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Abstract. This work focuses on the semi-analytical methods for obtaining the solutions of time 
fractional partial integro-differential equations. Adomian decomposition method (ADM) and 
homotopy perturbation method (HPM) are successfully applied. Further, the modified version of 
homotopy perturbation method is applied which is comparatively more accurate than the other
two methods. These methods are shown to be efficient and converge rapidly to the exact solution. 
Graphs are plotted and tabular data are recorded which represents the accuracy of the proposed 
techniques.

1. Model problem

This article studies the following time fractional partial integro-differential equa-
tion (PIDE): ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Dς
t u(y,t) = g(y,t)+

∫ t

0
K (y,t −η)F(u(y,η))dη ,

(y,t) ∈ Ω := ([c,d]× (0,T)),

u(y,0) = ρ0(y), ∀y ∈ [c,d],

(1)

where the fractional order derivative is taken into account in Caputo sense and 0 < ς �
1. Here K stands for the kernel function while g(y,t) is a smooth function defined
∀(y,t) . F(u(y,η)) is a nonlinear function continuous on the domain Ω and ρ0(y) is
the initial condition.

The substantial boost in the study of fractional differential equations (FDEs) is due
to its widespread application in pure and applied sciences, such as in fluid dynamics
[14, 20], chemical sciences and medicine [2, 19]. But, it is usually intractable to com-
pute the analytical solutions of FDEs because of their complicated nature [6, 18, 21].
Therefore, the study on various numerical and approximated methods to find the so-
lutions of differential equations involving fractional derivatives and integral operators
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have become extremely crucial over the years. Several approximation and numerical
approaches including the variational iteration method [14], finite difference method
[12, 13, 17], differential transform method [8] and Adams Bashforth Moulton method
[4] are developed to find the solutions of FDEs. Gradually, considerable efforts are also
made towards the study of FDEs involving partial derivatives. Contributions are made
in the past for obtaining the solutions of fractional PIDEs involving weakly singular
kernel using the pseudo operational matrices [6], predictor-corrector scheme [4] and
also the semi-analytical approaches. But, less efforts have been made for obtaining the
solutions of (1) using the mesh less methods which are very efficient and also consumes
less computational time. Hemeda [10] solved the fractional differential equations using
the HPM and also established the existence and convergence properties. The struc-
tural stability and uniqueness of the solutions of nonlinear FDEs were established by
Diethelm and Ford [5]. Elbeleze et al., [7] applied HPM to generate the solutions of
fractional order PDEs (FPDEs). They obtained a series solution and proved the re-
liability of their method by computing the maximum absolute truncated error of the
solution. Further, distributed-order FPDEs were solved by using generalized fractional
order Taylor wavelet method proposed by Yuttanan et al., [22]. Various integral equa-
tions, system of linear equations and FDEs have been solved by modified HPM. One
may refer [9, 15] for further details. This work deals with finding the solutions of such
model problems using ADM, HPM and modified HPM with greater accuracy and less
computational cost. The proposed methods provide rapid convergence of the solution.
Moreover, the modified HPM gives a one term series solution of the governing model
equation which makes it more easy to implement.

The structure of this article is as follows: Section 2 presents some of the impor-
tant definitions of fractional derivatives and integrals. Section 3 discusses all the three
proposed techniques. Numerical experiments are performed in Section 4 to support the
theoretical results . Finally concluding remarks are given in Section 5.

2. Notations and preliminaries

This section comprises of some of the basic definitions and properties on the frac-
tional order derivatives and integrals.

DEFINITION 1. [18] Consider a real valued function u(y,t) defined on Ω ⊂ R
2 .

u is said to be in space Cν , ν ∈ R , if ∃ a real number q > ν , such that u(y,t) =

tqu1(y, t) where u1(y,t) ∈ C(Ω) , and it is called to be in space Cm
ν , m ∈ N iff

∂mu
∂ tm

∈
Cν , m ∈ N∪{0} .

