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Abstract. An initial-boundary value problem for a subdiffusion equation with an elliptic oper-
ator A(D) in R

N is considered. The existence and uniqueness theorems for a solution of this
problem are proved by the Fourier method. Considering the order of the Caputo time-fractional
derivative as an unknown parameter, the corresponding inverse problem of determining this order
is studied. It is proved, that the Fourier transform of the solution û(ξ ,t) at a fixed time instance
recovers uniquely the unknown parameter. Further, a similar initial-boundary value problem is
investigated in the case when operator A(D) is replaced by its power Aσ . Finally, the existence
and uniqueness theorems for a solution of the inverse problem of determining both the orders of
fractional derivatives with respect to time and the degree σ are proved. We also note that when
solving the inverse problems, a decrease in the parameter ρ of the Mittag-Leffler functions Eρ
has been proved.

1. Introduction and main results

The theory of differential equations with fractional derivatives has gained signifi-
cant popularity and importance in the last few decades, mainly due to its applications
in many seemingly distant fields of science and technology (see, for example, [1]–[6]).

One of the most important time-fractional equations is the subdiffusion equation,
which models anomalous or slow diffusion processes. This equation is a partial integro-
differential equation obtained from the classical heat equation by replacing the first-
order derivative with a time-fractional derivative of order ρ ∈ (0,1) .

When considering the subdiffusion equation as a model equation in the analysis of
anomalous diffusion processes, the order of the fractional derivative is often unknown
and difficult to measure directly. To determine this parameter, it is necessary to in-
vestigate the inverse problems of identifying these physical quantities based on some
indirectly observable information about solutions (see a survey paper Li, Liu and Ya-
mamoto [7]).

In this paper, we investigate the existence and uniqueness of solutions to initial-
boundary value problems for subdiffusion equations with the Caputo derivative and
an elliptic operator A(D) in R

N , having constant coefficients. Inverse problems of
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determining the order of the fractional derivative with respect to time and with respect
to the spatial variable will also be investigated.

Let us proceed to a rigorous formulation of the main results of this article.
1. Let A(D) = ∑

|α |=m
aαDα be a homogeneous symmetric elliptic differential ex-

pression of even order m = 2l , with constant coefficients, i.e. A(ξ ) > 0, for all ξ �= 0,
where α = (α1,α2, . . . ,αN) - multi-index and D = (D1,D2, . . . ,DN) , Dj = 1

i
∂

∂x j
, i =√−1.

The fractional integration in the Riemann-Liouville sense of order ρ < 0 of a
function h defined on [0,∞) has the form

∂ ρ
t h(t) =

1
Γ(−ρ)

t∫

0

h(ξ )
(t− ξ )ρ+1 dξ , t > 0,

provided the right-hand side exists. Here Γ(ρ) is Euler’s gamma function. Using this
definition one can define the Caputo fractional derivative of order ρ , 0 < ρ < 1, as

Dρ
t h(t) = ∂ ρ−1

t
d
dt

h(t).

Note that if ρ = 1, then fractional derivative coincides with the ordinary classical
derivative of the first order: Dth(t) = d

dt h(t) .
Let ρ ∈ (0,1] be a given number and Lτ

2(R
N) stand for the Sobolev classes (see

the definition in the next section). Consider the initial-boundary value problem: find a
function u(x, t) ∈ Lm

2 (RN) , t ∈ [0,T ) , such that (note that this inclusion is considered
as a boundary condition at infinity)

Dρ
t u(x,t)+A(D)u(x,t) = 0, x ∈ R

N , 0 < t < T, (1)

u(x,0) = ϕ(x), x ∈ R
N , (2)

where ϕ(x) is a given continuous function.
We call problem (1)–(2) the forward problem.
We draw attention to the fact, that in the statement of the forward problem the

requirement u(x, t) ∈ Lm
2 (RN) is not caused by the merits. However, on the one hand,

the uniqueness of just such a solution is proved quite simply, and on the other, the
solution found by the Fourier method satisfies the above condition.

DEFINITION 1. A function u(x,t) ∈C(RN × [0,T)) with the properties

Dρ
t u(x,t) and A(D)u(x,t) ∈C(RN × (0,T ))

and satisfying conditions (1)–(2) is called the classical solution (or simply, the solution)
of the forward problem.
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Let us denote by Eρ(t) the Mittag-Leffler function of the form

Eρ(t) =
∞

∑
k=0

tk

Γ(ρk+1)
,

and denote by f̂ (ξ ) the Fourier transform of a function f (x) ∈ L2(RN) :

f̂ (ξ ) = (2π)−N
∫

RN

f (x)e−ixξ dx.

Now we can formulate the existence and uniqueness theorem for the forward prob-
lem.

