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ON CRITERIA OF EXISTENCE FOR NONLINEAR

KATUGAMPOLA FRACTIONAL DIFFERENTIAL

EQUATIONS WITH p–LAPLACIAN OPERATOR
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(Communicated by M. Jleli)

Abstract. This paper is devoted to establishing vital criteria of existence and uniqueness for a
class of nonlinear Katugampola fractional differential equations (KFDEs) with p -Laplacian op-
erator subjecting to mixed boundary conditions. The reasoning is inspired by diverse classical
fixed point theory, such as the Guo-Krasnosel’skii type fixed point principle and Banach contrac-
tion theorem. Additionally, several expressive examples are afforded to show the effectiveness
of our theoretical results.

1. Introduction

Fractional calculus generalizes the order of derivative and integral from positive
integers to real numbers, or even to complex numbers. In the last few decades, it is
found that a series of natural phenomena can be modelled robustly in terms of fractional
calculus, see [9, 14, 24]. As a result, fractional calculus gained a rapid development
recently, both in the aspect of mathematics and many disciplines of applied sciences,
being nowadays recognized as an excellent tool for describing complex systems and
practical matters, especially involving long range memory effects and non-locality, such
as viscoelastic theory, fluid dynamics, biology, image processing, one may refer [5, 16,
17, 18, 19, 20, 21, 22, 26].

In effect, the p -Laplacian operator arises in mathematical modeling, such as in
non-Newtonian fluid flow, turbulent filtration in porous media, rheology, glaciology.
Problems involving the p -Laplacian have been investigated extensively in the litera-
ture during the last several decades, see [23, 25]. Amongst them, there do exist some
impressive description on applications of the p -Laplacian operator to fractional differ-
ential equations (FDEs), one may refer to [4, 8, 10, 13, 15, 27, 28, 29, 30], and the
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references cited therein. However, according to the survey of the authors, there are no
papers dedicate to the investigation of existence and uniqueness of solutions to nonlin-
ear Katugampola fractional differential equations (KFDEs) with p -Laplacian operator,
we therefore supply a gap in the literature. Accordingly, we consider⎧⎪⎪⎨

⎪⎪⎩
ρDβ

0+

(
φp

(ρDα
0+ϕ (t)

))
+ γ f (t, ϕ (t)) = 0, 0 < t < T

ϕ (0) = 0, ϕ (T ) = 0

φp
(ρDα

0+ϕ
)
(0) = 0, φp

(ρDα
0+ϕ

)
(T ) = 0

, (1)

where γ ∈ R, and ρDα
0+ for ρ > 0, presents Katugampola derivative with order 1 <

α,β � 2. φp (x) = |x|p−2 x , the p -Laplacian operator (p > 1) , (φp)
−1 = φr , 1/p +

1/r = 1. f : [0, T ]× [0, ∞) → [0, ∞) is a continuous function with finite positive con-
stant T .

2. Preliminaries

As be introduced in [14], let us denote X p
c [0, T ] , (c ∈ R, 1 � p � ∞) which means

the space of Lebesgue measurable functions ϕ on [0, T ] for which ‖ϕ‖X p
c

< ∞ , is de-
fined by

‖ϕ‖X p
c

=
(∫ T

0
|scϕ (s)|p ds

s

) 1
p

< ∞,

for 1 � p < ∞, c ∈ R, and

‖ϕ‖X∞
c

= ess sup
0�t�T

[tc |ϕ (t)|] , (c ∈ R) .

For C [0, T ] , it is a Banach space with all continuous real functions from [0, T ] into R

endowed with the maximum norm

‖ϕ‖ = max
0�t�T

|ϕ (t)| .

DEFINITION 2.1. ([11]) The left-sided Katugampola fractional integral with or-
der α > 0 of ϕ ∈ X p

c [0, T ] is defined as

(ρI α
0+ϕ

)
(t) =

ρ1−α

Γ(α)

∫ t

0

sρ−1ϕ (s)

(tρ − sρ)1−α ds, (2)

where ρ > 0, t ∈ [0, T ] , and Γ(α) =
∫ +∞
0 e−ssα−1ds is the Euler gamma function.

