(t - a + \alpha - 2)}{\Gamma(\alpha - 1)\Gamma(t - a)}. \tag{3.6}$$

It follows from Remark 2 and (1) of Theorem 2.3 that $\nabla_t \big[G(b,\beta;t,s) \big] > 0$ implying that $G(b,\beta;t,s)$ is an increasing function of t between a+1 and s-1. Next, we show that for any fixed $s \in \mathbb{N}_{a+2}^b$, $G(b,\beta;t,s)$ is a decreasing function of t between s and s. Consider the first order nabla difference of $G(b,\beta;t,s)$ with respect to t.

$$\nabla_{t} \left[G(b,\beta;t,s) \right] = \frac{1}{\Gamma(\alpha)} \left[H(b,\beta;s) \nabla_{t} (t-a)^{\overline{\alpha-1}} - \nabla_{t} (t-s+1)^{\overline{\alpha-1}} \right]$$

$$= \frac{1}{\Gamma(\alpha-1)} \left[H(b,\beta;s) (t-a)^{\overline{\alpha-2}} - (t-s+1)^{\overline{\alpha-2}} \right]$$

$$= \frac{H(b,\beta;s) (t-a)^{\overline{\alpha-2}}}{\Gamma(\alpha-1)} \left[1 - \frac{H(t,1;s)}{H(b,\beta;s)} \right]. \tag{3.7}$$

Clearly, $\Gamma(\alpha - 1) > 0$ and it follows from (3.6) that

$$\frac{H(b,\beta;s)(t-a)^{\overline{\alpha-2}}}{\Gamma(\alpha-1)} > 0.$$

We consider two different cases based on α and β .

(i) Suppose $0 \le \beta \le (\alpha - 1)$. Since $t \in \mathbb{N}^b_s$ and $s \in \mathbb{N}^b_{a+2}$, from Remark 2 and Lemma 3.7, we obtain

$$H(t,1;s) > 1$$
 and $H(b,\beta;s) < 1$,

implying that $\nabla_t [G(b, \beta; t, s)] < 0$.

(ii) Suppose $(\alpha - 1) < \beta \le 1$. Since $t \in \mathbb{N}^b_s$ and $s \in \mathbb{N}^b_{a+2}$, from Lemmas 3.6 and 3.8, we have

$$H(t,1;s) > H(t,\beta;s) > H(b,\beta;s),$$

implying that $\nabla_t [G(b, \beta; t, s)] < 0$.

Thus, $G(b,\beta;t,s)$ is a decreasing function of t between s and b. Therefore, we have demonstrated that for any fixed $s \in \mathbb{N}^b_{a+2}$, $G(b,\beta;t,s)$ increases from $G(b,\beta;a+1,s)$ to $G(b,\beta;s-1,s)$ and then decreases from $G(b,\beta;s,s)$ to $G(b,\beta;b,s)$. Now, we examine $G(b,\beta;t,s)$ to determine whether the maximum for a fixed t will occur at (s-1,s) or (s,s). We have

$$G(b,\beta;s-1,s) = \frac{H(b,\beta;s)(s-a-1)^{\overline{\alpha-1}}}{\Gamma(\alpha)}$$

and

$$G(b,\beta;s,s) = \frac{H(b,\beta;s)(s-a)^{\overline{\alpha-1}}}{\Gamma(\alpha)} - 1.$$

We consider two different cases based on α and β .

(i) Suppose $0 \le \beta \le (\alpha - 1)$. Consider

$$G(b,\beta;s-1,s) - G(b,\beta;s,s) = \frac{H(b,\beta;s)}{\Gamma(\alpha)} \left[(s-a-1)^{\overline{\alpha-1}} - (s-a)^{\overline{\alpha-1}} \right] + 1$$

$$= -\frac{H(b,\beta;s)}{\Gamma(\alpha)} \nabla_s \left[(s-a)^{\overline{\alpha-1}} \right] + 1$$

$$= -\frac{H(b,\beta;s)}{\Gamma(\alpha-1)} (s-a)^{\overline{\alpha-2}} + 1. \tag{3.8}$$