THEOREM 1. Let τ > N
2 and ϕ ∈ Lτ

2(R
N) . Then the forward problem has a

unique solution and this solution has the form

u(x,t) =
∫

RN

Eρ(−A(ξ )tρ) ϕ̂(ξ )eixξ dξ . (3)

The integral uniformly and absolutely converges with respect to x ∈ R
N and for each

t ∈ [0,T ) . Moreover, solution (3) has the property

lim
|x|→∞

Dαu(x,t) = 0, |α| � m, 0 < t < T, (4)

In recent years, many works by specialists have appeared in which various initial-
boundary value problems for various subdiffusion equations are investigated. Let us
mention only some of these works. Basically, the case of one spatial variable x∈R and
subdiffusion equation with “the elliptical part” uxx were considered (see, for example,
handbook Machado, editor [1], book of A. A. Kilbas et al. [3] and monograph of A. V.
Pskhu [8], and references in these works). The paper Gorenflo, Luchko and Yamamoto
[9] is devoted to the study of subdiffusion equations in Sobelev spaces. In the paper by
Kubica and Yamamoto [10], initial-boundary value problems for equations with time-
dependent coefficients are considered. In the multidimensional case (x ∈ R

N ), instead
of the differential expression uxx , authors considered either the Laplace operator ([3],
[11]–[13]) or pseudodifferential operators with constant coefficients in the whole space
R

N (Umarov [14]). In the last work the initial function ϕ ∈ Lp(RN) is such, that the
Fourier transform ϕ̂ is compactly supported. The authors of the recent paper [15]
considered initial-boundary value problems for subdiffusion equations with arbitrary
elliptic differential operators in bounded domains.

2. Determining the correct order of an equation in applied fractional modeling
plays an important role. The corresponding inverse problem for subdiffusion equations
has been considered by a number of authors (see a survey paper Li, Liu and Yamamoto
[7] and references therein, [16]–[22]). Note that in all known works the subdiffusion
equation was considered in a bounded domain Ω ⊂ R

N . In addition, it should be noted
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that in publications [16]–[19] the following relation was taken as an additional condi-
tion

u(x0,t) = h(t), 0 < t < T, (5)

at a monitoring point x0 ∈ Ω . But this condition, as a rule (an exception is the work
[19] by J. Janno, where both the uniqueness and existence are proved), can ensure
only the uniqueness of the solution of the inverse problem [16]–[18]. The authors
of the article Ashurov and Umarov [20] considered the value of the projection of the
solution onto the first eigenfunction of the elliptic part of the subdiffusion equation
as additional information. Note that the results from [20] are only applicable when
the first eigenvalue is zero. The uniqueness and existence of an unknown order of
the fractional derivative in the subdiffusion equation were proved in the recent work of
Alimov and Ashurov [21]. In this case, the additional condition is ||u(x,t0)||2 = d0 , and
the boundary condition is not necessarily homogeneous. The authors of the article [22]
investigated the inverse problem for the simultaneous determination of the order of the
Riemann-Liouville time fractional derivative and the source function in the subdiffusion
equations.

In what follows, we will assume that the initial function ϕ belongs to the class
Lτ

2(R
N) with τ > N

2 . Then, by Theorem 1, the forward problem has a unique solution
of the form (3) for any ρ ∈ (0,1] .

Let us consider the order of fractional derivative ρ in equation (1) as an unknown
parameter. To formulate our inverse problem we will additionally assume that ϕ(x) ∈
L1(RN) . This implies that both functions ϕ̂(ξ ) and û(ξ ,t) = Eρ(−A(ξ )tρ) ϕ̂(ξ ) , t ∈
[0,T ) , are continuous in the variable ξ ∈ R

N . Let us fix a vector ξ0 �= 0, such that
ϕ̂(ξ0) �= 0 and put λ0 = A(ξ0) > 0. To determine the order ρ we use the following
extra data:

U(t0,ρ) ≡ |û(ξ0,t0)| = d0, (6)

where t0 , 0 < t0 < T , is a fixed time instant.
The problem (1)–(2) together with extra condition (6) is called the inverse problem.
To solve the inverse problem fix the number ρ0 ∈ (0,1) and consider the problem

for ρ ∈ [ρ0,1] .

DEFINITION 2. The pair {u(x,t),ρ} of the solution u(x,t) to the forward prob-
lem and the parameter ρ ∈ [ρ0,1] is called the classical solution (or simply, the solution)
of the inverse problem.

The following property of the Fourier transform û(ξ , t) of the forward problem’s
solution plays an important role in the solution of the inverse problem and, in our opin-
ion, is of independent interest.