DEFINITION 2. [6] The Riemann-Liouville (R-L) time fractional partial integral
denoted as I

ς
t u(y, t) of a function u ∈ Cν , ν � −1 is defined as:

I
ς
t u(y,t) =

1
Γ(ς)

∫ t

0
(t−η)ς−1u(y,η)dη , t > 0,

where 0 < ς � 1 is the fractional order.
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DEFINITION 3. [16] Let the order of derivative 0 < ς � 1 then for t > 0,

D
ς
t u(y,t) =

∂
∂ t

∫ t

0

(t−η)−ς

Γ(1− ς)
u(y,η)dη .

is called the R-L time fractional partial derivative for u(y,t) .

DEFINITION 4. [16] Let 0 < ς � 1 and t > 0, then⎧⎪⎪⎨⎪⎪⎩
Dς

t u(y,t) =
1

Γ(1− ς)

∫ t

0

∂u(y,η)
∂η

(t −η)−ςdη ,

Dς
t u(y,t) =

∂mu(y,t)
∂ tm

, ς = m ∈ N.

is called Caputo time fractional partial derivative for u(y,t) .

3. Proposed techniques ADM, HPM, and MHPM

This section provides a detailed discussion on all the proposed semi-analytical
methods and its application on the considered model problem.

3.1. Adomian decomposition method

ADM is a semi-analytical approach developed by G. Adomian [1] in 1984, This
method is successfully applied in obtaining the solutions of linear and nonlinear ODEs
and PDEs, integral equations, FDEs, FIDEs, and several others. The main advantage of
this method lies in the fact that the method is free from discretizations and perturbations.
The approach is less cumbersome and has a faster rate of convergence. ADM deals in
finding the solution of (1) using an infinite series of the form

u(y,t) =
∞

∑
n=0

un(y,t). (2)

Now, we solve the model problem (1) using the proposed technique. Applying the R-L
integral I

ς
t on both sides of (1), we get

u(y, t) =u(y,0)+I
ς
t

(
g(y,t)+

∫ t

0
K (y,t −η)F(u(y,η))dη

)
.

It is possible to deconstruct the nonlinear function F as follows: F = ∑∞
n=0 An, where

An are the Adomian polynomials [16] given by:

An =
1
n!

[
dn

dυn F
( n

∑
k=0

υkuk

)]
υ=0

. (3)
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The first few terms of An are listed below. These polynomials are the most significant
ones and are useful in the approximation of nonlinear functions in most of the numerical
algorithms.

A0 = F1(u0),
A1 = u1F′

1(u0),

A2 = u2F′
1(u0)+

1
2!

u2
1F

′′
1(u0),

A3 = u3F′
1(u0)+u1u2F′′

1(u0)+
1
3!

u3
1F

′′′
1 (u0).

The following iterations are used to acquire the unknown solutions u0,u1,u2, . . .un :⎧⎪⎪⎪⎨⎪⎪⎪⎩
u0 = u(y,0)

t0

1
+I

ς
t g(y,t),

un+1 = I
ς
t

(∫ t

0
K (y,t−η)Andη

)
n = 0,1,2, . . .

(4)

The solution is provided by u(y,t) = lim
n→∞

n

∑
i=0

ui(y,t) . By truncating (2) upto first N

terms (for finite N ) the desired numerical solution can be obtained. The numerical

approximation in N terms is defined as: ΘN =
N−1

∑
n=0

un(y,t) . The initial condition and

the function g(y, t) , as stated above, define the zeroth component u0 in this approach.
The remaining components u1,u2, . . .un are generated recursively by using (4).