Using Lemma 3.7 in (3.8), we obtain

$$G(b,\beta;s-1,s)-G(b,\beta;s,s)\geqslant -\frac{1}{\Gamma(\alpha-1)}(s-a)^{\overline{\alpha-2}}+1.$$

Since $(2-\alpha) < (s-a) < 1$, from (4) of Theorem 2.3, we have

$$(s-a)^{\overline{\alpha-2}} < 1^{\overline{\alpha-2}},$$

implying that $G(b,\beta;s,s) \leq G(b,\beta;s-1,s)$.

Now we wish to maximize $G(b,\beta;s-1,s)$ for $s \in \mathbb{N}_{a+2}^b$. Consider the first order nabla difference of $G(b,\beta;s-1,s)$ with respect to s.

$$\nabla_{s} \left[G(b,\beta;s-1,s) \right] = \frac{1}{\Gamma(\alpha)(b-a)^{\overline{\alpha-\beta-1}}} \nabla_{s} \left[(b-s+1)^{\overline{\alpha-\beta-1}}(s-a-1)^{\overline{\alpha-1}} \right]$$

$$= \frac{(b-s+2)^{\overline{\alpha-\beta-2}}(s-a-1)^{\overline{\alpha-2}}}{\Gamma(\alpha)(b-a)^{\overline{\alpha-\beta-1}}}$$

$$\left[(\alpha-1)(b-s+\alpha-\beta) - (\alpha-\beta-1)(s-a+\alpha-3) \right].$$

In this expression, $\Gamma(\alpha) > 0$,

$$(b-s+2)^{\overline{\alpha-\beta-2}} = \frac{\Gamma(b-s+\alpha-\beta)}{\Gamma(b-s+2)} > 0,$$
$$(s-a-1)^{\overline{\alpha-2}} = \frac{\Gamma(s-a+\alpha-3)}{\Gamma(s-a-1)} > 0,$$

and

$$(b-a)^{\overline{\alpha-\beta-1}} = \frac{\Gamma(b-a+\alpha-\beta-1)}{\Gamma(b-a)} > 0.$$

The equation $(\alpha - 1)(b - s + \alpha - \beta) - (\alpha - \beta - 1)(s - a + \alpha - 3) = 0$ has the solution

$$s = \frac{(a+b+3)(\alpha-\beta-1)+b\beta}{(2\alpha-2-\beta)},$$

so we consider

$$s = \left\lfloor \frac{(a+b+3)(\alpha-\beta-1)+b\beta}{(2\alpha-2-\beta)} \right\rfloor.$$

If

$$s \leqslant \left| \frac{(a+b+3)(\alpha-\beta-1)+b\beta}{(2\alpha-2-\beta)} \right|,$$

the expression $(\alpha-1)(b-s+\alpha-\beta)-(\alpha-\beta-1)(s-a+\alpha-3)$ is positive, and thus the expression $(b-s+1)^{\overline{\alpha-\beta-1}}(s-a-1)^{\overline{\alpha-1}}$ is increasing. If

$$s \geqslant \left| \frac{(a+b+3)(\alpha-\beta-1)+b\beta}{(2\alpha-2-\beta)} \right|,$$

the expression $(\alpha-1)(b-s+\alpha-\beta)-(\alpha-\beta-1)(s-a+\alpha-3)$ is negative, and thus the expression $(b-s+1)^{\overline{\alpha-\beta-1}}(s-a-1)^{\overline{\alpha-1}}$ is decreasing. Hence the maximum of the expression $(b-s+1)^{\overline{\alpha-\beta-1}}(s-a-1)^{\overline{\alpha-1}}$ occurs at

$$s = \left\lfloor \frac{(a+b+3)(\alpha-\beta-1) + b\beta}{(2\alpha-2-\beta)} \right\rfloor.$$