LEMMA 1. For ρ0 from the interval 0 < ρ0 < 1 , there is a number T0 = T0(λ0,ρ0)
such that for all t0 , T0 � t0 < T , the function U(t0,ρ) decreases monotonically with
respect to ρ ∈ [ρ0,1] .

The result related to the inverse problem has the form.
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THEOREM 2. Let T0 � t0 < T . Then the inverse problem has a unique solution
{u(x, t),ρ} if and only if

e−λ0t0 � d0

|ϕ̂(ξ0)| � Eρ0(−λ0t
ρ0
0 ). (7)

3. Finally, we will consider another inverse problem of determining both the orders
of fractional derivatives with respect to time and the spatial derivatives in the subdiffu-
sion equations.

For the best of our knowledge, only in the following two papers [23] and [24] such
inverse problems were studied and only the uniqueness theorems ware proved (note that
the uniqueness is a very important property of a solution from an application point of
view). In the paper [23] by Tatar and Ulusoy it is considered the initial-boundary value
problem for the differential equation

∂ ρ
t u(t,x) = −(−�)σu(t,x), t > 0, x ∈ (0,1),

where �σ is the one-dimensional fractional Laplace operator, ρ ∈ (0,1) and σ ∈
(1/4,1) . The authors have proved that if the initial function ϕ(x) is sufficiently smooth
and all its Fourier coefficients are positive, then the two-parameter inverse problem with
additional information (5) may have only one solution. As for physical backgrounds for
two-parameter differential equations, see, for example, [25].

In [24], M. Yamamoto proved the uniqueness theorem for the above two-parameter
inverse problem in an N -dimensional bounded domain Ω with a smooth boundary
∂Ω . The conditions for the initial function found in this work are less restrictive, for
example, if ϕ is zero on ∂Ω , ϕ ∈ Lτ

2(Ω) , τ > N/2, ϕ � 0 in Ω and ϕ(x0) �= 0, then
the uniqueness theorem is true.

Let us denote by A an operator in L2(RN) with the domain of definition D(A) =
C∞

0 (RN) , acting as A f (x) = A(D) f (x) . It is easy to verify that the closure Â of operator
A is nonnegative and selfadjoint. Therefore, by virtue of the von Neumann theorem,
for any σ > 0, we can introduce the degree of the operator Â as

Âσ f (x) =
∞∫

0

λ σ dPλ f (x) =
∫

RN

Aσ (ξ ) f̂ (ξ )eixξ dξ ,

where projectors Pλ defined as

Pλ f (x) =
∫

A(ξ )<λ

f̂ (ξ )eixξ dξ .

The domain of definition of this operator is determined from the condition Âσ f (x) ∈
L2(RN) and has the form

D(Âσ ) = { f ∈ L2(RN) :
∫

RN

A2σ (ξ )| f̂ (ξ )|2dξ < ∞}.
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Suppose that ρ ∈ (0,1] and σ ∈ (0,1] are given numbers and consider the initial-
boundary value (the second forward) problem: find a function v(x,t) ∈ D(Âσ ) such
that (note that this inclusion is also considered as a boundary condition)

Dρ
t v(x,t)+ Âσv(x,t) = 0, x ∈ R

N , 0 < t < T, (8)

v(x,0) = ϕ(x), x ∈ R
N , (9)

where ϕ(x) is a given function and as mentioned above, we assume ϕ ∈ Lτ
2(R

N) for
some τ > N

2 .
The solution to this problem is defined similarly to the solution to problem (1)–(2)

(see Definition 1). In exactly the same way as Theorem 1, it is proved that the unique
solution of the second forward problem has the form

v(x,t) =
∫

RN

Eρ(−Aσ (ξ )tρ) ϕ̂(ξ )eixξ dξ , (10)

where the integral uniformly and absolutely converges in x ∈ R
N and for each t ∈

[0,T ) .
Now let ρ0 > 0 and σ0 > 0 be fixed numbers and assume, that in the second for-

ward problem, the parameters ρ ∈ [ρ0,1] and σ ∈ [σ0,1] are unknown. Since there are
two unknown numbers, then one obviously needs two extra conditions. To formulate
these conditions, we again assume that ϕ ∈ L1(RN) . Then both functions ϕ̂(ξ ) and
v̂(ξ ,t) are continuous in ξ . It should be noted, that the proposed in this paper method,
for simultaneously finding both the order of fractional differentiation ρ and the power
σ is applicable if there exists ξ0 ∈ ∂ΩA ≡{ξ ∈R

N ; A(ξ ) = 1} , such that ϕ̂(ξ0) �= 0.
Note, that if A(D) is the Laplace operator, then ∂ΩA is the N-dimensional unit sphere.
Let ξ0 be one of such a vector. We consider the following information as additional
conditions:

