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ON THE ANALYSIS OF BLACK–SCHOLES EQUATION
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Abstract. This paper proposes alternative approach for the valuation of a European call option
via Generalized Two Dimensional Differential Transform Method (GTDTM). The analysis of
the Black-Scholes equation for a European call option involving fractional order with GTDTM is
discussed. The fractional derivative is considered in the sense of Caputo. Also, it is assumed that
the underlying asset price pays no dividend and follows the Geometric Brownian Motion (GBM).
The fractional Black-Scholes equation for a European call option has been solved successfully
using GTDTM. The valuation formula of a European call option with fractional order has been
obtained. An illustrative example is also presented to measure the performance of GTDTM in
terms of accuracy, effectiveness and suitability in the context of the Black-Scholes Model (BSM).
The results show that GTDTM compares favourably and agrees with BSM. Moreover, GTDTM
is found to be accurate, effective, suitable and a good approach for the valuation of a European
call option with fractional order.

1. Introduction

Most of the problems in computational finance entail the computation of a par-
ticular integral. In many cases these integrals can be solved analytically and in some
cases by means of numerical methods. An option is defined as a contract that grants
its holder the right, without obligation to buy or sell a specific underlying asset on or
before a given date in the future for an agreed price. Options come in two ways; a
call option gives the holder the right to buy while a put option gives the right to sell.
The history of options extends back to several centuries, it was not clear until 1973
that trading of options was formalized by the establishment of the Chicago Board of
Options Exchange (CBOE) with more than one million contracts per day. In the same
year, there was a turning point for research in option valuation. Black and Scholes
[1] also described a mathematical framework for obtaining the fair price of a Euro-
pean call option. Fadugba [3] applied the Mellin transform to obtain the solution of
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fractional order equations. The solution of the Black-Scholes partial differential equa-
tion for the vanilla option via reduced differential transform method was obtained by
[4]. A new generalization of two dimensional differential transform method for pricing
barrier options of fractional version of the Black-Scholes model was presented by [ 5].
The motivation of this paper is based on the work of [5]. In this paper, the analysis
of Black-Scholes equation for a European call option involving a fractional order with
Generalized Two Dimensional Differential Transform Method (GTDTM) is presented.
The emphasis is given to the Caputo fractional operator which is more suitable for the
study of differential equations of fractional order. The organization of the rest of the
paper is as follows; Section 2 presents some preliminaries used in this work. Section 3
presents GTDTM and its fundamental properties. The analysis of GTDTM for the so-
lution of the fractional Black-Scholes equation for a European call option is discussed
in Section 4. The valuation formula for a European call option with fractional order via
GTDTM is also presented. Section 5 presents the application of GTDTM, discussion
of results and concluding remarks.

2. Preliminaries

2.1. Fractional Black-Scholes equation for European call option

The Black-Scholes partial differential equation for the price of European call op-
tion with non-dividend yield is given by [1]

∂Ec

∂ t
+

1
2

σ2S2 ∂ 2Ec

∂S2 + rS
∂Ec

∂S
− rEc = 0, (1)

subject to the terminal and boundary conditions:

lim
ST→∞

Ec = ST , lim
ST→0

Ec = 0,Ec = max(ST −K,0) (2)

on [0,T ] , where (S, t)∈ R+× (0,T ) , Ec is the European option price at the underlying
asset price S and time t , T is the maturity date, r is the risk-free interest rate and σ is
the volatility. By means of change of variables, let

S = Kex ⇒ x = ln

(
S
K

)
(3)

τ =
σ2

2
(T − t) (4)

and
Ec = Kv(x,τ) (5)

where K is the exercise price. Substituting (3), (4) and (5) into (1) and simplifying
further, yields

∂v
∂τ

=
∂ 2v
∂x2 +

(
2r
σ2 −1

)
∂v
∂x

− 2r
σ2 v (6)
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Setting ω = 2r
σ 2 , (6) becomes

∂v
∂τ

=
∂ 2v
∂x2 +(ω −1)

∂v
∂x

−ωv (7)

v(x,0) = max(ex −1,0) (8)

Now, we generalize the assumption that the underlying asset follows a geometric Brow-
nian motion. Let the stock price be driven by a marked point process as in [ 2]. Thus (7)
turns to a fractional Black-Scholes partial differential equation of the form

∂ αv
∂τα =

∂ 2v
∂x2 +(ω −1)

∂v
∂x

−ωv (9)

subject to (8), where ω is a fractional order.