Thus, we have

$$\max_{(t,s)\in\mathbb{N}_{a+1}^b\times\mathbb{N}_{a+2}^b}G(b,\beta;t,s)=\max_{s\in\mathbb{N}_{a+2}^b}G(b,\beta;s-1,s)=\Omega. \tag{3.9}$$

(ii) Suppose $(\alpha - 1) < \beta \le 1$. First, we maximize $G(b, \beta; s, s)$ for $s \in \mathbb{N}_{a+2}^b$. Consider the first order nabla difference of $G(b, \beta; s, s)$ with respect to s.

$$\begin{split} \nabla_{s} \big[G(b,\beta;s,s) \big] &= \frac{1}{\Gamma(\alpha)(b-a)^{\overline{\alpha-\beta-1}}} \nabla_{s} \big[(b-s+1)^{\overline{\alpha-\beta-1}} (s-a)^{\overline{\alpha-1}} \big] \\ &= \frac{(b-s+2)^{\overline{\alpha-\beta-2}} (s-a)^{\overline{\alpha-2}}}{\Gamma(\alpha)(b-a)^{\overline{\alpha-\beta-1}}} \\ &= \frac{(\alpha-1)(b-s+\alpha-\beta) - (\alpha-\beta-1)(s-a+\alpha-2) \big]. \end{split}$$

In this expression, $\Gamma(\alpha) > 0$,

$$(b-s+2)^{\overline{\alpha-\beta-2}} = \frac{\Gamma(b-s+\alpha-\beta)}{\Gamma(b-s+2)} > 0,$$
$$(s-a)^{\overline{\alpha-2}} = \frac{\Gamma(s-a+\alpha-2)}{\Gamma(s-a)} > 0,$$

and

$$(b-a)^{\overline{\alpha-\beta-1}} = \frac{\Gamma(b-a+\alpha-\beta-1)}{\Gamma(b-a)} > 0.$$

The equation $(\alpha - 1)(b - s + \alpha - \beta) - (\alpha - \beta - 1)(s - a + \alpha - 2) = 0$ has the solution

$$s = \frac{(a+b+3)(\alpha-\beta-1)+b\beta+1}{(2\alpha-2-\beta)},$$

so we consider

$$s = \left| \frac{(a+b+3)(\alpha-\beta-1) + b\beta + 1}{(2\alpha-2-\beta)} \right|.$$

If

$$s \leqslant \left| \frac{(a+b+3)(\alpha-\beta-1)+b\beta+1}{(2\alpha-2-\beta)} \right|,$$

the expression $(\alpha-1)(b-s+\alpha-\underline{\beta})-(\alpha-\beta-1)(s-a+\alpha-2)$ is positive, and thus the expression $(b-s+1)^{\overline{\alpha-\beta}-1}(s-a)^{\overline{\alpha-1}}$ is increasing. If

$$s \geqslant \left\lfloor \frac{(a+b+3)(\alpha-\beta-1)+b\beta+1}{(2\alpha-2-\beta)} \right\rfloor,$$

the expression $(\alpha-1)(b-s+\alpha-\underline{\beta})-(\alpha-\beta-1)(s-a+\alpha-2)$ is negative, and thus the expression $(b-s+1)^{\overline{\alpha-\beta}-1}(s-a)^{\overline{\alpha-1}}$ is decreasing. Hence the maximum of the expression $(b-s+1)^{\overline{\alpha-\beta}-1}(s-a)^{\overline{\alpha-1}}$ occurs at

$$s = \left\lfloor \frac{(a+b+3)(\alpha-\beta-1)+b\beta+1}{(2\alpha-2-\beta)} \right\rfloor.$$

Thus, from (3.9), we have

$$\begin{split} \max_{(t,s)\in\mathbb{N}_{a+1}^b\times\mathbb{N}_{a+2}^b} G(b,\beta;t,s) &= \max\Big\{\max_{s\in\mathbb{N}_{a+2}^b} G(b,\beta;s-1,s), \max_{s\in\mathbb{N}_{a+2}^b} G(b,\beta;s,s)\Big\} \\ &= \max\{\Omega,\Lambda-1\}. \end{split}$$