DEFINITION 2.2. ([12]) Let α , ρ ∈ R
+, and n− 1 � α < n ∈ N , then the

Katugampola fractional derivative of a function ϕ is defined for 0 � t � T < ∞ as

ρDα
0+ϕ (t) =

(
t1−ρ d

dt

)n (ρI n−α
0+ ϕ

)
(t)

=
ρα−n+1

Γ(n−α)

(
t1−ρ d

dt

)n ∫ t

0

sρ−1ϕ (s)

(tρ − sρ)α−n+1 ds. (3)
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It deserves to be remarked that the Katugampola derivative could be viewed as the
generalization of Riemann-Liouville derivative for (ρ → 1) and Hadamard derivative
for (ρ → 0+) settings due to the facts reported in [12].

In the sequel, some fixed-point theorems/principles are addressed which are vital
in the acquirement of the main results.

LEMMA 2.1. (Guo-Krasnosel’skii [1], [7]) Assume that Q be a cone in Banach
space E , and Ω1 , Ω2 are open subsets of E with 0 ∈ Ω1 , Ω1 ⊂ Ω2. Let F : Q ∩(

Ω2 \Ω1

)
→ Q is a completely continuous operator satisfying

(i) ‖Fz‖ � ‖z‖ , for z ∈ Q∩∂Ω1 and ‖Fz‖ � ‖z‖ , for z ∈ Q∩∂Ω2, or
(ii) ‖Fz‖ � ‖z‖ , for z ∈ Q∩∂Ω1 and ‖Fz‖ � ‖z‖ , for z ∈ Q∩∂Ω2.

Then F admits a fixed point in Q∩
(

Ω2 \Ω1

)
.

LEMMA 2.2. (Leray-Schauder type nonlinear alternative [6]) Suppose that Q is
a convex and closed subset of Banach space X , Ω ⊂ Q is open and 0 ∈ Ω. Assume
that F : Ω → Q be continuous and compact, so,

(i) F owns a fixed point in Ω; or
(ii) there exists a point ϕ ∈ ∂Ω and ϕ = λF (ϕ) with λ ∈ (0, 1) .

LEMMA 2.3. (Banach [6]) Suppose that E be a Banach space, Q ⊂ E a non-
empty closed subset. If F : Q → Q is a contraction mapping, then F has a unique
fixed point in Q .

LEMMA 2.4. ([13]) Let ϕp be a p-Laplacian operator.
(i) For 1 < p � 2, z1z2 > 0, and |z1| , |z2| � m > 0, then∣∣ϕp (z1)−ϕp (z2)

∣∣ � (p−1)mp−2 |z1− z2| .
(ii) For p > 2, |z1| , |z2| � M, then∣∣ϕp (z1)−ϕp (z2)

∣∣ � (p−1)Mp−2 |z1− z2| .

3. Main results

In the sequel, we always choose T � (pc)
1
pc , where p � 1, c > 0 for the sake

of Remark of [3]. If the above conditions for such constants satisfied, then one has
C [0, T ] ↪→ X p

c [0, T ] , and ‖ϕ‖X p
c

� ‖ϕ‖ .
Now, we present several vital lemmas which play a key role in the proofs of the

main results.

LEMMA 3.1. Assume α, ρ ∈R
+, be such that 1 < α, β � 2. If ρDα

0+ϕ ∈C [0, T ] ,
and z(t) admits a continuous function, then⎧⎪⎪⎨

⎪⎪⎩
ρD

β
0+

(
φp

(ρDα
0+ϕ (t)

))
+ γz(t) = 0, 0 < t < T

ϕ (0) = 0, ϕ (T ) = 0

φp
(ρDα

0+ϕ
)
(0) = 0, φp

(ρDα
0+ϕ

)
(T ) = 0

, (4)
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is equivalent to the integral equation

ϕ (t) =
∫ T

0
Gα (t, s)φr

(
γ

∫ T

0
Gβ (s, τ)z(τ)dτ

)
ds, (5)

where

Gα (t, s)=
ρ1−αsρ−1

Γ(α)

