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Abstract. In this paper, we study linear time-invariant nabla fractional discrete control systems.
The nabla fractional difference operator is considered in the sense of Riemann-Liouville def-
inition of the fractional derivative. We first give necessary and sufficient rank conditions for
controllability of the discrete fractional system via Gramian and controllability matrices. We
then obtain rank conditions for observability of the discrete fractional system. We illustrate main
results with some numerical examples. We close the paper by stating that the rank conditions for
the time-invariant linear dynamic system on time scales, fractional system in continuous time,
and fractional system in discrete time coincide.

1. Introduction

Nowadays the concept of fractional order derivative and integrals have attracted
increasing attention from various fields of science and engineering communities. The
main reason for this is that many physical materials and processes can be properly de-
scribed by using fractional order calculus. It has been proven by scientific findings that
many fractional-ordermathematical models are the best description for natural phenom-
ena. Most of the research on the applications of the fractional difference/differential
calculus are focused on the temporal state of physical change, image processing, vis-
coelastic theory, controller design, and random fractional dynamics [28, 29, 30, 31].

The study of controllability and observability plays an important role in the con-
trol theory and engineering. They have close connections to pole assignment, struc-
tural decomposition, quadratic optimal control, observer design, controller design, and
so forth. In recent decades, the study of control systems have aroused great interest
among applied mathematicians and engineers. For this reason, many active scholars
contributed to controllability of continuous time systems [1, 19, 27] and controllability
of dynamic systems on time scales [7, 8, 12, 14, 33]. Bartosiewicz and Pawluszewicz
[7] proposed the controllability criteria for linear time-invariant dynamic systems on
time scales, whereas Fausett and Murty [14] not only studied the controllability of dy-
namic systems but also obtained the observability and realizability criteria for linear
time-invariant dynamic systems on time scales. Davis et al. [12] proved some basic

Mathematics subject classification (2010): 93B05, 26A33, 39A13, 93B07, 93C55.
Keywords and phrases: Discrete fractional calculus, linear fractional difference equation, controllabil-

ity, observability.

c© � � , Zagreb
Paper FDC-10-02

19

http://dx.doi.org/10.7153/fdc-2020-10-02


20 F. M. ATICI AND T. ZHOROEV

results on controllability, observability, and realizability of linear time-invariant dy-
namic systems, and then extended their results to time-variant systems. Pawluszewicz
[8] proposed a necessary and sufficient condition for positive reachability of a posi-
tive system on an arbitrary time scale considering Gramian matrix. However, when
studying the controllability of dynamic systems [7, 12, 14], one must assume that the
graininess function is differentiable, an assumption that is not satisfied in general for
all time scales. For this reason, Wintz and Bohner [33] altered the system and obtained
controllability of time-invariant linear dynamic systems without assuming differentia-
bility of the graininess function. Due to these solid works, the controllability theory
on continuous time systems, dynamic systems, and continuous fractional order systems
[9, 10, 21, 25] have been well developed.

In contrast to that for the continuous-time case, the amount of literature which
focus on controllability of time-invariant linear discrete systems is much less. The con-
trollability of the linear discrete-time systems have been investigated in [13, 26, 28],
and the necessary and sufficient conditions for discrete fractional order systems with
the Grünwald-Letnikov operator are given in [15, 18, 32]. Kaczorek [18] introduced
the notion of the positive fractional discrete-time linear system and proposed the nec-
essary and sufficient conditions for the positivity, reachability, and controllability to
zero. Guermah et al. [15] studied controllability and observability of linear discrete-
time fractional-order systems that are modeled by a discrete-time linear system with
delays in states. Mozyrska et al. [22] proposed the properties of the h -difference linear
control systems with fractional order and developed the rank conditions for controlla-
bility and observability of fractional order systems with Caputo-Type operator. Then
they extended their results to h -difference linear control systems with n different frac-
tional orders in [23]. Mozyrska et al. [24] investigated the local controllability and
observability of nonlinear discrete-time systems considering the Caputo, the Riemann-
Liouville, and the Grünwald-Letnikov-type h-difference fractional operators. Atici and
Nguyen [5] studied the controllability and observability of the discrete Δ-fractional
time-invariant linear systems.

Fractionalizing of mathematical models in the field of applied mathematics is a
method which improves the descriptive meaning of the mathematical models of the
real world problems, as illustrated in many papers in the area of applied mathematics,
physics, computer science, and bioengineering [6, 20, 28, 30]. So the natural question
follows: Do we keep or loose the controllability of the discrete system if we fractional-
ize it?

Motivated by this question and the recent work in discrete time, we shall continue
to develop the control theory in discrete time and search for an answer to this question
in this paper. We first consider the controllability of the following time-invariant linear
nabla fractional system

∇ν
t0y(t) = Ay(t−1)+Bu(t−1), t ∈ N

t1
t0+1, (1)

where A,B are the known constant matrices, y(t) ∈ R
n state vector, u(t) ∈ R

m is con-
trol vector, and 0 < ν < 1.

This paper is organized as follows: In Section 2, we recall some fundamental def-
initions of discrete fractional calculus and give a unique solution of the nabla fractional
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order system with an initial condition. Then we state and prove the Putzer Algorithm
to evaluate matrix exponential functions in discrete fractional calculus. Section 3 ad-
dresses the controllability of the time-invariant nabla fractional systems. We obtain
rank conditions via the Gramian and the controllability matrices. In Section 4, we
study observability of the time-invariant nabla fractional systems.

2. Preliminaries

The backward difference operator, or nabla operator (∇) for a function f : Na −→
R is defined by

(∇ f ) (t) = f (t)− f (ρ(t)) ,

where a ∈ R , Na = {a, a+1, a+2, . . .} and ρ(t) = t−1 is known as backward jump
operator on time scale calculus [11].