The proof is complete. \Box

THEOREM 3.10. The following inequality holds for $G(b, \beta; t, s)$:

$$\max_{t\in\mathbb{N}^b_{a+1}}\sum_{s=a+2}^bG(b,\beta;t,s)=\frac{(b-a-1)^{\overline{\alpha}}}{(\alpha-\beta)\Gamma(\alpha)}.$$

Proof. Consider

$$\begin{split} &\sum_{s=a+2}^{b} G(b,\beta;t,s) \\ &= \sum_{s=a+2}^{t} G(b,\beta;t,s) + \sum_{s=t+1}^{b} G(b,\beta;t,s) \\ &= \frac{1}{\Gamma(\alpha)} \sum_{s=a+2}^{t} \left[\frac{(b-s+1)^{\overline{\alpha-\beta-1}}}{(b-a)^{\overline{\alpha-\beta-1}}} (t-a)^{\overline{\alpha-1}} - (t-s+1)^{\overline{\alpha-1}} \right] \\ &+ \frac{1}{\Gamma(\alpha)} \sum_{s=t+1}^{b} \frac{(b-s+1)^{\overline{\alpha-\beta-1}}}{(b-a)^{\overline{\alpha-\beta-1}}} (t-a)^{\overline{\alpha-1}} \\ &= \frac{\Gamma(\alpha-\beta)(t-a)^{\overline{\alpha-1}}}{\Gamma(\alpha)(b-a)^{\overline{\alpha-\beta-1}}} \sum_{s=a+2}^{b} \frac{(b-s+1)^{\overline{\alpha-\beta-1}}}{\Gamma(\alpha-\beta)} - \sum_{s=a+2}^{t} \frac{(t-s+1)^{\overline{\alpha-1}}}{\Gamma(\alpha)} \\ &= \frac{(t-a)^{\overline{\alpha-1}}}{(\alpha-\beta)\Gamma(\alpha)(b-a)^{\overline{\alpha-\beta-1}}} (b-a-1)^{\overline{\alpha-\beta}} - \frac{(t-a-1)^{\overline{\alpha}}}{\Gamma(\alpha+1)} \\ &= \frac{(b-a-1)(t-a)^{\overline{\alpha-1}}}{(\alpha-\beta)\Gamma(\alpha)} - \frac{(t-a-1)^{\overline{\alpha}}}{\Gamma(\alpha+1)}. \end{split}$$

We now find the maximum of this expression with respect to $t \in \mathbb{N}_{a+1}^b$. Since

$$\frac{(t-a-1)^{\overline{\alpha}}}{\Gamma(\alpha+1)} = \frac{\Gamma(t-a+\alpha-1)}{\Gamma(t-a-1)\Gamma(\alpha+1)} \geqslant 0, \quad t \in \mathbb{N}_{a+1}^b,$$

we have

$$\max_{t\in\mathbb{N}^b_{a+1}}\sum_{s=a+2}^b G(b,\beta;t,s) = \max_{t\in\mathbb{N}^b_{a+1}}\frac{(b-a-1)(t-a)^{\overline{\alpha}-1}}{(\alpha-\beta)\Gamma(\alpha)} = \frac{(b-a-1)^{\overline{\alpha}}}{(\alpha-\beta)\Gamma(\alpha)}.$$

The proof is complete. \Box

We are now able to formulate a Lyapunov-type inequality for the discrete boundary value problem (1.2).