2.2. Definition of some concepts

DEFINITION 1. A real valued function f (t) , t > 0, is said to be in the space Cμ ,
μ ∈ R if there exists a real number ρ > μ , such that f (t) = t ρ f1(t), where f1(t) ∈
C[0,∞] and is said to be in the space Cn

μ if and only if f n ∈Cμ ,n ∈ N .

DEFINITION 2. The Riemann-Liouville fractional integral operator of order α �
0 of a function f ∈Cμ , μ � 1 is defined as

Jα f (t) =
1

Γ(α)

∫ t

0
(t − τ)α−1 f (τ)dτ, τ > 0 (10)

where Γ(α) is the gamma function of α .

DEFINITION 3. The Riemann-Liouville fractional derivative operator of order α >
0 of a function f (t) is defined as

0Dα
t f (t) =

1
Γ(n−α)

∫ t

0
(t − τ)n−α−1 f (τ)dτ (11)

for α ∈ (n−1,n) , t > 0 and n ∈ N

DEFINITION 4. The Caputo fractional derivative of the function f ∈C n
−1 , n ∈ N

is defined as
c
0Dα

t f (t) =
1

Γ(n−α)

∫ t

0
(t − τ)n−α−1 f (n)(τ)dτ (12)

for α ∈ (n−1,n] , t > 0.

DEFINITION 5. For n to be the smallest integer that exceeds α , the Caputo time-
fractional derivative operator of order α > 0 is defined as

Dα
t u =

{ 1
Γ(n−α)

∫ t
0(t − τ)n−α−1u(n)(x,τ)dτ, α ∈ (0,1],

∂ nu(x,t)
∂ tn , α = n

(13)
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where u = u(x, t) , u(n)(x,τ) = ∂ nu(x,τ)
∂τn . The relation between the Riemann-Liouville

operator and Caputo fractional differential operator is given by

JαDα
t f (t) = D−α

t f (t) = f (t)−
n−1

∑
k=0

tk

k!
f (k)(0) (14)

DEFINITION 6. The Mittag-Leffler function is defined as the series representa-
tion, valid in the whole complex plane [8]

Eα(z) =
∞

∑
n=0

zn

Γ(nα + 1)
(15)

For more details on the properties and applications of fractional calculus; see [ 8] and
[7].

DEFINITION 7. An option is a versatile security that gives its holder the right, but
not obligation, to buy (call option) or sell(put option) an underlying asset at an agreed
upon price during a certain period of time.

DEFINITION 8. The discounted expected payoffs for call and put options are given
by Payoffcall = max(S(T )− K,0) and Payoffput = max(K − S(T ),0) , respectively,
where S(T ) is the asset price at time T .

DEFINITION 9. A European option is a type of put or call option that can be ex-
ercised only on its expiration date [6].

3. Generalized two-dimensional differential transform approach

Consider a function of two variables w(x,t) and suppose that w(x, t) is a product
of two-single valued functions, say

w(x,t) = g(x)h(t) (16)

Using the properties of two-dimensional differential transform, ( 16) becomes

w(x,t) =
∞

∑
k=0

Gα(k)(x− x0)αk
∞

∑
k=0

Hβ (h)(t − t0)β h (17)

Equation (17) can be written in a compact form as

w(x,t) =
∞

∑
k=0

∞

∑
h=0

Ωα ,β (k,h)(x− x0)αk(t − t0)β h (18)

where α,β ∈ (0,1] . Suppose w(x,t) is analytic and differentiable continuously w.r.t. t
in the domain of interest, GTDTM is defined as [5]

Ωα ,β =
1

Γ(αk)Γ(βh+ 1)
[(Dα

x0
)k(Dβ

t0)
hw(x, t)](x0,t0) (19)