We define discrete interval as a set of form

N
b
a = {a,a+1, ...,b}

where a,b ∈ R and b−a is a positive integer.
Let μ be any real number. The rising factorial power tμ (read ‘t to the μ rising’)

is defined as

tμ =
Γ(t + μ)

Γ(t)
,

where t ∈ R\ {...,−2,−1,0} , 0μ = 0 and Γ denotes the Gamma function.
We consider the ν -th order fractional sum of f defined as

∇−ν
a f (t) =

t

∑
s=a

(t−ρ(s))ν−1

Γ(ν)
f (s) (2)

where a ∈ R, ν > 0, and t ∈ Na . Further, we consider the ν -th order fractional differ-
ence (a Riemann-Liouville fractional difference) of f defined by

∇ν
a f (t) = ∇n(∇−(n−ν)

a f (t)) (3)

where ν > 0, n−1 < ν < n , n denotes a positive integer.
For further reading, we refer the reader to [2, 3, 17]
Next, we define the following function which will be used throughout the paper.

ŷλ ,ν(t,a) :=
t

∑
n=a

λ n−a(t−n+1)(n−a+1)ν−1

Γ((n−a+1)ν)
,

where λ is any constant number, ν is positive real number and t ∈ Na.
Subsequently, we give the following theorem. The prove of this theorem can be

done similarly as in the paper (Theorem 2.5, [4]).
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THEOREM 1. Assume λ ∈R . The fractional difference equation of order ν where
ν ∈ (0,1)

∇ν
a y(t) = λy(t−1)+ f (t−1) f or t ∈ Na+1 (4)

has the general solution

y(t) = ŷλ ,ν(t,a)c+
t−1

∑
s=a

ŷλ ,ν(t +a− s−1,a) f (s), t ∈ Na (5)

where c is constant.

Next, we give some properties of ŷλ ,ν(t,a) .

LEMMA 1. The following properties hold:

(i) ŷλ ,ν(a,a) = 1, where λ ∈ R and ν is positive real number.

(ii) ∇ν
a ŷλ ,ν(t,a) = λ ŷλ ,ν(t −1,a), where 0 < ν < 1 and λ ∈ R.

(iii) For ν � 1 and λ any positive real number, ŷλ ,ν(t,a) is monotone increasing on
Na .

(iv) For λ � 1 and ν any positive real number, ŷλ ,ν(t,a) is increasing on Na .

Proof. (i) The proof follows from the definition of ŷλ ,ν(t,a).
(ii) The proof is similar to the proof of Theorem 2.3 in [4].
(iii) The proof relies on the fact that if ∇ f (t) � 0 on Na+1 , then the function

f is monotone increasing on Na . Here we apply the nabla operator to the function
ŷλ ,ν(t,a) , we have

∇ŷλ ,ν(t,a) = ∇
t

∑
n=a

λ n−a(t−n+1)(n−a+1)ν−1

Γ((n−a+1)ν)

=
t

∑
n=a

∇
λ n−a(t−n+1)(n−a+1)ν−1

Γ((n−a+1)ν)
+

λ n−a(t−n+1)(n−a+1)ν−1

Γ((n−a+1)ν)
|t=t−1,n=t

=
t

∑
n=a

λ n−aΓ(t −n+(n−a+1)ν−1)
Γ(t−n+1)Γ((n−a+1)ν−1)

,

where we used the identity

∇
t

∑
n=0

f (t,n) =
t

∑
n=0

∇ f (t,n)+ f (ρ(t),t).

The last quantity is positive if ν � 1.
(iv) Let t be in Na . We show that ŷλ ,ν(t,a) is increasing if ŷλ ,ν(t + 1,a) >

ŷλ ,ν(t,a) .
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ŷλ ,ν(t +1,a) =
t+1

∑
n=a

λ n−a(t −n+2)(n−a+1)ν−1

Γ((n−a+1)ν)

=
Γ(t −aν +1)

Γ(t−a+2)Γ(ν)
+

t+1

∑
n=a+1

λ n−a(t −n+2)(n−a+1)ν−1

Γ((n−a+1)ν)

>
t

∑
n=a

λ n+1−aΓ(t−n+(n−a+2)ν)
Γ(t −n+1)Γ((n−a+2)ν)

.

Next, we use one of the properties of the Gamma function, namely Γ(α + 1) =
αΓ(α) . We have

Γ(t −n+(n−a+2)ν)
Γ((n−a+2)ν)

=
(t−n+(n−a+2)ν−1)(t−n+(n−a+2)ν−2) · · ·((n−a+2)ν)Γ((n−a+2)ν)

Γ((n−a+2)ν)

�(t−n+(n−a+1)ν−1)(t−n+(n−a+1)ν−2) · · ·((n−a+1)ν)Γ((n−a+1)ν)
Γ((n−a+1)ν)

=
Γ(t −n+(n−a+1)ν)

Γ((n−a+1)ν)
,

since ν is positive integer. Using this inequality, we obtain

ŷλ ,ν(t +1,a) >
t

∑
n=a

λ n+1−aΓ(t−n+(n−a+1)ν)
Γ(t−n+1)Γ((n−a+1)ν)

�
t

∑
n=a

λ n−aΓ(t −n+(n−a+1)ν)
Γ(t−n+1)Γ((n−a+1)ν)

=
t

∑
n=a

λ n−a(t −n+1)(n−a+1)ν−1

Γ((n−a+1)ν)

= ŷλ ,ν(t,a)

if λ � 1.

REMARK 1. One can easily verify that the solution of the following IVP

∇ν
a y(t) = Ay(t−1) t ∈ Na+1 (6)

∇−(1−ν)
a y(t)|t=a = y(a) = y0, (7)

where A is an n×n constant matrix, and y0 and y(.) are n×1 vectors, is

y(t) =
t

∑
n=a

An−a(t−n+1)(n−a+1)ν−1

Γ((n−a+1)ν)
y0, t ∈ Na. (8)
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Define

ŷA,ν(t,a) :=
t

∑
n=a

An−a(t−n+1)(n−a+1)ν−1

Γ((n−a+1)ν)
, t ∈ Na (9)

In the following lemma we list some important properties for ŷA,ν(t,a).

LEMMA 2. For any given n×n matrix A, the following properties hold:

(i) ŷA,ν(a,a) = In.

(ii) ∇ν
a ŷA,ν(t,a) = AŷA,ν(t−1,a), t ∈ Na+1 , where 0 < ν < 1 .

Next we want to give an algorithm to calculate ŷA,ν(t,a) in terms of ŷλ ,ν(t,a)
where λ is an eigenvalue of the matrix A . For this purpose, we first define the matrix
exponential function in discrete fractional calculus. Then we will state and prove the
Putzer algorithm for any n×n matrix.