V (ξ0,t0,ρ ,σ) = |v̂(ξ0,t0)| = d0, t0 � T0(1,ρ0), (11)

V (ξ1, t1,ρ ,σ) = |v̂(ξ1,t1)| = d1, A(ξ1) = λ1(�= 1) � Λ1, t1 � 1, (12)

where T0 is defined in Lemma 1, ξ1 is such that ϕ̂(ξ1) �= 0 and Λ1 is defined in (27).
We call the problem (8)–(9) together with extra conditions (11) and (12) the second

inverse problem.
Note that since ξ0 ∈ ∂ΩA , then V (ξ0,t0,ρ ,σ) is actually independent of σ :

V (ξ0, t0,ρ ,σ) = |Eρ(−Aσ (ξ0)t
ρ
0 ) ϕ̂(ξ0)| = |Eρ(−tρ) ϕ̂(ξ0)|.

Therefore, to solve the second inverse problem, we first find the unique ρ� that satisfies
the relation (11). Then, assuming that ρ� is already known and using the relation (12),
we find the second unknown parameter σ� . It should be noted that the number Λ1

from condition (12) depends on σ0 and ρ� .
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THEOREM 3. There is a unique ρ� ∈ [ρ0,1] , satisfying (11), if and only if d0

satisfies the inequalities (7) with λ0 = 1 . For σ� ∈ [σ0,1] to exist, it is necessary and
sufficient that d1 satisfy the inequalities

Eρ�(−λ1t
ρ�

1 ) � d1

|ϕ̂(ξ1)| � Eρ�(−λ σ0
1 tρ�

1 ). (13)

REMARK 1. As Theorems 2 and 3 show, in order for the inverse problems to have
solutions, the domain (0,T ) , where the equations are satisfied, must be large enough.

In conclusion, note that the theory and applications of various inverse problems,
on determining the coefficients of the equation, the right-hand side, and also on deter-
mining the initial or boundary functions for differential equations of integer order are
discussed in Kabanikhin [26] (see also references therein) Similar inverse problems for
fractional-order equations were considered, for example, in the works [27]–[31].

2. Forward problems

In the present section we prove Theorems 1 and the equation (10).
The class of functions L2(RN) which for a given fixed number a > 0 make the

norm

|| f ||2La
2(RN ) =

∣∣∣∣ ∫

RN

(1+ |ξ |2) a
2 f̂ (ξ )eixξ dξ

∣∣∣∣2
L2(RN ) =

∫

RN

(1+ |ξ |2)a| f̂ (ξ )|2dξ

finite is termed the Sobolev class La
2(R

N) . Since for τ > 0 and some constants c1 and
c2 one has the inequality

c1(1+ |ξ |2)τm � 1+A2τ(ξ ) � c2(1+ |ξ |2)τm, (14)

then D(Âτ) = Lτm
2 (RN) .

Let I be the identity operator in L2(RN). Operator (Â+ I)ν is defined in the same
way as operator Âσ .

Proof of Theorem 1. The existence of a solution to the forward problem is based
on the following lemma (see M. A. Krasnoselski et al. [32], p. 453); for the operator Â
this lemma is a simple consequence of the Sobolev embedding theorem.

LEMMA 2. Let a multi-index α be such that |α|� m and ν > |α |
m + N

2m . Then the
operator Dα(Â+ I)−ν continuously maps from L2(RN) into C(RN) and moreover the
following estimate holds true

||Dα(Â+ I)−ν f ||C(RN ) � C|| f ||L2(RN ). (15)

Proof. For any a > N/2 one has the Sobolev embedding theorem: La
2(R

N) →
C(RN) , that is

||Dα(Â+ I)−ν f ||C(RN ) � C||Dα(Â+ I)−ν f ||La
2(RN ).
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Therefore, it is sufficient to prove the inequality

||Dα(Â+ I)−ν f ||La
2(RN ) � C|| f ||L2(RN ).

But this is a consequence of the estimate∫

RN

| f̂ (ξ )|2|ξ |2|α |(1+A(ξ ))−2ν(1+ |ξ |2)adξ � C
∫

RN

| f̂ (ξ )|2dξ ,

that is valid for N
2 < a � νm−|α| .

To prove the existence of the forward problem’s solution we remind the following
estimate of the Mittag-Leffler function with a negative argument (see, for example, [6],
p. 29)

|Eρ(−t)| � C
1+ t

, t > 0. (16)

Let a sequence {Ωk}∞
k=1 of domains Ωk ⊂ R

N have the following two properties:
1) closure Ωk = Ωk ∪∂Ωk of Ωk is contained in Ωk+1 :

Ωk ⊂ Ωk+1;

2) the union of all Ωk fills the entire space R
N :

∞⋃
k=1

Ωk = R
N .