{(
t
T

)ρ(α−1) (Tρ − sρ)α−1− (tρ − sρ)α−1 , 0 � s � t � T,(
t
T

)ρ(α−1) (Tρ − sρ)α−1 , 0 � t � s � T,
(6)

and

Gβ (s, τ) =
ρ1−β τρ−1

Γ(β )

{(
s
T

)ρ(β−1) (Tρ − τρ)β−1− (sρ − τρ)β−1 , 0 � τ � s � T,(
s
T

)ρ(β−1) (Tρ − τρ)β−1 , 0 � s � τ � T.
(7)

Proof. From Lemma 3.1 of [3], the solution to (4) could be read as the following
equivalent form

φp
(ρDα

0+ϕ (t)
)

= −γ ρI β
0+ z(t)−C1t

ρ(β−1)−C2t
ρ(β−2),

where C1 and C2 are real numbers associated with some initial conditions.
In terms of φp

(ρDα
0+ϕ

)
(0) = 0, φp

(ρDα
0+ϕ

)
(T ) = 0, it yields to C2 = 0 and

C1 = − γ
Tρ(β−1)

(
ρI β

0+z
)

(T ) .

Hence,

φp
(ρDα

0+ϕ (t)
)

= −γ ρI β
0+ z(t)+ γ

( t
T

)ρ(β−1)(
ρI β

0+z
)

(T )

= γ
∫ T

0
Gβ (t, τ) z(τ)dτ,

which implies
ρDα

0+ϕ (t) = φr

(
γ

∫ T

0
Gβ (t, τ) z(τ)dτ

)
,

where φr = (φp)−1 , 1
p + 1

r = 1. Accordingly, boundary value problem (BVP) (4) is
equivalent to the following problem{

ρDα
0+ϕ (t) = φr

(
γ

∫ T
0 Gβ (t,τ)z(τ)dτ

)
, 0 < t < T,

ϕ (0) = 0, ϕ (T ) = 0.
(8)

It immediately follows from Lemma 3.2 of [3] and (8) that BVP (4) admits a unique
solution described by (5). �

In the sequel, we demonstrate some properties about the Green’s function Gα (t, s)
given by (6).



NONLINEAR KFDES WITH p-LAPLACIAN 59

LEMMA 3.2. Let 1 < α � 2 and 0 < ρ � 1, the function Gα defined by (6)
satisfies the following items

(i) Gα (t, s) > 0, for t, s ∈ (0, T ) .
(ii) max

0�t�T
Gα (t, s) = Gα (s, s) , for each s ∈ [0, T ] .

(iii) For any t ∈ [
T
4 , 3T

4

]
, there exists a positive function b ∈C (0, T ) such that

Gα (t, s) � b(s) max
0�t�T

Gα (t, s) = b(s)Gα (s, s) , for any 0 < s < T. (9)

Proof. Items (i) and (ii) are showed in [3].
(iii) Likewise, we could prove it as the proof of Lemma 2.4 in [2]. For given

s∈ (0, T ) , Gα (t, s) is increasing with respect to t for t � s and decreasing with respect
to t for s � t . Consequently, setting

g1 (t,s) =
ρ1−αsρ−1

Γ(α)

[( t
T

)ρ(α−1)
(T ρ − sρ)α−1− (tρ − sρ)α−1

]
,

g2 (t,s) =
ρ1−αsρ−1

Γ(α)

( t
T

)ρ(α−1)
(T ρ − sρ)α−1 ,

one has

min
T
4 �t� 3T

4

Gα (t, s) =

⎧⎪⎪⎨
⎪⎪⎩

g1
(

3T
4 , s

)
, s ∈ (

0, T
4

]
,

min
{
g1

(
3T
4 , s

)
, g2

(
T
4 ,s

)}
, s ∈ [

T
4 , 3T

4

]
,

g2
(

T
4 ,s

)
, s ∈ [

3T
4 ,T

)
,

=

{
g1

(
3T
4 , s

)
, s ∈ (0, r ] ,

g2
(

T
4 , s

)
, s ∈ [r ,T ) ,

= ρ1−α sρ−1

Γ(α)

⎧⎨
⎩

[(
3
4

)ρ(α−1)
(Tρ − sρ)α−1−

((
3T
4

)ρ − sρ
)α−1

]
, s ∈ (0, r ] ,(

1
4

)ρ(α−1)
(T ρ − sρ)α−1 , s ∈ [r , T ) ,

where T
4 < r < 3T

4 is the unique solution of the equation g1
(

3T
4 , s

)
= g2

(
T
4 , s

)
.