DEFINITION 1. (Matrix exponential function) Let A be an n×n constant matrix.
The unique matrix valued solution of the initial value problem(IVP)

∇ν
aY (t) = AY (t −1) for t ∈ Na+1 (10)

∇−(1−ν)
a Y (t)|t=a = Y (a) = In, (11)

where In denotes the n×n identity matrix, is called the matrix exponential function.

THEOREM 2. If λ1,λ2, ...,λn are (not necessarily distinct) eigenvalues of the n×
n matrix A, with each eigenvalue repeated as many times as its multiplicity, then

ŷA,ν(t,a) =
n−1

∑
i=0

pi+1(t)Mi,

where
M0 = In,

Mi = (A−λiIn)Mi−1, (1 � i � n−1), (12)

Mn = 0,
and vector valued function p defined by

p(t) =

⎡⎢⎢⎢⎢⎢⎣
p1(t)
p2(t)
p3(t)

...
pn(t)

⎤⎥⎥⎥⎥⎥⎦
is the solution of the initial value problem
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∇ν
a p(t) =

⎡⎢⎢⎢⎢⎢⎣
λ1 0 0 · · · 0
1 λ2 0 · · · 0
0 1 λ3 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 λn

⎤⎥⎥⎥⎥⎥⎦ p(t−1) for all t ∈ Na+1 (13)

∇−(1−ν)
a p(t)|t=a = p(a) =

⎡⎢⎢⎢⎢⎢⎣
1
0
0
...
0

⎤⎥⎥⎥⎥⎥⎦ . (14)

Proof. Let Φ(t) =
n−1

∑
i=0

pi+1(t)Mi. We first show that Φ solves the IVP (10)-(11).

First note that

∇−(1−ν)
a Φ(a) = ∇−(1−ν)

a p1(a)M0 + ∇−(1−ν)
a p2(a)M1 + · · ·+ ∇−(1−ν)

a pn(a)Mn−1 = In

since p(a) =
[
1 0 0 · · · 0

]T
.

∇ν
a Φ(t)−AΦ(t−1)

=∇ν
a

n−1

∑
i=0

pi+1(t)Mi −A
n−1

∑
i=0

pi+1(t −1)Mi

=∇ν
a p1(t)M0 + ∇ν

a p2(t)M1 + · · ·+ ∇ν
a pn(t)Mn−1−A

n−1

∑
i=0

pi+1(t−1)Mi,

since ∇ν
a is a linear operator. Next we use (13), so the last quantity equals

=λ1p1(t−1)M0 +[p1(t−1)+ λ2p2(t−1)]M1 +[p2(t−1)+ λ3p3(t−1)]M2

+ · · ·+[pn−1(t −1)+ λnpn(t−1)]Mn−1−A
n−1

∑
i=0

pi+1(t−1)Mi

=[λ1M0 +M1−AM0]p1(t −1)+ [λ2M1 +M2−AM1]p2(t−1)
+ · · ·+[λnMn−1−AMn−1]pn(t −1)

=[λnIn−A]Mn−1pn(t−1),

since Mi = (A− λiIn)Mi−1 for (1 � i � n) . The last quantity is zero matrix by the
Cayley-Hamilton theorem. In fact, we have

(λnIn−A)Mn−1pn(t−1) = −(A−λnIn)(A−λn−1In) · · · (A−λ1In)pn(t −1) = 0n×n.
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Since ŷA,ν(t,a) satisfies the IVP (10)-(11), we have

Φ(t) = ŷA,ν(t,a)

by the unique solution of given initial value problem.
Next, we will give an example to illustrate the use of Putzer algorithm for 2× 2

matrix.

EXAMPLE 1. Given A =
[−0.2 0.5

0.6 −0.1

]
, with eigenvalues λ1 = 0.4, λ2 = −0.7.

By using Theorem 1 we find that the solution of the IVP (13)-(14) is given by

p1(t) = ŷ.4,ν(t,a) and p2(t) =
t−1

∑
s=a

ŷ−.7,ν(t +a− s−1,a)ŷ.4,ν(s,a).

Now we compute ŷA,ν(t,a) by using Theorem 2

ŷA,ν(t,a) = ŷ.4,ν(t,a)
[
1 0
0 1

]
+ p2(t)

[−0.6 0.5
0.6 −0.5

]

=
[
ŷ.4,ν(t,a)− .6p2(t) .5p2(t)

.6p2(t) ŷ.4,ν(t,a)− .5p2(t)

]
.

We close this section by stating the variation of constant formula for the system of
fractional difference equations. Since the proof of this theorem is similar to the proof
of Theorem 1.1, we omit it.

THEOREM 3. (Variation of constants.) Let ν ∈ R , 0 < ν < 1 , A be an n× n
constant matrix. Suppose f (t) is an n× 1 vector valued function. Then the initial
value problem

∇ν
a y(t) = Ay(t −1)+ f (t−1), t ∈ Na+1

∇−(1−ν)
a y(t)|t=a = y(a) = y0,

has a unique solution. Moreover, the solution is given by

y(t) = ŷA,ν(t,a)y0 +
t−1

∑
s=a

ŷA,ν(t +a− s−1,a) f (s), t ∈ Na. (15)

3. Controllability

In this section, we establish the criterion for controllability of the linear discrete-
fractional time-invariant system

∇ν
t0y(t) = Ay(t−1)+Bu(t−1), t ∈ N

t1
t0+1, (16)
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where y(t0) = y0 is initial state, A is an n× n constant matrix, y(t) is an n× 1 state
vector, B is an n×m constant matrix and u(t) is an m×1 control vector, m � n and
0 < ν < 1. Because the output does not play any role in controllability, the output
equation is disregarded in this study. By Theorem 3 the corresponding solution of the
system (16) is

y(t) = ŷA,ν(t,t0)y0 +
t−1

∑
s=t0

ŷA,ν(t + t0− s−1,t0)Bu(s). (17)

In the following definitions we assume that t0,t1 ∈ R
+ and t1 − t0 ∈ Z

+ .

DEFINITION 2. A system modeled by (16) or pair {A,B} is said to be completely
controllable, if it is possible to construct a control signal u(t) that will transfer any
initial state y(t0) to any final state y(t1) in finite discrete time interval t ∈ N

t1−1
t0 . Oth-

erwise the system (16) or {A,B} is said to be uncontrollable.