Consider the truncated integral

Sk(x,t) =
∫

Ωk

Eρ(−A(ξ )tρ) ϕ̂(ξ )eixξ dξ . (17)

Step 1. It is not difficult to verify that for any k function Sk(x,t) satisfies equation
(1) and the initial condition (2) (see, for example, [6], page 173 and [33]). From the
Sobolev embedding theorem and the condition ϕ ∈ Lτ

2(R
N) , τ > N

2 , it follows that
ϕ ∈C(RN) .

Step 2. In accordance with Definition 1, we will show that for the function (3) one
has A(D)u(x, t) ∈C(RN × (0,T )) .

Let |α| � m , τ > N
2 and ν = 1+ τ

m > |α |
m + N

2m . Then

Sk(x, t) = (Â+ I)−τ/m−1
∫

Ωk

(A(ξ )+1)τ/m+1Eρ(−A(ξ )tρ)ϕ̂(ξ )eixξ dξ .

Therefore by virtue of Lemma 2 one has

||DαSk(x, t)||2C(RN )

=
∣∣∣∣Dα(Â+ I)−τ/m−1

∫

Ωk

(A(ξ )+1)τ/m+1Eρ(−A(ξ )tρ)ϕ̂(ξ )eixξ dξ
∣∣∣∣2

C(RN )

� C

∣∣∣∣
∣∣∣∣
∫

Ωk

(A(ξ )+1)τ/m+1Eρ(−A(ξ )tρ)ϕ̂(ξ )eixξ dξ
∣∣∣∣
∣∣∣∣
L2(RN )

.
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Using the Parseval equality, we will have

||DαSk(x, t)||2C(RN ) � C
∫

Ωk

∣∣(A(ξ )+1)τ/m+1Eρ(−A(ξ )tρ)ϕ̂(ξ )
∣∣2dξ .

Applying the inequality (16) gives |(A(ξ )+1)Eρ(−A(ξ )tρ)|�C(1+ t−ρ) . Therefore,

||DαSk(x, t)||2C(RN ) �C(1+ t−ρ)2
∫

Ωk

∣∣(A(ξ )+1)τ/mϕ̂(ξ )
∣∣2dξ �C(1+ t−ρ)2||ϕ ||2Lτ

2(RN ).

This implies uniform (and absolute) in x∈R
N convergenceof the differentiated integral

(3) in the variables x j for each t ∈ (0,T ) .
Step 3. If α = 0, then taking ν = τ

m and applying the inequality (16), we establish
uniform (and absolute) convergence of the integral (3) (hence, the continuity of the
solution) in the domain t ∈ [0,T ) :

||Sk(x, t)||2C(RN ) � C
∫

Ωk

∣∣(A(ξ )+1)τ/mEρ(−A(ξ )tρ)ϕ̂(ξ )
∣∣2dξ �

� C
∫

Ωk

∣∣(A(ξ )+1)τ/mϕ̂(ξ )
∣∣2dξ � C||ϕ ||2Lτ

2(RN ).

Step 4. Further, from equation (1) we get Dρ
t Sk(x, t) = −A(D)Sk(x,t) . Therefore,

proceeding the above reasoning, we arrive at Dρ
t u(x,t) ∈C(RN × (0.T)) .

Step 5. The inclusion u(x,t) ∈ Lm
2 (RN) for all t ∈ (0,T ) , is a consequence of the

condition ϕ ∈ L2(RN) . Indeed, using inequalities (14) and (16) we arrive at

||DαSk(x, t)||2L2(RN ) =
∫

Ωk

∣∣ξ αEρ(−A(ξ )tρ)ϕ̂(ξ )
∣∣2dξ �

� C
∫

Ωk

∣∣A(ξ )Eρ(−A(ξ )tρ)ϕ̂(ξ )
∣∣2dξ � CTt−2ρ ||ϕ ||2L2(RN ).

Step 6. Let us show the property (4) of the solution (3). To do this, note first that
the inclusion ϕ ∈ Lτ

2(R
N),τ > N/2, implies ϕ̂ ∈ L1(RN) . Indeed, application of the

Hölder inequality gives
∫

RN

|ϕ̂(ξ )|dξ =
∫

RN

|ϕ̂(ξ )|(1+ |ξ |2)τ/2(1+ |ξ |2)−τ/2dξ � Cτ ||ϕ ||Lτ
2(RN ).