Secondly, with the use (ii),

max
0�t�T

Gα (t, s) = Gα (s, s) =
ρ1−αsρ−1

Γ(α)

( s
T

)ρ(α−1)
(T ρ − sρ)α−1 .

Thus, setting

b(s) =

⎧⎪⎨
⎪⎩

( 3
4 )

ρ(α−1)
(Tρ−sρ )α−1−

(
( 3T

4 )ρ−sρ
)α−1

( s
T )ρ(α−1)(Tρ−sρ )α−1

, s ∈ (0, r ] ,

(
T
4s

)ρ(α−1)
, s ∈ [r ,T ) ,

the proof is complete. �
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REMARK 1. Note that the same properties (i), (ii) and (iii) are valid for Gβ with
replacement β by α. Denote by

ωα =
∫ T

0
Gα (s,s)ds, ωβ =

∫ T

0
Gβ (τ,τ)dτ.

ωα =
∫ 3T

4

T
4

b(s)Gα (s,s)ds, ωβ =
∫ 3T

4

T
4

b(τ)Gβ (τ,τ)dτ.

Assume that E = C([0, T ], R) with maximum norm ‖ϕ‖ = max
t∈[0,T ]

|ϕ (t)| be Ba-

nach space. Define a mapping F : E → E by

Fϕ (t) =
∫ T

0
Gα (t,s)φr

(
γ

∫ T

0
Gβ (s,τ) f (τ,ϕ (τ))dτ

)
ds, (10)

where Gα (t,s) , Gβ (s,τ) are defined by (6) and (7), respectively.
By Lemma 3.1, ϕ is a solution to (1) which indicates that there exist a ϕ ∈ E such

that Fϕ = ϕ . That being the case, we first consider the existence of fixed points of the
operator F .

3.1. Existence of solution

Define a cone set Q on E as

Q = {ϕ ∈ E | ϕ (t) � 0, ∀t ∈ [0, T ]} . (11)

LEMMA 3.3. If f (t, ϕ) is a continuous function on [0, T ]× [0, ∞) , then F : Q →
Q is a completely continuous operator.

Proof. In the light of continuity of Gα (t, s) , Gβ (s, τ) , and f (t, ϕ) , F : Q → Q
is continuous. Let Ω ⊂ Q be bounded, i.e., ∃M0 > 0 such that ‖ϕ‖ � M0, for all
ϕ ∈ Ω .

Let L = max
0�t�T, 0�ϕ�M0

| f (t, ϕ)|+1, we have

|Fϕ (t)| =
∣∣∣∣
∫ T

0
Gα (t,s)φr

(
γ

∫ T

0
Gβ (s,τ) f (τ,ϕ (τ))dτ

)
ds

∣∣∣∣
�

∫ T

0
Gα (s,s)φr

(
|γ|L

∫ T

0
Gβ (τ,τ)dτ

)
ds

� ωαφr
(|γ|Lωβ

)
. (12)

Hence, F (Ω) is bounded.
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Likewise, motivated by Lemma 3.6 in [3], for each u ∈ Ω , t1,t2 ∈ [0, T ] , t1 < t2,
we find that

|Fϕ (t2)−Fϕ (t1)| =

∣∣∣∣∣∣
∫ T
0 Gα (t2,s)φr

(
γ

∫ T
0 Gβ (s,τ) f (τ,ϕ (τ))dτ

)
−∫ T

0 Gα (t1,s)φr

(
γ

∫ T
0 Gβ (s,τ) f (τ,ϕ (τ))dτ

)
∣∣∣∣∣∣

� φr
(|γ|Lωβ

)∫ T

0
[Gα (t2,s)−Gα (t1,s)]ds

�
φr

(|γ|Lωβ
)
Tρ

ραΓ(α)