DEFINITION 3. If every non-zero initial state y(t0) can be transfered to final state
y(t1) = 0n×1, by control signal u(t) in finite discrete time interval t ∈ N

t1−1
t0 , then the

system (16) is said to be controllable to the origin.

To give necessary and sufficient conditions for controllability of the linear system
(16) we will define controllability matrix and controllability Gramian matrix.

The controllability matrix Ŵ of the system (16) is defined as an n× (nm) matrix

Ŵ :=
[
B AB A2B · · · An−1B

]
,

and we define controllability Gramian matrix P of the system (16) as an n×n matrix

P(t,t0) :=
t−1

∑
s=t0

ŷA,ν(s,t0)BBT [ŷA,ν(s,t0)]T .

THEOREM 4. The following statements are equivalent:

(i) The system ∇ν
t0y(t) = Ay(t−1)+Bu(t−1) is completely controllable on discrete

time interval N
t1
t0+1 .

(ii) The n×n controllability Gramian matrix P(t1,t0) has rank n.

(iii) The controllability matrix Ŵ has rank n.

Proof. (i) ⇔ (ii)
First we show that if a given system is completely controllable then controllabil-

ity Gramian matrix P(t1,t0) of the given system has rank n . Let us prove this by
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contradiction. Suppose that rank(P(t1,t0)) < n . And then there exists nonzero vector
η ∈ R

n such that ηT P(t1,t0) = 01×n . Then it follows that

0 = ηTP(t1, t0)η =
t1−1

∑
s=t0

ηT ŷA,ν(s,t0)BBT [ŷA,ν(s,t0)]T η =
t1−1

∑
s=t0

||ηT ŷA,ν(s,t0)B||22,

where || · ||2 defines the Euclidean norm. Hence

ηT ŷA,ν(t,t0)B = 01×m, t ∈ N
t1−1
t0 . (18)

From the controllable assumption there exists control signal u(t) that will transfer ini-
tial state y(t0) = y0 to final state y(t1) = y f = ŷA,ν(t1,t0)y0 + η . By substitution initial
and final state to (17) the solution of the given system becomes

ŷA,ν(t1, t0)y0 + η = ŷA,ν(t1,t0)y0 +
t1−1

∑
s=t0

ŷA,ν(t1 + t0− s−1,t0)Bu(s)

η =
t1−1

∑
s=t0

ŷA,ν(t1 + t0− s−1,t0)Bu(s).

Multiplying though by ηT and using (18) yields

ηT η =
t1−1

∑
s=t0

ηT ŷA,ν(t1 + t0− s−1, t0)Bu(s) = 0,

which contradicts the assumption that η is a nonzero vector in R
n Thus, the controlla-

bility Gramian matrix P(t1,t0) has rank n .
Conversely, suppose P(t1,t0) has rank n . Then it follows that P(t1,t0) is invert-

ible. Therefore, for the given any initial state y(t0) = y0 and final state y(t1) = y f we
can choose the control signal u(t) as

u(t) = BT [ŷA,ν(t1 + t0− t−1,t0)]T [P(t1,t0)]−1[y f − ŷA,ν(t1, t0)y0].

The corresponding solution of the system at t = t1 can be written as

y(t1) =ŷA,ν(t1, t0)y0 +
t1−1

∑
s=t0

ŷA,ν(t1 + t0− s−1,t0)Bu(s)

=ŷA,ν(t1, t0)y0 +
t1−1

∑
s=t0

ŷA,ν(t1 + t0− s−1,t0)BBT [ŷA,ν(t1 + t0− s−1,t0)]T

× [P(t1,t0)]−1[y f − ŷA,ν(t1,t0)y0].

By performing the above last summation we obtain

t1−1

∑
s=t0

ŷA,ν(t1 + t0− s−1,t0)BBT [ŷA,ν(t1 + t0− s−1,t0)]T
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=ŷA,ν(t1 −1,t0)BBT [ŷA,ν(t1 −1,t0)]T + ŷA,ν(t1 −2,t0)BBT [ŷA,ν(t1−2,t0)]T

+ · · ·+ ŷA,ν(t0,t0)BBT [ŷA,ν(t0,t0)]T

=
t1−1

∑
s=t0

ŷA,ν(s,t0)BBT [ŷA,ν(s,t0)]T = P(t1,t0).

Hence we have

y(t1) = ŷA,ν(t1,t0)y0 +P(t1,t0)[P(t1,t0)]−1[y f − ŷA,ν(t1,t0)y0] = y f .

This shows that if the controllability Gramian matrix P(t1, t0) has rank n , then a given
system is completely controllable on given discrete time interval.

(i) ⇔ (iii) First we note that for all N � n the rank of matrix Ŵ (N) =[
B AB A2B · · · AN−1B

]
is equal to the rank of the controllability matrix Ŵ . By the

Cayley-Hamilton theorem

An =
n−1

∑
s=0

psA
s,

where −ps are coefficients of characteristic polynomial of A . Multiplying the above
last expression by the matrix B we obtain

AnB =
n−1

∑
s=0

psA
sB.

Thus columns of AnB are linearly dependent as the columns of Ŵ and rank(Ŵ (n +
1)) = rank(Ŵ ). Multiplying last equation by the matrix A we obtain

An+1B =
n−1

∑
s=0

psA
s+1B.

Consequently, rank(Ŵ (n+2)) = rank(Ŵ (n+1)) = rank(Ŵ ). Proceeding forward, we
can concludes that rank(Ŵ (N)) = rank(Ŵ ) for all N � n . Here we assume that t1−t0 =
n .

First we show that if the given system is completely controllable, then the control-
lability matrix has full rank n . Since given system completely controllable, there exists
u(t) control signal that will transfer any given initial state y(t0) = y0 ∈ R

n to any final
state y(n+ t0) = y f ∈ R

n. Plugging t1 = n+ t0 into the solution (17) yields

y f = ŷA,ν(n+ t0,t0)y0 +
n+t0−1

∑
s=t0

ŷA,ν(n+2t0− s−1,t0)Bu(s).