THEOREM 3.11. If (1.2) has a nontrivial solution, then

$$\sum_{s=a+2}^{b} |q(s)| \geqslant \begin{cases} \frac{1}{\Omega}, & 0 \leqslant \beta \leqslant (\alpha - 1), \\ \frac{1}{\max\{\Omega, \Lambda - 1\}}, & (\alpha - 1) < \beta \leqslant 1. \end{cases}$$

Proof. Let \mathfrak{B} be the Banach space of functions $u: \mathbb{N}_a^b \to \mathbb{R}$ endowed with norm

$$||u|| = \max_{t \in \mathbb{N}_a^b} |u(t)|.$$

It follows from Theorem 3.1 that a solution to (1.2) satisfies the equation

$$u(t) = \sum_{s=a+2}^{b} G(b,\beta;t,s)q(s)u(s).$$

Hence.

$$\begin{aligned} \|u\| &= \max_{t \in \mathbb{N}_{a}^{b}} \Big| \sum_{s=a+2}^{b} G(b,\beta;t,s) q(s) u(s) \Big| = \max_{t \in \mathbb{N}_{a+1}^{b}} \Big| \sum_{s=a+2}^{b} G(b,\beta;t,s) q(s) u(s) \Big| \\ &\leqslant \max_{t \in \mathbb{N}_{a+1}^{b}} \Big[\sum_{s=a+2}^{b} G(b,\beta;t,s) |q(s)| |u(s)| \Big] \leqslant \|u\| \Big[\max_{t \in \mathbb{N}_{a+1}^{b}} \sum_{s=a+2}^{b} G(b,\beta;t,s) |q(s)| \Big] \\ &\leqslant \|u\| \Big[\max_{(t,s) \in \mathbb{N}_{a+1}^{b} \times \mathbb{N}_{a+2}^{b}} G(b,\beta;t,s) \Big] \sum_{s=a+2}^{b} |q(s)|, \end{aligned}$$

or, equivalently,

$$1 \leqslant \left[\max_{(t,s) \in \mathbb{N}_{a+1}^b \times \mathbb{N}_{a+2}^b} G(b,\beta;t,s) \right] \sum_{s=a+2}^b |q(s)|.$$

An application of Theorem 3.9 yields the result. \Box

Now, we discuss two applications of Theorem 3.11. First, we obtain a criterion for the nonexistence of nontrivial solutions of (1.2).

THEOREM 3.12. Assume $1 < \alpha < 2$ and

$$\sum_{s=a+2}^{b} |q(s)| < \begin{cases} \Omega, & 0 \leqslant \beta \leqslant (\alpha - 1), \\ \max\{\Omega, \Lambda - 1\}, & (\alpha - 1) < \beta \leqslant 1. \end{cases}$$
 (3.10)

Then, the discrete fractional boundary value problem (1.2) has no nontrivial solution on \mathbb{N}_a^b .

Next, we estimate a lower bound for eigenvalues of the eigenvalue problem corresponding to (1.2).

THEOREM 3.13. Assume $1 < \alpha < 2$ and u is a nontrivial solution of the eigenvalue problem

$$\begin{cases} \left(\nabla_a^{\alpha} u\right)(t) + \lambda u(t) = 0, & t \in \mathbb{N}_{a+2}^b, \\ u(a) = 0, & \left(\nabla_a^{\beta} u\right)(b) = 0, \end{cases}$$
(3.11)

where $u(t) \neq 0$ for each $t \in \mathbb{N}_{a+2}^{b-1}$. Then,

$$|\lambda| \geqslant \begin{cases} \frac{1}{\Omega}, & 0 \leqslant \beta \leqslant (\alpha - 1), \\ \frac{1}{\max\{\Omega, \Lambda - 1\}}, & (\alpha - 1) < \beta \leqslant 1. \end{cases}$$
 (3.12)

Conclusion

In this article we established a Lyapunov-type inequality for (1.2) using the properties of the corresponding Green's function. This inequality is a generalization of those Lyapunov-type inequalities obtained in [18, 19]. Two applications are provided to illustrate the applicability of established results.

Acknowledgement. The authors are grateful to the referees for their suggestions and comments which considerably helped to improve the content of this paper.