(
tρ(α−1)
2 − tρ(α−1)

1

)
,

the second side of this inequality tends to zero if t2 → t1 . Hence, F (Ω) is equi-
continuous. So, by Arzela-Ascoli theorem, F : Q → Q is completely continuous. �

Denote

M =
φp

(
1

ωα

)
γωβ

, N =
φp

(
1

ωα

)
γωβ

.

THEOREM 3.1. For two positive constants r2 > r1 > 0 such that
(H1) f (t, ϕ) � Mφp (r2) , for (t, ϕ) ∈ [0, T ]× [0, r2] .
(H2) f (t, ϕ) � Nφp (r1) , for (t, ϕ) ∈ [0, T ]× [0, r1] .
The BVP (1) has at least one positive solution ϕ such that r1 � ‖ϕ‖ � r2 .

Proof. From Lemma 3.3, F is a completely continuous operator and BVP (1)
admits one solution ϕ = ϕ(t) if and only if ϕ solves the operator equation ϕ = Fϕ . It
could be achieved from Lemma 2.1, and the main process can be divided into following
two steps:

Step 1. Let Ω2 = {ϕ ∈ Q | ‖ϕ‖ < r2} . Let ϕ ∈Q∩∂Ω2 . Then, from assumption
(H1) and (ii) in Lemma 3.2 for t ∈ [0, T ] , we have

‖Fϕ‖ = max
0<t<T

∫ T

0
Gα (t, s)φr

(
γ

∫ T

0
Gβ (s, τ) f (τ, ϕ (τ))dτ

)
ds

�
∫ T

0
Gα (s, s)φr

(
γ

∫ T

0
Gβ (τ, τ)Mφp (r2)dτ

)
ds

�
∫ T

0
Gα (s, s)φr

⎛
⎝γ

∫ T

0
Gβ (τ,τ)

φp

(
1

ωα

)
γωβ

φp (r2)dτ

⎞
⎠ds

� r2

ωα

∫ T

0
Gα (s, s)ds

� r2 = ‖ϕ‖ .

which implies that
‖Fϕ‖ � ‖ϕ‖ , for all ϕ ∈ Q∩∂Ω2.
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Step 2. Let Ω1 = {ϕ ∈ Q | ‖ϕ‖ < r1} , and ϕ ∈ Q∩∂Ω1 . Then, from (H2) and
(iii) in Lemma 3.2 for t ∈ [

T
4 , 3T

4

]
, we have

Fϕ (t) =
∫ T

0
Gα (t,s)φr

(
γ

∫ T

0
Gβ (s,τ) f (τ,ϕ (τ))dτ

)
ds

�
∫ T

0
b(s)Gα (s,s)φr

(
γ

∫ T

0
b(τ)Gβ (τ,τ)Nφp (r1)dτ

)
ds

�
∫ 3T

4

T
4

b(s)Gα (s,s)φr

⎛
⎝γ

∫ 3T
4

T
4

b(τ)Gβ (τ,τ)
φp

(
1

ωα

)
γωβ

φp (r1)dτ

⎞
⎠ds

� r1

ωα

∫ 3T
4

T
4

b(s)Gα (s,s)ds

� r1 = ‖ϕ‖ .

So

‖Fϕ‖ � ‖ϕ‖ , for all ϕ ∈ Q∩∂Ω1.

Therefore, by (ii) in Lemma 2.1, F has at least one fixed point in Q∩
(

Ω2 \Ω1

)
. Hence,

there exists one solution at least to (1) with r1 � ‖ϕ‖� r2 . Thus the proof is finish. �

THEOREM 3.2. Let f (t, ϕ) is continuous on [0, T ]× [0, ∞) . If there exists a
constant k > 0 such that

ωα φr
(|γ|Lωβ

)
k

< 1, (13)

where L = max
0�t�T, 0�ϕ�k

| f (t, ϕ)|+ 1, then the fractional BVP (1) admits at least one

solution.