By performing the sum we obtain

y(n+ t0)− ŷA,ν(n+ t0,t0)y0

=
n+t0−1

∑
s=t0

ŷA,ν(s,t0)Bu(n+2t0− s−1)
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=
n+t0−1

∑
s=t0

s

∑
τ=t0

Aτ−t0(s− τ +1)(τ−t0+1)ν−1

Γ((τ − t0 +1)ν)
Bu(n+2t0− s−1)

=
n+t0−1

∑
τ=t0

Aτ−t0B
n+t0−1

∑
s=τ

(s− τ +1)(τ−t0+1)ν−1

Γ((τ − t0 +1)ν)
u(n+2t0− s−1),

where we interchanged the order of the summations. Next, we define F(τ) for t0 �
τ � n+ t0−1 by

F(τ) =
n+t0−1

∑
s=τ

(s− τ +1)(τ−t0+1)ν−1

Γ((τ − t0 +1)ν)
u(n+2t0− s−1).

Substituting F(τ) into last equation, we have

y f − ŷA,ν(n+ t0,t0)y0 =
n+t0−1

∑
τ=t0

Aτ−t0BF(τ)

y f − ŷA,ν(n+ t0, t0)y0 =
[
B AB A2B · · ·An−1B

]
⎡⎢⎢⎢⎢⎢⎣

F(t0)
F(t0 +1)
F(t0 +2)

...
F(t0 +n−1)

⎤⎥⎥⎥⎥⎥⎦ = ŴF1(n). (19)

Suppose the controllability matrix Ŵ has rank less than n , then this implies that
there exists a nonzero vector η ∈ R

n such that ηTŴ = 01×(mn). Hence, multiplying
both sides of (19) by ηT yields ηT (y f − ŷA,ν(n+ t0,t0)y0) = 01×n regardless of control
signal u(t). Since the given system is completely controllable, we choose y f = ŷA,ν(n+
t0,t0)y0 + η . Then ηT η = 0 which contradicts the assumption that η is a nonzero
vector. Therefore, rank(Ŵ ) = n.

For the converse, suppose rank(Ŵ ) = n , but for the sake of a contradiction, we
assume that the given system is uncontrollable. Since the system is uncontrollable,
then the controllability Gramian matrix P(t0 +n,t0) has rank less than n. Hence there
exists η ∈ R

n such that ηT P(t0 +n,t0) = 01×n. Then we have

0 = ηT P(t0 +n,t0)η =
n+t0−1

∑
s=t0

ηT ŷA,ν(s,t0)BBT [ŷA,ν(s,t0)]T η

=
n+t0−1

∑
s=t0

||ηT ŷA,ν(s,t0)B||22,

which implies that

ηT ŷA,ν(t,t0)B = 01×m for all t ∈ N
t0+n−1
t0 . (20)

Setting t = t0 and using Lemma 2 (i) we have

ηT B = 01×m.
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Applying ν -th order fractional difference operator to the each side of the last
equality and using Lemma 2 we have ηT AŷA,ν(t −1,t0)B = 01×m for all t ∈ N

t0+n−1
t0+1 .

Hence we have

ηT AŷA,ν(t,t0)B = 01×m for all t ∈ N
t0+n−2
t0 .

Setting t = t0 and using Lemma 2 we have

ηT AB = 01×m.

Repeating the same step up to n−1 times, we have

ηT AkB = 01×m for k = 0,1, ...,n−1.

Then we have
ηT [

B AB A2B · · · An−1
]
= ηTŴ = 01×(mn).

This contradicts the assumption that rank(Ŵ ) = n. Thus the controllability Gramian
matrix has rank n implies that the given system is completely controllable.

REMARK 2. Note that, for every η ∈ R
n

ηTP(t1,t0)η =
t1−1

∑
s=t0

||ηT ŷA,ν(s, t0)B||2.

Hence the Controllability Gramian matrix P(t1,t0) is a non-negative symmetric ma-
trix.

Next, we provide an example to illustrate the applicability of the Theorem 4.

EXAMPLE 2. Consider the following system

∇ν
t0y(t) =

⎡⎣−1 1 1
5 −9 1
6 −3 −1

⎤⎦y(t−1)+

⎡⎣1 0
1 0
0 1

⎤⎦u(t−1),

where 0 < ν < 1.
Then the controllability matrix of the system is

Ŵ =

⎡⎣1 0 0 1 −1 −1
1 0 −4 1 39 −5
0 1 3 −1 9 4.

⎤⎦ .

It can be easily verified that the rank of Ŵ is 3. Thus, by Theorem 4 the given linear
fractional order system is completely controllable.

Next we give an extra assumption on ŷ to prove that completely controllability
and controllability to the origin are equivalent concepts for the given system (16).
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THEOREM 5. If ŷA,ν(·,t0) in (16) is non-singular on discrete time interval t ∈
N

t1
t0+1 , then the given system is completely controllable if and only if the system is

controllable to the origin.

Proof. Suppose that the system (16) is completely controllable. Choose final state
as y(t1) = 0n×1 . Then by the Definition 3 the given system is controllable to the origin.

Assume that ŷA,ν(·,t0) in (16) is non-singular on discrete time interval N
t1
t0+1 and

the system (16) is controllable to the origin. For given any initial state y(t0) and any
final state y(t1) , define

x(t0) := y(t0)− [ŷA,ν(t1,t0)]−1y(t1) x(t1) := 0n×1.

Then we obtain a system with initial state x(t0) and final state x(t1), by assump-
tion there exists u(t) in finite discrete time interval t ∈ N

t1−1
t0 , such that x(t0) can be

transferred to x(t1) . By Theorem 3 we have,

x(t1) = ŷA,ν(t1, t0)x(t0)+
t1−1

∑
s=t0

ŷA,ν(t1 + t0− s−1,t0)Bu(s),

0n×1 = ŷA,ν(t1, t0)[y(t0)− [ŷA,ν(t1,t0)]−1y(t1)]+
t1−1

∑
s=t0

ŷA,ν(t1 + t0− s−1, t0)Bu(s),

0n×1 = ŷA,ν(t1, t0)y(t0)− y(t1)+
t1−1

∑
s=t0

ŷA,ν(t1 + t0− s−1,t0)Bu(s),

y(t1) = ŷA,ν(t1, t0)y(t0)+
t1−1

∑
s=t0

ŷA,ν(t1 + t0− s−1,t0)Bu(s),

which for any given initial state y(t0) and any final state y(t1) there exists control vector
u(t) . This means that the given system is completely controllable.