The properties of the GTDTM are given in Table 1 [5]:
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Table 1: The properties of GTDTM
Function Transformed

w(x, t) = u(x, t)± v(x,t) Ωα ,β (k,h) = Uα ,β (k,h)±Vα ,β(k,h)
w(x, t) = au(x,t) Ωα ,β (k,h) = aUα ,β (k,h)

w(x, t) = u(x, t)v(x,t) Ωα ,β (k,h) = ∑k
r=0 ∑h

s=0Uα ,β (r,h− s)Vα ,β (k− r,s)
w(x, t) = (x− x0)nα(t − t0)mβ Ωα ,β (k,h) = δ (k−n)δ (h−m)

w(x, t) = Dα
x0

,α ∈ (0,1] Ωα ,β (k,h) = Γ(α(k+1)+1)
Γ(αk+1) Uα ,β (k + 1,h)

4. Analysis of the GTDTM

4.1. Solution of Black-Scholes equation for European call option with fractional
order

Applying the GTDTM to both sides of (9) and (8) yields,

Γ(α(k + 1)+ 1)
Γ(αk + 1)

Uα ,β (k,h+ 1) = (k + 1)(k + 2)U1,α(k + 2,h)

+ (w−1)(k + 1)U1,α(k + 1,h)
−wU1,α(k,h)

(20)

and

U1,α(0,0) = 0, U1,α(k,0) =
1
k!

, k = 1,2,3, . . . (21)

respectively. Using (20) and (21), the following values of U(k,h) are obtained:

Uα ,1(0,1) =
w

Γ(1+ α)
, Uα ,1(k,1) = 0, k = 1,2,3, . . . (22)

Uα ,1(0,2) = − w2

Γ(1+ 2α)
, Uα ,1(k,2) = 0, k = 1,2,3, . . . (23)

Uα ,1(0,3) =
w3

Γ(1+ 3α)
, Uα ,1(k,3) = 0, k = 1,2,3, . . . (24)

Uα ,1(0,4) = − w4

Γ(1+ 4α)
, Uα ,1(k,4) = 0, k = 1,2,3, . . . (25)

Uα ,1(0,5) =
w5

Γ(1+ 5α)
, Uα ,1(k,5) = 0, k = 1,2,3, . . . (26)

Continuing this way, one gets

Uα ,1(0, j) = (−1) j+1 wj

Γ(1+ jα)
, Uα ,1(k, j) = 0, k = 1,2,3, . . . (27)
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Substituting (22)–(27) into (18), one obtains

u(x,τ) =
wτα

Γ(1+ α)
− w2τ2α

Γ(1+ 2α)
+

w3τ3α

Γ(1+ 3α)
− w4τ4α

Γ(1+ 4α)

+
w5τ5α

Γ(1+ 5α)
+ . . .+(−1) j+1 wjτ jα

Γ(1+ jα)
+ . . .(1+ 0+ . . .)x

+
(

1
2

+ 0+ . . .

)
x2 +

(
1
6

+ 0+ . . .

)
x3 +

(
1

24
+ 0+ . . .

)
x4

+
(

1
120

+ 0+ . . .

)
x5 + . . .+

(
1
n!

+ 0+ . . .

)
xn + . . .

(28)

Rearranging terms, (28) becomes

u(x,τ) =
wτα

Γ(1+ α)
− w2τ2α

Γ(1+ 2α)
+

w3τ3α

Γ(1+ 3α)
− w4τ4α

Γ(1+ 4α)

+
w5τ5α

Γ(1+ 5α)
+ . . .+(−1) j+1 wjτ jα

Γ(1+ jα)
+ . . .

+
(

x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+ . . .+

xn

n!
+ . . .

)
(29)

Hence,

u(x,τ) = (ex −1)−
[
−1+

∞

∑
m=0

(−wτα )m

Γ(1+mα)

]

= ex − e−wτα

(30)

Equation (30) is the closed form solution of (9) subject to (8) for x ∈ Z+ .