Proof. Let Ω = {ϕ ∈ Q | ‖ϕ‖ < k} . By virtue of Lemma 3.3, the operator F :
Ω → Q is completely continuous. Let ϕ ∈ ∂Ω such that ϕ = λFϕ , λ ∈ (0, 1) . From
(12), we have

‖ϕ‖ = λ ‖Fϕ‖ �
∫ T

0
Gα (t,s)φr

(
γ

∫ T

0
Gβ (s,τ) f (τ,ϕ (τ))dτ

)
ds

� ωα φr
(|γ|Lωβ

)
,

hence,

k � ωα φr
(|γ|Lωβ

)
.

which contradicts (13). By Lemma 2.2, the BVP (1) shares one solution ϕ ∈ Ω at
least. �
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3.2. Uniqueness of solution

In this part, the following condition will be compensated.
(H3) Suppose that f : [0, T ]× [0, ∞) → [h, ∞) is continuous, and there is a posi-

tive constant L0 , satisfying

| f (t, ϕ)− f (t, ψ)| � L0 |ϕ −ψ | , for any t ∈ [0,T ] , ϕ , ψ ∈ [0,∞) . (14)

THEOREM 3.3. If (H3) is valid, and p > 2 , then there exists a unique solution
of the BVP (1), where |γ| < 1

(p−1)Mp−2L0ωα ωβ
.

Proof. Assume B = {ϕ ∈ E | ‖ϕ‖ � R} where R � ωα φr
(|γ|Lωβ

)
, be closed

subset. Consider the operator F : B → B , defined by (10) as follows

Fϕ (t) =
∫ T

0
Gα (t, s)φr

(
γ

∫ T

0
Gβ (s, τ) f (τ, ϕ (τ))dτ

)
ds.

For ϕ ∈ B, we have

‖Fϕ‖ �
∣∣∣∣
∫ T

0
Gα (t, s)φr

(
γ

∫ T

0
Gβ (s, τ) f (τ, ϕ (τ))dτ

)
ds

∣∣∣∣
� ωα φr

(|γ|Lωβ
)

� R,

which proves that F (B) ⊂ B .
Now we shall show that F is a contraction mapping. For t ∈ [0, T ] , we get∣∣∣∣γ

∫ T

0
Gβ (s, τ) f (τ, ϕ (τ))dτ

∣∣∣∣ � |γ|ωβ L = M,

where L = max
0�t�T, 0�ϕ�R

| f (t, ϕ)|+1.

By (ii) in Lemma 2.4 and (14), for any ϕ , ψ ∈ B and t ∈ [0, T ] , we have

|Fϕ (t)−Fψ (t)|
�

∫ T

0
Gα (t, s)

∣∣∣∣φr

(
γ

∫ T

0
Gβ (s, τ) f (τ, ϕ (τ))dτ

)

−φr

(
γ

∫ T

0
Gβ (s,τ) f (τ, ψ (τ))dτ

)∣∣∣∣ds

� |γ|(p−1)Mp−2
∫ T

0
Gα (t, s)

∣∣∣∣
∫ T

0
Gβ (s,τ) f (τ, ϕ (τ))dτ

−
∫ T

0
Gβ (s, τ) f (τ,ψ (τ))dτ

∣∣∣∣ds

� |γ|(p−1)Mp−2
∫ T

0
Gα (t,s)

(∫ T

0
Gβ (s,τ) | f (τ, ϕ (τ))− f (τ, ψ (τ))|dτ

)
ds

� |γ|(p−1)Mp−2L0

∫ T

0
Gα (s, s)

(∫ T

0
Gβ (τ,τ) |ϕ (τ)−ψ (τ)|dτ

)
ds

� |γ|(p−1)Mp−2L0ωα ωβ ‖ϕ −ψ‖ ,
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then

‖Fϕ −Fψ‖ � |γ|(p−1)Mp−2L0ωα ωβ ‖ϕ −ψ‖ .