Therefore, by virtue of inequality (16), one has Eρ(−A(ξ )tρ)ϕ̂(ξ ) ∈ L1(RN) . Simi-
larly, inequalities (14) and (16) imply

|ξ αEρ(−A(ξ )tρ)ϕ̂(ξ )| � C|A(ξ )Eρ(−A(ξ )tρ)ϕ̂(ξ )| ∈ L1(RN)

for all |α| � m . Hence, Dαu(x,t) , as a function of x , is the Fourier transform of a L1 -
function. Obviously, this implies the property (4).
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Step 7. Let us prove the uniqueness of the forward problem’s solution.
Suppose that problem (1)–(2) has two solutions u1(x, t) and u2(x,t) . Our aim is

to prove that u(x, t) = u1(x,t)−u2(x,t) ≡ 0. Since the problem is linear, then we have
the following homogenous problem for u(x,t) ∈ Lm

2 (RN) :

Dρ
t u(x,t)+A(D)u(x,t) = 0, x ∈ R

N , 0 < t < T ; (18)

u(x,0) = 0, x ∈ R
N . (19)

Let u(x, t) be a solution of problem (18)–(19) and ω(x) be an arbitrary function
with properties ω(x) � 0 and ω ∈ C∞

0 (RN) . Obviously ω̂(ξ ) ∈ L2(RN) , and since
û(ξ ,t) ∈ L2(RN) , then ω̂(ξ )û(ξ ,t) ∈ L1(RN) . Therefore, by virtue of Fubini’s theo-
rem, the following function of t ∈ [0,T ) exists for almost all λ :

wλ (t) =
∫

A(ξ )=λ

eiyξ ω̂(ξ )û(ξ ,t)dσλ (ξ ), (20)

where dσλ (ξ ) is the corresponding surface element and y ∈ R
N .

Taking into account that u(x,t) is a solution of equation (18) we have (note,
A(D)u(x, t) ∈ L2(RN))

Dρ
t wλ (t) = −(2π)−N

∫

A(ξ )=λ

eiyξ ω̂(ξ )
∫

RN

A(D)u(x,t)e−ixξ dxdσλ (ξ ).

The inner integral exists as the Fourier transform of the L2 -function. From the equation

A(D)u(x,t) =
∫

RN

A(η)û(η ,t)eixηdη ,

one has

Dρ
t wλ (t) = −

∫

A(ξ )=λ

eiyξ ω̂(ξ )A(ξ )û(ξ ,t)dσλ (ξ ) = −λwλ (t).

Therefore, we have the following Cauchy problem for wλ (t) :

Dρ
t wλ (t)+ λwλ (t) = 0, t > 0; wλ (0) = 0.

This problem has the unique solution; hence, the function defined by (20), is identi-
cally zero (see, for example, [6], p. 173 and [33]): wλ (t) ≡ 0 for almost all λ > 0.
Integrating the equation (20) with respect to λ over the domain (0,+∞) we obtain,
that ∫

RN

eiyξ ω̂(ξ )û(ξ ,t)dξ =
∫

RN

ω(y− x)u(x,t)dx = 0,

for almost all y and since both functions ω(·) and u(·,t) are continuous, then for all
y ∈ R

N and t ∈ [0,T ) . Taking into account that the function ω(x) is arbitrary with the
above properties, then from the last equality we have u(x, t) ≡ 0.

Thus Theorem 1 is proved.
The uniqueness of the solution to the second forward problem and the formula

(10) is established based on the above reasoning.
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3. First inverse problem

LEMMA 3. Given ρ0 from the interval 0 < ρ0 < 1 , there exists a number T0 =
T0(λ0,ρ0) , such that for all t0 � T0 and λ � λ0 the function eλ (ρ) = Eρ(−λ tρ

0 ) is
positive and monotonically decreasing with respect to ρ ∈ [ρ0,1] and

eλ (1) � eλ (ρ) � eλ (ρ0).

Proof. Let us denote by δ (1;β ) a contour oriented by non-decreasing argζ con-
sisting of the following parts: the ray argζ =−β with |ζ |� 1, the arc −β � argζ � β ,
|ζ | = 1, and the ray argζ = β , |ζ | � 1. If 0 < β < π , then the contour δ (1;β ) di-
vides the complex ζ -plane into two unbounded parts, namely G(−)(1;β ) to the left of
δ (1;β ) by orientation, and G(+)(1;β ) to the right of it. The contour δ (1;β ) is called
the Hankel path.

Let β = 3π
4 ρ , ρ ∈ [ρ0,1) . Then by the definition of this contour δ (1;β ) , we

arrive at (note, −λ tρ
0 ∈ G(−)(1;β ) , see [6], p. 27)

Eρ(−λ tρ
0 ) =

1

λ tρ
0 Γ(1−ρ)

− 1

2π iρλ tρ
0

∫

δ (1;β )

eζ 1/ρ ζ
ζ + λ tρ

0

dζ = f1(ρ)+ f2(ρ). (21)

To prove the lemma it suffices to show that the derivative d
dρ eλ (ρ) is negative

for all ρ ∈ [ρ0,1) , since the positivity of eλ (ρ) follows from the inequality eλ (1) =
e−λ t > 0.