3.2. Homotopy perturbation method

HPM is a perturbation based approach used to generate the solution in the form
of series for several mathematical model problems involving derivative and integral
operator in both the linear and nonlinear cases. Homotopy V : Ω̃× [0,1] → R for (1)
is constructed as:

h̄(V, p̃) =(1− p̃)(Dς
t u(y,t)−g(y,t))

+ p̃

(
Dς

t u(y,t)−g(y,t)−
∫ t

0
K (y, t −η)F(u(y,η))dη

)
,

which implies

h̄(V, p̃) = Dς
t u(y,t)−g(y,t)− p̃

(∫ t

0
K (y,t−η)F(u(y,η))dη

)
, (5)

where p̃ ∈ [0,1] is the embedding parameter. When p̃ = 0, (5) becomes a linear equa-
tion, and when p̃ = 1, then (5) reduces to (1). In addition the solution of (1) is repre-
sented as a series of the form:

u(y,t) =
∞

∑
n=0

un(y,t)p̃n. (6)
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The approximated solution of (1) is found by taking p̃ = 1 in (6)

u(y,t) =
∞

∑
n=0

un(y,t). (7)

The convergence of series (7) has previously been demonstrated in [16]. The nonlinear
function is operated using the Adomian polynomials (3). By inserting (7) into (5),
the equivalent power of p̃ is equalized, having obtained the following set of linear
equations:

p̃0 : Dς
t u0 = g(y,t),

p̃1 : Dς
t u1 =

∫ t

0
K (y,t −η)F(u0(y,η))dη ,

p̃2 : Dς
t u2 =

∫ t

0
K (y,t −η)F(u1(y,η))dη , (8)

...

By applying I
ς
t to the IVPs in (8), the approximated solution can be computed. Further,

suitably selecting the initial conditions that are crucial in constructing the solution, the
recurrence relations become simple to solve. Finally, the following series truncated
upto N terms is used to approximate the series solution:

Θ̂N =
N−1

∑
n=0

un(y,t).

The RHS of (8) results in Adomian polynomials. In addition, because ADM antici-

pates a series solution for (1) given by u(y,t) = lim
n→∞

n

∑
i=0

ui(y, t) , using the Taylor series

expansion in HPM reduces the complexity of the method and aligns it with ADM.

3.3. Modified homotopy perturbation technique

This subsection comprises of the modified version of HPM which is used to solve
the linear and nonlinear FPIDEs in an efficient way. Consider (1) such that the con-
struction of homotopy is done by following the usual way as in [11].

h̄(V, p̃) = (1− p̃)

(
Dς

t u(y,t; p̃)−g(y,t)

)

+ p̃

(
Dς

t u(y,t; p̃)−g(y,t)−
∫ t

0
K (y,t−η)F(u(y,η))dη

)
,

where p̃ ∈ [0,1] and V(y,t,0) = u0(y,t), V(y,t,1) = u(y,t). In the view of modified
HPM, g(y, t) is decomposed as g0(y,t)+ g1(y,t) , so, the following homotopy is con-
structed as:

Dς
t u−g0(y,t) = p̃

[∫ t

0
K (y,t −η)F(u(y,η))dη +g1(y,t)

]
. (9)
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The solution of FPIDE (1) can be presented as a power series in p̃ , given as,

u(y,t) = u0(y,t)+ p̃u1(y,t)+ p̃2u2(y,t)+ . . . . (10)

Plugging the power series (10) into (9) yields the following iterations:

p̃0 : Dς
t u0(y, t) = g0(y,t), u0(y,0) = g(y,0),

p̃1 : Dς
t u1(y, t) = g1(y,t)+

∫ t

0
K (y,t−η)F(u0(y,η))dη , u1(y,0) = 0,

p̃2 : Dς
t u2(y, t) =

∫ t

0
K (y,t −η)F(u1(y,η))dη , u2(y,0) = 0. (11)

...

Applying the R-L integral I
ς
t on both sides of (11), values of u0(y,t),u1(y, t),u2(y, t), . . .

are obtained. The proper selection of g0 and g1 leads to the successful attainment of
the exact solution in only one iteration which means that the modified HPM is a pow-
erful method compared to ADM and HPM [16]. Finally the Nth term truncated series
is obtained as:

Θ̃N(y,t) =
N−1

∑
n=0

un(y,t).

3.3.1. Uniqueness and convergence

ASSUMPTION 1. A nonlinear function F(u) satisfies the Lipschitz constant L
such that

∣∣∣∣F(u1)−F(u2)
∣∣∣∣� L||u1 −u2||.

ASSUMPTION 2. The kernel K defined in (1) is continuous and bounded on
(Ω) . Then there exists a M > 0 such that ||K || � M .