From (3.3) and the previous estimate, F is a contraction operator. As a consequence of
Lemma 2.3, we conclude that F has a unique fixed point which is the unique solution
of the problem (1) in B. �

THEOREM 3.4. If (H3) is valid, and 1 < p < 2 , then there exists a unique solu-
tion of the BVP (1), where |γ| < 1

(p−1)mp−2L0ωα ωβ
.

Proof. By Lemma 3.2, for s ∈ [
T
4 , 3T

4

]
, we get

∣∣∣∣γ
∫ T

0
Gβ (s,τ) f (τ,ϕ (τ))dτ

∣∣∣∣ � |γ|
∫ 3T

4

T
4

b(τ)Gβ (τ,τ) f (τ,ϕ (τ))dτ

� |γ|hωβ = m > 0.

By (i) in Lemma 2.4 and (14), for any ϕ , ψ ∈ B and t ∈ [0, T ] , we have

‖Fϕ −Fψ‖ � |γ|(p−1)mp−2L0ωα ωβ ‖ϕ −ψ‖ .

From (3.4) and the previous estimate, F be contraction operator. As a consequence of
Lemma 2.3, one could conclude that F admits a unique fixed point that is the unique
solution of the problem (1) in B. �

4. Illustrative examples

In this section, several examples are provided to illustrate the results obtained in
Theorems 3.1, 3.2, 3.3 and 3.4, respectively.

EXAMPLE 1. Consider the following BVP

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1D
3
2
0+

(
φ2

(
1D

5
4
0+ϕ (t)

))
+ γ

(
(arctan t)2

1+ϕ2 +100
)

= 0, t ∈ [0, 1]

ϕ (0) = 0, ϕ (1) = 0

φ2

(
1D

5
4
0+ϕ

)
(0) = 0, φ2

(
1D

5
4
0+ϕ

)
(1) = 0

, (15)

here, f (t, ϕ) = (arctan t)2

1+ϕ2 +100, α = 5
4 , β = 3

2 and p = 2. In this case, the function f

be jointly continuous for any t ∈ [0, 1] , and any ϕ > 0.
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We have

ωα =
∫ 1

0
Gα (s,s)ds =

1

Γ
(

5
4

) 1∫
0

s
1
4 (1− s)

1
4 ds = 0.68184,

ωβ =
∫ 1

0
Gβ (τ,τ)dτ =

1

Γ
(

3
2

) 1∫
0

τ
1
2 (1− τ)

1
2 dτ = 0.44311,

ωα =
∫ 3

4

1
4

b(s)Gα (s,s)ds = 0.056961,

ωβ =
∫ 3

4

1
4

b(τ)Gβ (τ,τ)dτ = 0.07318,

and

M =
φp

(
1

ωα

)
γωβ

=
3.3098

γ
, N =

φp

(
1

ωα

)
γωβ

=
239.90

γ
.

Choosing r1 = 1
100 , r2 = 1, for 2.399×10−2 � γ � 3.2894×10−2, we have

f (t, ϕ) =
(arctant)2

1+ ϕ2 +100 � π2

16
+100 � Mφp (r2) , for (t, ϕ) ∈ [0,1]× [0, 1],

f (t,ϕ) =
(arctant)2

1+ ϕ2 +100 � 100 � Nφp (r1) , for (t, ϕ) ∈ [0, 1]×
[
0,

1
100

]
.

Then, the condition (H1) , (H2) are satisfied for each 2.399× 10−2 � γ � 3.2894×
10−2. Therefore from Theorem 3.1, the problem (15) has at least one solution ϕ such
that 1

100 � ‖ϕ‖ � 1.