It is not hard to estimate the derivative f ′1(ρ) . Indeed, let Ψ(ρ) be the logarithmic
derivative of the gamma function Γ(ρ) (for the definition and properties of Ψ see [34]).
Then Γ′(ρ) = Γ(ρ)Ψ(ρ) , and therefore,

f ′1(ρ) = − lnt0 −Ψ(1−ρ)
λ tρ

0 Γ(1−ρ)
.

Since
1

Γ(1−ρ)
=

1−ρ
Γ(2−ρ)

, Ψ(1−ρ) = Ψ(2−ρ)− 1
1−ρ

,

the function f ′1(ρ) can be represented as follows

f ′1(ρ) = − 1

λ tρ
0

(1−ρ)[lnt0 −Ψ(2−ρ)]+1
Γ(2−ρ)

.

If γ ≈ 0,57722 is the Euler-Mascheroni constant, then −γ < Ψ(2− ρ) < 1− γ . By
virtue of this estimate we may write

− f ′1(ρ) � (1−ρ)[lnt0− (1− γ)]+1

Γ(2−ρ)λ tρ
0

� 1

λ tρ
0

, (22)

provided ln t0 > 1− γ or t0 � 2.
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To estimate the derivative f ′2(ρ) , we denote the integrand in (21) by F(ζ ,ρ) :

F(ζ ,ρ) =
1

2π iρλ tρ
0

· eζ 1/ρ ζ
ζ + λ tρ

0

.

Note, that the domain of integration δ (1;β ) also depends on ρ . To take this circum-
stance into account when differentiating the function f ′2(ρ) , we rewrite the integral (21)
in the form:

f2(ρ) = f2+(ρ)+ f2−(ρ)+ f21(ρ),

where

f2±(ρ) = e±iβ
∞∫

1

F(se±iβ ,ρ)ds,

f21(ρ) = i

β∫

−β

F(eiy,ρ)eiydy = iβ
1∫

−1

F(eiβ s,ρ)eiβ sds.

Let us consider the function f2+(ρ) . Since β = 3π
4 ρ and ζ = seiβ , then

eζ 1/ρ
= e

1
2 (i−1)s

1
ρ
.

The derivative of the function f2+(ρ) has the form

f ′2+(ρ)=
1

2π iρλ tρ
0

∞∫

1

e
1
2 (i−1)s1/ρ

se2iaρ[− i−1
2ρ2 s1/ρ lns+2ia− 1

ρ − ln t0− iaseiaρ+λ tρ
0 lnt0

seiaρ +λ tρ
0

]
seiaρ+λ tρ

0

ds,

where a = 3π
4 . By virtue of the inequality |seiaρ + λ tρ

0 | � λ tρ
0 we arrive at

| f ′2+(ρ)| � C

ρ(λ tρ
0 )2

∞∫

1

e−
1
2 s1/ρ

s
[ 1

ρ2 s1/ρ lns+ lnt0
]
ds.

LEMMA 4. Let 0 < ρ � 1 and m ∈ N . Then

K(ρ) =
1
ρ

∞∫

1

e−
1
2 s

1
ρ
s

m
ρ +1ds � Cm.

Proof. Set r = s
1
ρ . Then

s = rρ , ds = ρrρ−1dr.
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Therefore,

K(ρ) =
∞∫

1

e−
1
2 rrm−1+2ρdr �

∞∫

1

e−
1
2 rrm+1dr = Cm.

Since lns
1
ρ < s

1
ρ , then by virtue of Lemma 4,

| f ′2+(ρ)| � C

(λ tρ
0 )2

[C2

ρ
+C0 ln t0

]
� C

(λ tρ
0 )2

[ 1
ρ

+ lnt0
]
.

Function f ′2−(ρ) has exactly the same estimate.
Now consider the function f21(ρ) . It is not hard to verify that

f ′21(ρ) =
a

2πλ tρ
0

1∫

−1

eeias
e2iaρs

[
2ias− lnt0 − iaseiaρs+λ tρ

0 ln t0
eiaρs+λ tρ

0

]
eiaρs + λ tρ

0

ds.

Therefore,

| f ′21(ρ)| � C
ln t0

(λ tρ
0 )2

.