THEOREM 1. Considering that assumptions (1) and (2) hold true. The considered

model problem (1) has a unique u(y,t) if L <
Γ(ς +1)

MT ς .

Proof. The detailed proof is available in [18]. �

THEOREM 2. Under assumptions (1) and (2) and ||u1|| < ∞ , the series solution
obtained

u(y,t) =
∞

∑
i=0

ui(y,t),

converges to the exact solution.

Proof. The proof is done in [16]. One may refer to see the details. �
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4. Numerical results

This section compiles some test examples to validate the theoretical estimates and
give a more accurate idea of the implementation of proposed methods.

EXAMPLE 1. Consider the test case:⎧⎨⎩Dς
t u(y, t)+

∫ t

0
K (y,t −η)u(y,η)dη = g(y,t), (y,t) ∈ [0,1]× (0,T)

u(y,0) = 0.

The exact solution to Example 1 is u(y,t) = ytς with g(y,t) = yΓ(ς + 1)+ yey tς+1

ς +1
and K (y, t) = ey .

According to HPM and ADM in [16], the two terms solution is given as:

u(y, t) = ytς − yeyΓ(ς +2)t2ς+1

(1+ ς)Γ(2ς +2)
+

eyΓ(ς +2)t2ς+1

(ς +1)Γ(2ς +2)

− eyΓ(ς +2)Γ(2ς +3)tς+4

(1+ ς)(2ς +2)Γ(2ς +2)Γ(3ς +3)

According to MHPM, the homotopy can be constructed as:

Dς
t u(y, t)− yΓ(ς +1) = p̃

[
yey tς +1

1+ ς
−
∫ t

0
K (y,t −η)u(y,η)dη

]
.

Here g0 =−yΓ(ς +1) and g1 = yey tς +1
1+ ς

. Substituting (11) and equating the identical

powers of p̃ , we obtain the following set of equations:

p̃0 : Dς
t u0 = yey tς +1

1+ ς
, u0(y,0) = 0,

p̃1 : Dς
t u1 = yey tς +1

1+ ς
+
∫ t

0
K (y,t −η)u0(y,η)dη , u1(y,0) = 0,

p̃2 : Dς
t u2 =

∫ t

0
K (y,t −η)u1(y,η)dη , u2(y,0) = 0.

...

Computing the first few terms of the modified homotopy perturbation solution for
the above system gives u0(y,t) = ytς and uk(y,t) = 0 for k � 1. Thus, the exact solution
follows immediately which is more faster in comparison of using the ADM and HPM.

EXAMPLE 2. Consider the test case⎧⎨⎩Dς
t u(y, t)−

∫ t

0
ηeyu2(y,η)dη =

2t2−ςey

Γ(3− ς)
− t6e3y

6
, (y,t) ∈ [0,1]× (0,T)]

u(y,0) = 0.

The exact solution to Example 2 is u(y,t) = t2ey .
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(a) ς = 0.25. (b) ς = 0.8, t ∈ (0,1].

Figure 1: Solution plot and error plot for Example 1

The absolute point-wise error is defined by:

E ∞
N =

∣∣∣u(y,t)−
N−1

∑
n=0

un(y,t)
∣∣∣.

Figure 1(a) depicts the 3D solution plot using modified HPM and the exact solution
with one term approximation for Example 1. Figure 2(a) shows the solution plot at
t = 0.8 and y ∈ [0,1] for Example 2. The error plots for Example 1 and 2 are shown
using Figure 1(b) and 2(b) respectively for different values of ς . The tabular data are
recorded to represent the accuracy of the methods. Since, we have shown that ADM
and HPM are equivalent techniques, so, Table 1 shows the solution obtained using
ADM and modified HPM for Example 1. Similarly, errors obtained by three term
approximation using ADM and HPM are shown using Table 2 for Example 2 where the
error decreases as the number of terms in the series increases and Table 3 represents the
solution obtained with the application of modified HPM and HPM for Example 2. It is
evident from the tables that modified HPM converges very rapidly to the exact solution
in comparison to ADM and HPM. Also it is observed that the methods are efficient and
bear less computational cost making them more easier to implement.
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Figure 2: Solution plot and error plot for Example 2.
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Table 1: Solution obtained using ADM and modified HPM at ς = 0.99 for Example 1.
t Exact ADM ADM Modified HPM