REMARK 3. (i) In [5], a criterion for controllability of the following discrete
fractional system has been obtained.

Δν
ν−1y(t) = Ay(t + ν −1)+Bu(t + ν −1), (21)

where y(ν −1) = y0 and A,B , and u(t + ν −1) are n×n , n×m and m×1 matrices
respectively.

The controllability matrix of this system was given as:

Ŵ = [EA(ν −1)B EA(ν)B EA(ν +1)B . . . EA(n+ ν −2)B],

where

EA(t) =
∞

∑
i=0

Ai

Γ((i+1)ν)
(t + i(ν −1))((i+1)ν−1).

The controllability criterion: The system (21) is completely controllable ⇔ rank(Ŵ) =
n .

Using some basics of linear algebra, one can show that
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rank(Ŵ) = rank(
[
B AB A2B · · · An−1B

]
) .

(ii) Using Theorem (4.3) in a recent paper by Goodrich and Lizama [16], we
observe that the systems (16) and (21) coincide. In other word, one system can be
obtained from other using the operator of translation (see [16] for its definition).

4. Observability

In this section we discuss the observability of the following linear discrete frac-
tional system {

∇ν
t0y(t) = Ay(t−1)+Bu(t−1), t ∈ N

t1
t0+1

z(t) = Cy(t)+Du(t)
(22)

where z(t) is an r×1 the output vector, C is an r×n constant matrix, D is an r×m
constant matrix A,B,y(·),u(·) are defined as in (16).

Suppose we are given z(t) and u(t) for t ∈ N
t1
t0 . We substitute the solution of the

state system (20) into the output measurement and we obtain

z(t) = Cy(t)+Du(t)

= C[ŷA,ν(t1,t0)y0 +
t1−1

∑
s=t0

ŷA,ν(t1 + t0− s−1,t0)Bu(s)]+Du(t).

Hence we have

CŷA,ν(t1, t0)y0 = z(t)−C
t1−1

∑
s=t0

ŷA,ν(t1 + t0− s−1,t0)Bu(s)−Du(t).

Since A,B,C,D matrices and control vector u(t) are given, the last two terms on the
right-hand side of this equation are known quantities. Thus, we can subtract known
terms from observed value of output vector z(t) and we define right-hand side by z1(t).
Then response of the system (22) can be written as

CŷA,ν(t1,t0)y0 = z1(t). (23)

DEFINITION 4. The system (22) is said to be completely observable, if every state
y(t0) can be uniquely determined from the observation of z(t) over a finite discrete time
interval t ∈ N

t1
t0 . Otherwise the system (22) or {A,C} is said to be unobservable.

We define the observability matrix Ô of this system as (nr)×n matrix

Ô :=

⎡⎢⎢⎢⎢⎢⎣
C
CA
CA2

...
CAn−1

⎤⎥⎥⎥⎥⎥⎦ .
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Next, we define observability Gramian matrix R(t,t0) of the system (22) as an
n×n matrix

R(t,t0) :=
t−1

∑
s=t0

ŷA,ν(s,t0)TCTCŷA,ν(s, t0).

THEOREM 6. The following statements are equivalent:

(i) The system (22) is completely observable on N
t1
t0 .

(ii) The observability Gramian matrix R(t1,t0) has rank n.

(iii) The observability matrix Ô has rank n.

Proof. (i) ⇐⇒ (ii).
First we show that if the given system is completely observable, then rank(R(t1,t0))

= n. We will prove the contrapositive, suppose rank(R(t1, t0)) < n, then there exists a
nonzero vector η ∈ R

n such that R(t1,t0)η = 0n×1. Then we have

0 = ηTR(t1, t0)η =
t1−1

∑
s=t0

ηT ŷA,ν(s,t0)TCTCŷA,ν(s, t0)η =
t1−1

∑
s=t0

||CŷA,ν(s, t0)η ||22,

which implies CŷA,ν(t,t0)η = 0r×1 for all t ∈ N
t1−1
t0 . Thus y(t0) = y0 + η yields same

response for the system as y(t0) = y0 and contradicts the assumption that the given
system is completely observable. Therefore rank(R(t1,t0)) = n.

On the other hand, suppose the matrix R(t1,t0) has rank n . Multiplying both sides
of (23) by ŷA,ν(t, t0)TCT and taking summation over the discrete interval t ∈ N

t1−1
t0 , we

obtain

t1−1

∑
s=t0

ŷA,ν(s,t0)TCTCŷA,ν(s,t0)y0 =
t1−1

∑
s=t0

ŷA,ν(s,t0)TCT z1(s),

R(t1,t0)y0 =
t1−1

∑
s=t0

ŷA,ν(s,t0)TCT z1(s).

Since rank(R(t1, t0)) = n , the matrix is invertible and

y0 = R(t1,t0)−1
t1−1

∑
s=t0

ŷA,ν(s,t0)TCT z1(s).

Hence, the given system is completely observable.
(i) ⇔ (iii).
Firstly, for all N � n the rank of matrix[

C CA CA2 · · · CAN−1
]T
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is equal to the rank of observability matrix Ô. The proof follows from the Cayley-
Hamilton theorem and similar to controllability case. Here we assume t1− t0 = n.

Assume that the system (22) is completely observable. Multiplying both sides of
state response (23) by ŷA,ν(t,t0)TCT and taking summation over the discrete interval

t ∈ N
t0+n−1
t0 , we obtain

R(t0 +n, t0)y0 =
t0+n−1

∑
s=t0

ŷA,ν(s,t0)TCT z1(s)

=
t0+n−1

∑
s=t0

s

∑
τ=t0

[Aτ−t0 ]T (s− τ +1)(τ−t0+1)ν−1

Γ((τ − t0 +1)ν)
CT z1(s)

=
t0+n−1

∑
τ=t0

[Aτ−t0 ]TCT
t0+n−1

∑
s=τ

(s− τ +1)(τ−t0+1)ν−1

Γ((τ − t0 +1)ν)
z1(s),

where we interchanged order of the summation. Next, we define G(τ) for all τ ∈
N

t0+n−1
t0 by

G(τ) =
t0+n−1

∑
s=τ

(s− τ +1)(τ−t0+1)ν−1

Γ((τ − t0 +1)ν)
z1(s).