Taking into account estimate (22) and the estimates of f ′2± and f ′21 , we have

d
dρ

eλ (ρ) < − 1

λ tρ
0

+C
1/ρ + lnt0

(λ tρ
0 )2

. (23)

In other words, this derivative is negative if

tρ
0 > C

1/ρ + lnt0
λ

for all ρ ∈ [ρ0,1) or

tρ0
0 > C

1/ρ0 + lnt0
λ

. (24)

Thus, there exists a number T0 = T0(λ0,ρ0) such, that for all t0 � T0 we have the
estimate

d
dρ

eλ (ρ) < 0, λ � λ0, ρ ∈ [ρ0,1].

Since

U(t,ρ) = |û(ξ0,t)| = Eρ(−A(ξ0)tρ)|ϕ̂(ξ0)| = Eρ(−λ0t
ρ)|ϕ̂(ξ0)|,

Lemma 1 follows immediately from Lemma 3. Theorem 2 is an easy consequence of
these two lemmas.

In conclusion, we make the following remark. If the elliptic polynomial A(ξ ) is
nonhomogeneous, that is A(ξ ) = ∑

|α |�m
aα ξ α and moreover, A(ξ ) � λ0 > 0, then from

Lemma 3 it follows:
If t0 � T0 and T0 is as above, then Eρ(−A(ξ )tρ) , as a function of ρ , is positive

and decreases monotonically in ρ ∈ [ρ0,1] for any ξ ∈ R
N .

Therefore, in this case you can also consider various options for the function
U(t,ρ) . Examples U(t,ρ) = ||Au(x,t)||2 and U(t,ρ) = ||u(x,t)||2 .
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4. Second inverse problem

To prove Theorem 3, we first find the unknown parameter ρ . Suppose, as required
by Theorem 3, that d0 satisfies condition (7) with λ0 = A(ξ0) = 1. Then, as it follows
from Lemma 3, for all t0 � T0(1,ρ0) the equation

V (ξ0,t0,ρ ,σ) = |v̂(ξ0,t0)| = Eρ(−tρ)|ϕ̂(ξ0)| = d0

has the unique solution ρ� ∈ [ρ0,1] .
Now let us define σ� ∈ [σ0,1] , which corresponds to the already found ρ� and

satisfies condition (12).
We first assume, that ρ� < 1 and let β = 3π

4 ρ� . Then formula (21) will have the
form

Eρ�(−λ σ tρ�

1 ) =
1

λ σ tρ�

1 Γ(1−ρ�)
− 1

2π iρ�λ σ tρ�

1

∫

δ (1;β )

eζ 1/ρ�

ζ
ζ + λ σ tρ�

1

dζ = g1(σ)+g2(σ).

(25)
One has

g′1(σ) = − lnλ
λ σ tρ�

1 Γ(1−ρ�)

and

g′2(σ) =
(1+ tρ�

1 ) lnλ
2π iρ�λ σ tρ�

1

∫

δ (1;β )

eζ 1/ρ�

ζ
ζ + λ σ tρ�

1

dζ .

It is easy to check that g′2(σ) has an estimate (it is proved similarly to the estimate for
f ′2± )

|g′2(σ)| � (1+ tρ�

1 ) lnλ
π(λ σ tρ�

1 )2

(
C0 +

4
3

π
)
<

5lnλ
λ 2σ tρ�

1

.

Therefore, for all t1 � 1 we have

d
dσ

Eρ�(−λ σ tρ�

1 ) < − lnλ
λ σ tρ�

1 Γ(1−ρ�)
+

5lnλ
λ 2σ tρ�

1

. (26)

Hence this derivative is negative if

λ σ � λ σ0 � 5Γ(1−ρ�).

Thus, if λ1 � Λ1 = Λ1(ρ�,σ0) , and (see (12))

Λ1 = en, n � ln(5Γ(1−ρ�))
σ0

, (27)

then Eρ�(−λ σ tρ�

1 ) , as a function of σ ∈ [σ0,1] , strictly decreases for all t1 � 1.

Now let ρ� = 1. Then Eρ�(−λ σ tρ�

1 ) = e−λ σ t1 and the derivative (26) is negative
for all λ > 1 and t1 � 1.
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Since the function Eρ�(−λ σ tρ�

1 ) is decreasing, then the following estimates hold

Eρ�(−λ1t
ρ�

1 ) � Eρ�(−λ σ
1 tρ�

1 ) � Eρ�(−λ σ0
1 tρ�

1 ), λ1 � Λ1, σ ∈ [σ0,1].

The last estimate shows that if d1 satisfies condition (13), then, assuming ρ� has al-
ready been found, we can uniquely determine the parameter σ� from equality (12), that
is, from

Eρ�(−λ σ
1 tρ�

1 )|ϕ̂(ξ1)| = d1.
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