EXAMPLE 2. Consider the following BVP⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1D
3
2
0+

(
φ2

(
1D

5
4
0+ϕ (t)

))
+ γ ln(1+ϕ(t))

1+t2
= 0, t ∈ [0, 1]

ϕ (0) = 0, ϕ (1) = 0

φ2

(
1D

5
4
0+ϕ

)
(0) = 0, φ2

(
1D

5
4
0+ϕ

)
(1) = 0

, (16)

here, f (t,ϕ) = ln(1+ϕ(t))
1+t2

, α = 5
4 , β = 3

2 , γ = 1√
π . If choose k = 1, one has

L = max
0�t�1, 0�ϕ�1

| f (t,ϕ)|+1 = 1+ ln2,

then for |γ| < 1.9548, we obtain

ωα φr
(|γ|Lωβ

)
k

= (0.51155)|γ| < 1.
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Therefore, (13) is valid. So by Theorem 3.2, such problem (16) owns one solution at
least.

EXAMPLE 3. Consider the following BVP⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1D
3
2
0+

(
φp

(
1D

5
4
0+ϕ (t)

))
+ cos(t)(2+|ϕ(t)|)

π(
√

2cos(t)+sin(t))(1+|ϕ(t)|) = 0, t ∈ [
0, π

4

]
ϕ (0) = 0, ϕ

(π
4

)
= 0

φp

(
1D

5
4
0+ϕ

)
(0) = 0, φp

(
1D

5
4
0+ϕ

)(π
4

)
= 0

, (17)

here, f (t,ϕ) = cos(t)(2+|ϕ|)
(
√

2cos(t)+sin(t))(1+|ϕ|) , α = 5
4 , β = 3

2 , γ = 1√
π .

Let B = {ϕ ∈ E | ‖ϕ‖ � 1} , one has

L = max
0�t� π

4 , 0�ϕ�1
| f (t, ϕ)|+1 =

3√
2

+1,

M = |γ|ωβ L � 0.97344, m = |γ|hωβ � 1.3762×10−2.

Clearly, f :
[
0, π

4

]× [0, ∞) → [
1
3 ,∞

)
is continuous.

For any ϕ ,ψ ∈ R and t ∈ [
0, π

4

]
, due to

√
2

2 � cos(t) � 1 and 0 � sin(t) �
√

2
2 ,

then

| f (t,ϕ)− f (t,ψ)| =

∣∣∣∣∣∣
cos(t)(2+ |ϕ |)(√

2cos(t)+sin(t)
)

(1+ |ϕ |)
− cos(t)(2+ |ψ |)(√

2cos(t)+sin (t)
)

(1+ |ψ |)

∣∣∣∣∣∣
=

∣∣∣∣ cos(t)√
2cos(t)+ sin(t)

∣∣∣∣
∣∣∣∣2+ |ϕ |
1+ |ϕ | −

2+ |ψ |
1+ |ψ |

∣∣∣∣
� ||ϕ |− |ψ || � |ϕ −ψ | .

Hence, the condition (14) is satisfied with L0 = 1.

(i) If p = 3, it remains to show that the condition (3.3)

|γ| = 1√
π

<
1

(p−1)Mp−2L0ωα ωβ
= 1.7001,

is valid. Therefore, by Theorem 3.3, system (17) takes a unique solution in B .
(ii) If p = 3

2 , it remains to show that the condition (3.4)

|γ| = 1√
π

<
1

(p−1)mp−2L0ωα ωβ
= 0.77656,

is valid. Therefore, by Theorem 3.4, system (17) takes a unique solution in B .
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5. Conclusions

In our paper, we study the existence and uniqueness of solution for the nonlinear
KFDEs with classic p -Laplacian operator subjecting to mixed boundary conditions. In
order to demonstrate the existence and uniqueness of solutions of a class of nonlin-
ear KFDEs involving the Katugampola fractional derivative with p -Laplacian operator
subjecting to mixed boundary conditions, we firstly prove the equivalence of a nonlinear
KFDE to a Volterra integral equation. Next, the Green functions of the corresponding
nonlinear KFDEs are constructed and some properties of such Green functions are also
analyzed. Thereupon, by virtue of established properties of the Green functions and
suitable fixed point theorems on cones, some existence and uniqueness of solutions
including existence of positive solutions, are addressed and illustrated.

The current study be more emphasis on existence and uniqueness of such prob-
lem, but it is known that the dynamics including stability and instability of solutions
to KFDEs is still in its infancy. Such closed topics are of great interest and will be
investigated in the sequel.
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