solution I-term solution II-term solution I-term solution
0.2 0.0406 0.0403 0.0406 0.0406
0.4 0.0807 0.0780 0.0807 0.0404
0.6 0.1206 0.1115 0.1204 0.1206
0.8 0.1604 0.1390 0.1595 0.1604
1.0 0.2000 0.1584 0.1974 0.2000
1.2 0.2396 0.1680 0.2331 0.2396
1.4 0.2791 0.1658 0.2652 0.2791
1.6 0.3185 0.1498 0.2916 0.3185
1.8 0.3579 0.1183 0.3095 0.3579
2.0 0.3972 0.0692 0.3156 0.3972

Table 2: E ∞
N for Example 2.

ADM with ς = 0.75 HPM with ς = 0.5
y E ∞

1 E ∞
2 E ∞

3 E ∞
1 E ∞

2 E ∞
3

0.1 4.7695e-3 3.1554e-5 1.5870e-5 8.5207e-3 1.1816e-4 5.9837e-5
0.2 6.4381e-3 5.1996e-5 2.6185e-5 1.1502e-2 1.9461e-4 9.8828e-5
0.3 8.6905e-3 8.5672e-5 4.3213e-5 1.5526e-2 3.2044e-4 1.6329e-4
0.4 1.1731e-2 1.4114e-4 7.1328e-5 2.0957e-2 5.2751e-4 2.6990e-4
0.5 1.5835e-2 2.3248e-4 1.1776e-4 2.8290e-2 8.6806e-4 4.4637e-4
0.6 2.1375e-2 3.8284e-4 1.9448e-4 3.8187e-2 1.4279e-3 7.3868e-4
0.7 2.8854e-2 6.3029e-4 3.2130e-4 5.1547e-2 2.3475e-3 1.2233e-3
0.8 3.8948e-2 1.0374e-3 5.3103e-4 6.9581e-2 3.8569e-3 2.0276e-3
0.9 5.2575e-2 1.7066e-3 8.7811e-4 9.3925e-2 6.3319e-3 3.3640e-3
1.0 7.0968e-2 2.8064e-3 1.4529e-3 1.2679e-1 1.0385e-2 5.5874e-3

Table 3: Solution obtained using HPM and MHPM at t = 0.9 and ς = 0.75 for Example 2.
y Exact HPM HPM HPM MHPM

solution I-term solution II-term solution III-term solution I-term solution
0 0.9604 0.9262 9.5946 0.9599 0.9604

0.1 1.0614 1.0152 1.0600 1.0608 1.0614
0.2 1.1730 1.1107 1.1710 1.1722 1.1730
0.3 1.2964 1.2123 1.2933 1.2954 1.2964
0.4 1.4327 1.3192 1.4282 1.4316 1.4327
0.5 1.5834 1.4301 1.5767 1.5822 1.5834
0.6 1.7500 1.5430 1.7400 1.7490 1.7500
0.7 1.9340 1.6547 1.9195 1.9338 1.9340
0.8 2.1374 1.7604 2.1164 2.1391 2.1374
0.9 2.3622 1.8533 2.3321 2.3678 2.3622
1.0 2.6106 1.9237 2.5681 2.6235 2.6106
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5. Concluding remarks

This work aims in obtaining the approximated solutions of fractional PIDEs us-
ing the semi-analytical methods such as ADM, HPM and modified HPM. Comparison
among all the three techniques is represented with the tabular data and plots for differ-
ent values of fractional order derivative ς . It can be clearly observed in this experiment
that modified HPM gives better accuracy than ADM and HPM. Moreover, one can con-
clude that, modified HPM is more efficient and the computational cost is also very less
making it easier to implement for a wide class of problems, which marks the novelty of
the work.
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