REFERENCES

- T. ABDELJAWAD AND F. M. ATICI, On the definitions of nabla fractional operators, Abstr. Appl. Anal., Art. ID 406757, 2012.
- [2] K. AHRENDT, L. CASTLE, M. HOLM AND K. YOCHMAN, Laplace transforms for the nabladifference operator and a fractional variation of parameters formula, Commun. Appl. Anal. 16, 3 (2012), 317–347.
- [3] G. A. ANASTASSIOU, Nabla discrete fractional calculus and nabla inequalities, Math. Comput. Modelling 51, 5-6 (2010), 562–571.
- [4] F. M. ATICI AND P. W. ELOE, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ., Special Edition I, 3 (2009), 12 pp.
- [5] F. M. ATICI AND P. W. ELOE, Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl. 17, 4 (2011), 445–456.
- [6] A. BRACKINS, Boundary Value Problems of Nabla Fractional Difference Equations, Ph.D. Thesis -The University of Nebraska-Lincoln, 2014.
- [7] M. BOHNER AND A. PETERSON, Dynamic Equations on Time Scales, Birkhäuser, Boston, 2001.
- [8] A. CHIDOUH AND D. F. M. TORRES, Existence of positive solutions to a discrete fractional boundary value problem and corresponding Lyapunov-type inequalities, Opuscula Math. 38, 1 (2018), 31–40.
- [9] P. W. ELOE, J. W. LYONS AND J. T. NEUGEBAUER, An ordering on Green's functions for a family of two-point boundary value problems for fractional differential equations, Commun. Appl. Anal. 19, (2015), 453–462.
- [10] R. A. C. FERREIRA, Some discrete fractional Lyapunov-type inequalities, Fract. Differ. Calc. 5, 1 (2015), 87–92.
- [11] K. GHANBARI AND Y. GHOLAMI, New classes of Lyapunov type inequalities of fractional Δ-difference Sturm-Liouville problems with applications, Bull. Iranian Math. Soc. 43, 2 (2017), 385–408.
- [12] Y. GHOLAMI AND K. GHANBARI, Coupled systems of fractional ∇-difference boundary value problems, Differ. Equ. Appl. 8, 4 (2016), 459–470.
- [13] C. GOODRICH, On a fractional boundary value problem with fractional boundary conditions, Appl. Math. Lett. 25, 8 (2012), 1101–1105.
- [14] C. GOODRICH AND A. C. PETERSON, Discrete Fractional Calculus, Springer, Cham, 2015.

- [15] C. GOODRICH, Solutions to a discrete right-focal fractional boundary value problem, Int. J. Difference Equ. 5, 2 (2010), 195–216.
- [16] A. IKRAM, Green's Functions and Lyapunov Inequalities for Nabla Caputo Boundary Value Problems, Ph.D. Thesis - The University of Nebraska-Lincoln, 2018.
- [17] JAGAN MOHAN JONNALAGADDA, Analysis of a system of nonlinear fractional nabla difference equations, Int. J. Dyn. Syst. Differ. Equ. 5, 2 (2015), 149–174.
- [18] JAGAN MOHAN JONNALAGADDA, Discrete fractional Lyapunov-type inequalities in nabla sense, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Manuscript submitted for publication.
- [19] JAGAN MOHAN JONNALAGADDA, Lyapunov-type inequalities for discrete Riemann-Liouville fractional boundary value problems, Int. J. Difference Equ. 13, 2 (2018), 85–103.
- [20] JAGAN MOHAN JONNALAGADDA, On two-point Riemann-Liouville type nabla fractional boundary value problems, Adv. Dyn. Syst. Appl. 13, 2 (2018), 141–166.
- [21] W. G. KELLEY AND A. C. PETERSON, Difference Equations, Academic Press, San Diego, 2001.
- [22] A. A. KILBAS, H. M. SRIVASTAVA AND J. J. TRUJILLO, *Theory and Applications of Fractional Differential Equations*, North-Holland Mathematics Studies, Amsterdam, 2006.
- [23] I. PODLUBNY, Fractional Differential Equations, Academic Press, San Diego, 1999.

(Received November 17, 2018)

Jagan Mohan Jonnalagadda
Department of Mathematics
Birla Institute of Technology and Science Pilani
Hyderabad - 500078, Telangana, India
e-mail: j.jaganmohan@hotmail.com