4.2. Valuation formula for European call option with fractional order via GTDTM

Substituting (3)–(5) into (30), one obtains

Ec(S,t) =

{
S−K exp

[
−w

(
(T − t)σ2

2

)]α}
(31)

Substituting w = 2r
σ 2 into (31) and simplifying further, one gets

Ec(S,t) =

{
S−K exp

[
−r

(
σ2

2

)α−1

(T − t)α

]}
(32)

Equation (32) is the valuation formula for the price of a European call option with
fractional order α . For a special case, setting α = 1 in (32), one obtains the valuation
formula for the price of a European call option with classical Black-Scholes equation
via GTDTM as

Ec(S,t) = S−Ke−r(T−t) (33)
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The exact solution or the so called the classical Black-Scholes Model (BSM) [1] for the
valuation of a European call option is given by

Ec(S,t) = SN(d1)−Ke−r(T−t)N(d2) (34)

with

d1 =
ln

(
S
K

)
+

(
r + σ 2

2

)
(T − t)

σ
√

(T − t)
, d2 = d1 −σ

√
(T − t) (35)

5. Application, discussion of results and concluding remarks

5.1. Application

Consider the valuation of a European call option with non-dividend-paying stock
with the following parameters. The option values via GTDTM with α = 1.0, Implicit

Table 2: The Parameters
Variables Values

Underlying asset price, St 120
Strike price, K 10,20,30,40,50,60,70,80,90,100

Risk-free interest rate, r 5%
Volatility, σ 50%

Dividend yield, q 0%
Time to expiry, T 0.0822

Fractional order, α 0.2,0.4,0.6,0.8,1.0

Finite Difference Method (IFDM) with time grid points of 100, space grid points of
200 [9] and BSM [1] are shown in Figures 1-3. The comparative results analyses of
GTDTM, IFDM and BSM are displayed in Figure 4. The absolute errors incurred
in GTDTM and IFDM are shown in Figures 5 and 6, respectively. The comparative
error analysis of GTDTM and IFDM is shown in Figure 7. The comparative study of
GTDTM and BSM, for different values of α is captured in Figure 8. The effect of the
fractional order on the option prices obtained via GTDTM is displayed in Figure 9.

5.2. Discussion of results and concluding remarks

In this paper, the Black-Scholes equation for a European call option involving a
fractional order with generalized dimensional differential transform method is analysed.
The Black-Scholes equation for a European call option with fractional order has been
solved via GTDTM. To measure the performance of GTDTM in terms of the accuracy,
effectiveness and suitability, an illustrative example is presented. The European call
option prices generated via GTDTM, IFDM and BSM are displayed in Figures 1, Figure
2 and Figure 3, respectively. It is observed from the Figures 4 that GTDTM agrees with
the BSM for different values of the strike price K . It is clearly seen from Figure 4 that
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Figure 1: Option prices generated via GTDTM

Figure 2: Option prices generated via IFDM

GTDTM compared favourably with BSM. It is also observed that GTDTM performs
better than IFDM for K � 90. Figures 5 and 6 show the absolute errors generated via
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Figure 3: Option prices generated via BSM

Figure 4: The comparative results analyses of GTDTM, IFDM and BSM

GTDTM and IFDM for different values of the strike price K. The comparative error
analysis of GTDTM and IFDM is shown in Figure 7. Figure 8 shows the performance
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Figure 5: Error incurred via GTDTM

Figure 6: Error incurred via IFDM

of GTDTM for different values of fractional order α in the context of the BSM. It is
observed from Figure 8 that GTDTM agree with BSM for α = 0.6,0.8,1.0. It is also
observed that when α = 0.2,0.4, European call option is overpriced. It is observed
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Figure 7: The comparative error analysis of GTDTM and IFDM

Figure 8: GTDTM versus BSM for different values of α

from Figure 9 that, as α decreases, the payoff of the option increases. It is also observed
that European call option has the lowest price in exercise time T when α = 1.0. Hence,
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Figure 9: Option prices via GTDTM with different values of α

it can be concluded that GTDTM is a very efficient tool in obtaining both exact and
approximate solutions for the Black-Scholes equation for a European call option with
fractional order. It is also a good approach for the valuation of European call option
with fractional values. A natural extension is to use GTDTM to solve fractional Black-
Scholes equation for basket options with dividend yield under the geometric Brownian
motion.
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