Substituting G(τ) into the last equality, we obtain

R(t0 +n,t0)y0 =
t0+n−1

∑
s=t0

[Aτ−t0 ]TCT G(τ)

R(t0 +n, t0)y0 =
[
CT ATCT (A2)TCT · · · (An−1)TCT

]
⎡⎢⎢⎢⎢⎢⎣

G(0)
G(1)
G(2)

...
G(n−1)

⎤⎥⎥⎥⎥⎥⎦ = ÔT G1(n). (24)

Since the system is completely observable and (i) ⇔ (ii) , then R(t0 + n,t0) has
full rank n , thus R(t0 + n,t0)y0 ∈ R

n. Since rank(ÔT G1(n)) � rank(ÔT ) we have
R

n ⊆ Im(ÔT ) ⊆ R
n. Therefore, rank(ÔT ) = n = rank(Ô).

Conversely, we show that if rank(Ô) = n, then the given system is completely
observable. We assume to the contrary that the given system is unobservable. Since the
given system is unobservable, by (i) ⇔ (ii) the observability Gramian matrix has rank
less than n , and there exists a nonzero vector η ∈R

n such that ηT R(t0 +n,t0) = 01×n.
Then we have

0 = ηTR(t0 +n, t0)η =
t0+n−1

∑
s=t0

ηT ŷA,ν(s,t0)TCTCŷA,ν(s,t0)η =
t0+n−1

∑
s=t0

||CŷA,ν(s,t0)η ||22

which implies that

CŷA,ν(t,t0)η = 0r×1 for all t ∈ N
t0+n−1
t0 .
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Now setting t = t0 and using Lemma (2) (i) yields

Cη = 0r×1.

Applying ν -th order fractional difference operator to both sides of the last equality
and using Lemma 2 yield CAŷA,ν(t − 1,t0)η = 0r×1 for all t ∈ N

t0+n−1
t0+1 and shifting

each side one unit left we obtain

CAŷA,ν(t,t0)η = 0r×1 for all t ∈ N
t0+n−2
t0 .

Setting t = t0 and using Lemma 2 one has

CAη = 0r×1.

Repeating the same step up to n−1 times, we have

CAkη = 0 for k = 0,1,2, ...,n−1.

Then ⎡⎢⎢⎢⎢⎢⎣
C
CA
CA2

...
CAn−1

⎤⎥⎥⎥⎥⎥⎦η = Ôη = 0(rn)×1.

This contradicts the assumption rank(Ô) = n. Therefore the observability Gramian ma-
trix has full rank implies that the given system is completely observable.

The following example illustrates the applicability of Theorem 6.

EXAMPLE 3. Consider the following system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∇ν

t0y(t) =

⎡⎢⎣−1 1 1

5 −9 1

6 −3 −1

⎤⎥⎦y(t−1)+

⎡⎢⎣1 0

1 0

0 1

⎤⎥⎦u(t−1)

z(t) =
[
1 0 1

]
y(t)

,

where 0 < ν < 1.
Using Theorem 6, we get observability matrix of the system

Ô =

⎡⎣ 1 0 1
5 −2 0

−15 23 3

⎤⎦
whose rank is 3. Thus, by Theorem 6 the given linear fractional order system is com-
pletely observable.
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REMARK 4. In [5], a criterion for observability of the following discrete frac-
tional system has been obtained{

Δν
ν−1y(t) = Ay(t + ν −1)+Bu(t + ν −1), t = 0,1,2, . . .

z(t) = Cy(t), t = ν −1,ν, . . .
(25)

where z(t) = Cy(t) is the output measurement, z(t) is an r× 1 matrix, and C is an
r×n matrix.

The observability matrix of this system was given as:

Ô =

⎡⎢⎢⎢⎢⎣
CEA(ν −1)

CEA(ν)
CEA(ν +1)

· · ·
CEA(n+ ν −2)

⎤⎥⎥⎥⎥⎦ .

The observability criterion: The system (25) is observable if and only if rank(Ô) = n .
Using some basics of linear algebra, one can show that

rank(Ô) = rank(

⎡⎢⎢⎢⎢⎢⎣
C
CA
CA2

...
CAn−1

⎤⎥⎥⎥⎥⎥⎦).

REMARK 5. Let T be a time scale and ν be a real number such that 0 < ν < 1.
The following control systems have same controllability and observability matrices.

(i) The linear dynamic time-invariant system on T{
yΔ(t) = Ay(t)+Bu(t), t ∈ [t0,t1]∩T,

z(t) = Cy(t)+Du(t),
(26)

where t0, t1 ∈ T.

(ii) The linear ∇-discrete fractional time-invariant system{
∇ν

t0y(t) = Ay(t−1)+Bu(t−1), t ∈ N
t1
t0+1,

z(t) = Cy(t)+Du(t).
(27)

(iii) The linear Δ-discrete fractional time invariant system{
Δν

ν−1y(t) = Ay(t + ν −1)+Bu(t + ν −1), t = 0,1,2, . . . .

z(t) = Cy(t)+Du(t), t = ν −1,ν, . . .
(28)
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(iv) The continuous fractional time-invariant system{
Dνy(t) = Ay(t)+Bu(t) t ∈ [t0,t1],
z(t) = Cy(t)+Du(t).

(29)

The system (26) in [12], the system (27) in this paper, the system (28) in [5], and
the last system (29) in [21] have the same controllability matrix[

B AB A2B · · · An−1B
]
.

Additionally, observability also studied in the mentioned papers and all have the same
observability matrix ⎡⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAn−1

⎤⎥⎥⎥⎥⎥⎦ .

RE F ER EN C ES

[1] P. J. ANTSAKLIS AND A. N. MICHEL, Linear Systems, Birkhäuser Boston, Inc., 2006.
[2] F. M. ATICI AND P. W. ELOE, Discrete fractional calculus with the nabla operator, Electronic Journal

of Qualitative Theory of Differential Equations, Spec. Ed. I, 2009, no. 3, 1–12.
[3] F. M. ATICI AND N. ACAR, Exponential functions of discrete fractional calculus, Applicable Analysis

and Discrete Mathematics, 7 (2013), no. 2, 343–353.
[4] F. M. ATICI, M. ATICI, N. NGUYEN, T. ZHOROEV AND G. KOCH, A study on discrete and dis-

crete fractional pharmacokinetics-pharmacodynamics models for tumor growth and anti-cancer ef-
fects, Computational Mathematical Biophysics, 7(2019), 10–24.

[5] F. M. ATICI AND D. M. NGUYEN, Rank conditions for controllability of discrete fractional time-
invariant linear systems, Journal of Difference Equations and Applications, 25(2019), Issue 6, Spe-
cial Issue: Fractional Calculus, Guest Edited by Allan Peterson, 869–881. doi:10.1080/10236198.
2019.1596265.

[6] D. BALEANU, K. DIETHELM, E. SCALAS AND J. J. TRUJILLO, Fractional Calculus. Models and
Numerical Methods, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.

[7] Z. BARTOSIEWICZ AND E. PAWLUSZEWICZ, Linear control systems on time scales: unification of
continuous and discrete, Proc. of 10th IEEE Int. Conference MMAR, 2004, 263–266.

[8] Z. BARTOSIEWICZ, Linear positive control systems on time scales; controllability, Mathematics of
Control, Signals, and Systems, 25 (2013), no. 3, 327–343.

[9] M. BETTAYEB AND S. DJENNOUNCE,A note on the controllability and observability of fractional dy-
namic systems, Proceeding of the 2nd IFAC workshop on fractional differntiation and its applications,
39 (2013), no. 11, 493–498.

[10] M. BETTAYEB AND S. DJENNOUNE,New results on the controllability and observability of fractional
dynamical systems, Journal of Vibrating and Control, 14 (2008), no. 9–10, 1531–1541.

[11] M. BOHNER AND A. PETERSON, Dynamic Equations on Time Scales. An Introduction with Applica-
tions, Birkhäuser Boston, Inc., 2001.

[12] J. M. DAVIS, I. A. GRAVAGNE, B. J. JACKSON AND R. J. MARKS II, Controllability, observability,
realizability, and stability of dynamic linear systems, Electron. J. Diff. Equ., 2009, no. 37, 1–32.

[13] S. N. ELAYDI, An introduction to Difference Equations, Springer-Verlag, New York, 1999.
[14] L. V. FAUSETT AND K. N. MURTY, Controllability, observability and realizability criteria on time

scale dynamical systems, Nonlinear Stud, 11 (2004), no. 14, 627–638.



TIME-INVARIANT LINEAR NABLA FRACTIONAL SYSTEMS 39

[15] S. GUERMAH, S. DJENNOUNE AND M. BETTAYEB, Controllability and observability of linear
discrete–time fractional order systems, International Journal of Applied Mathematics and Computer
Science, 18 (2008), no. 2, 213–222.

[16] C. S. GOODRICH AND C. LIZAMA, A transference princible for nonlocal operators using a convolu-
tional approac: Fractional monotonicity and convexity, Israel Journal of Mathematics, to appear.

[17] C. GOODRICH AND A. C. PETERSON, Discrete Fractional Calculus, Springer International Publish-
ing, 2015.

[18] T. KACZOREK, Reachability and controllability to zero of positive fractional discrete–time systems,
European Control Conference, 2007, 1708–1712.

[19] R. E. KALMAN, On the general theory of control systems, Proc. First IFAC Congress on Automatic
Control, Moscow, 1960, 481–492.

[20] R. L. MAGIN, Fractional Calculus in Bioengineering, Begell House, 2016.
[21] D. MATIGNON AND B. D’ANDREA NOVEL, Some results on controllability and observability of

finite–dimensional fractional differential systems, Proceedings of the Computational Engineering in
Systems and Application Multiconference, 1996, no. 2, 952–956.

[22] D. MOZYRSKA AND E. PAWŁUSZEWICZ, Controllability of h-difference linear control systems with
two fractional orders, International Journal of Systems Science, 46 (2015), no. 4, 662–669.

[23] D. MOZYRSKA, E. PAWŁUSZEWICZ AND M. WYRWAS, The h-difference approach to controllability
and observability of fractional linear systems with Caputo–type operator, Asian Journal of Control,
17 (2015), no. 4, 1163–1173.

[24] D. MOZYRSKA, E. PAWŁUSZEWICZ AND M. WYRWAS, Local observability and controllability of
nonlinear discrete-time fractional order systems based on their linearisation, International Journal of
Systems Science, 48 (2017), no. 4, 788–794.

[25] D. MOZYRSKA AND D. F. M. TORRES, Minimal modified energy control for fractional linear control
systems with the Caputo derivative, Carpathian J. Math., 26 (2010), no. 2, 210–221.

[26] K. OGATA, Discrete-Time Control Systems, Prentice Hall, 1987.
[27] K. OGATA, Modern Control Engineering, Prentice Hall, 2010.
[28] P. OSTALCZYK, Discrete Fractional Calculus. Applications in Control and Image Processing, World

Scientific, 2015.
[29] I. PODLUBNY, Fractional-Order Systems and PIλ Dν -Controllers, IEEE Transactions on Automatic

Control, 44 (1999), no. 1, 208–214.
[30] I. PODLUBNY, Fractional Differential Equations, Academic Press, 1999.
[31] Y. PU, J. ZHOU AND X. YUAN, Fractional differential mask. A fractional differential-based approach

for multiscale texture enhancement, IEEE Trans. on Image Processing, 19 (2010), no. 2, 491–511.
[32] D. SEROCIUK AND D. DZIELINSKI, Fractional Kalman filter algorithm for the states, parameters

and order of fractional system estimation, Int. J. Appl. Math. Comp. Sci., 16 (2006), no. 1, 129–140.
[33] N. WINTZ AND M. BOHNER, Controllability and observability of time-invariant linear dynamic sys-

tems, Mathematica Bohemica, 137 (2012), no. 2, 149–163.

(Received June 28, 2019) Ferhan M. Atıcı
Department of Mathematics
Western Kentucky University

Bowling Green, Kentucky 42101-3576 USA
e-mail: ferhan.atici@wku.edu

Tilekbek Zhoroev
Department of Mathematics
Western Kentucky University

Bowling Green, Kentucky 42101-3576 USA
e-mail: tilekbek.zhoroev614@topper.wku.edu

Fractional Differential Calculus
www.ele-math.com
fdc@ele-math.com


