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Abstract. In this paper, some new integral inequalities of the Hermite–Hadamard type are were
obtained for (h,m) -convex modified functions. The results are obtained on the basis of the
introduced definition of a generalized weighted integral operator by using the convexity property,
the well-known Hölder’s inequality and its modification. Some results existing in the literature
are some special cases of our results.

1. Introduction

A function ψ : [ρ ,σ ]→R , is said to be convex if ψ(θx1+(1−θ )x2) � θψ( x1 )+
(1−θ )ψ(x2) holds ∀x1,x2 ∈ [ρ ,σ ] and θ ∈ [0,1] . If the above inequality is reversed,
then the function ψ will be concave on [ρ ,σ ] .

Convex functions have been summed up widely hypothetically ; these extensions
incorporate the m-convex, r -concave, h -convex, s-convex, (h,m)-convex functions
and numerous others. Readers interested in its multiple ramifications and extensions
can consult [26], where a fairly complete overview of the development of the convex
function concept was presented.

DEFINITION 1. [32] Let ψ : [0,σ ] → R and m ∈ [0,1] , If ∀x1,x2 ∈ [0,σ ] and
θ ∈ [0,1] the inequality

ψ (θx1 +(1−θ )x2) � θψ(x1)+m(1−θ )ψ(x2) (1)

holds. Then ψ is said to be m-convex on [0,σ ].

If the above inequality is holds in reverse, then we say that the function ψ is
m-concave.

The following definitions are the successive extensions of the concept of convex
function and, as we will see later, they are the particular cases of our Definition.
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DEFINITION 2. [9,15] Let ψ : [0,σ ]→ R and s ∈ (0,1] . If, ∀x1,x2 ∈ [0,σ ] and
θ ∈ [0,1] the inequality ψ(θx1 + (1−θ )x2) � θ sψ(x1)+(1−θ s)ψ(x2) is valid, then
on [0,σ ] the function ψ is called the s-convex(in the first sense).

DEFINITION 3. [9, 15] Let ψ : [0,σ ] → R and s ∈ (0,1] . If ∀x1,x2 ∈ [0,σ ] and
θ ∈ [0,1] the inequality ψ(θx1 + (1−θ )x2) � θ sψ(x1)+(1−θ )sψ(x2) is valid, then
on [0,σ ] the function ψ is called the s-convex(in the second sense).

DEFINITION 4. [34] Let ψ : [0,σ ] → R and s ∈ [−1,1]. If ∀x1,x2 ∈ [0,σ ] and
θ ∈ (0,1) the inequality ψ(θx1 + (1−θ )x2) � θ sψ(x1)+(1−θ )sψ(x2) is valid, then
on [0,σ ] the function ψ is called the extended s-convex.

In [21], the present class of (a,m)-convex functions as follows.

DEFINITION 5. Let ψ : [0,σ ] → R and α,m ∈ [0,1]. If ∀x1,x2 ∈ [0,σ ] and θ ∈
[0,1] and the inequality ψ(θx1 +m(1− θ )x2) � θ aψ(x1)+m(1− θ a)ψ(x2) is valid,
then on [0,σ ] the function ψ is called the (a,m)-convex.

In [20], the following definition is introduced.

DEFINITION 6. Let h : [0,1]→R and ψ : [0,σ ]→ [0,+∞) are non-negative func-
tions and the function h is not identically zero. If ∀x1,x2 ∈ [0,σ ] and θ ∈ [0,1] the
inequality

ψ (θx1 +m(1−θ )x2) � h(θ )ψ(x1)+mh(1−θ )ψ(x2) (2)

is fulfilled for m ∈ [0,1] , then on [0,σ ] the function ψ is called the (h,m)-convex.

If the above inequality is reversed, then ψ is said to be (h,m)-concave. Note
that in Definition 6, if we take h(θ ) = θ , then we get the definition of an m-convex
function, and if, additionally, we take m = 1, then we get the definition of classical
convexity.

In [25], the authors presented the class of s− (a,m)-convex functions as follows
(“redefined” in [35]).

DEFINITION 7. Let ψ : [0,+∞)→ [0,+∞) and (a,m) ∈ [0,1]2 , and s ∈ (0,1] . If,
∀ρ ,σ ∈ [0,+∞) and θ ∈ [0,1] the inequality

ψ(θρ +m(1−θ )σ) � θ asψ(ρ)+m(1−θ as)ψ(σ)

is valid, then the function ψ is called the s− (a,m)-convex in the first sense.

DEFINITION 8. Let ψ : [0,+∞) → [0,+∞) and a,m ∈ [0,1] , and s ∈ (0,1] . If,
∀ρ ,σ ∈ [0,+∞) and θ ∈ [0,1] the inequality

ψ(θρ +m(1−θ )σ) � (θ a)sψ(ρ)+m(1−θ a)sψ(σ),

is valid, then the function ψ is called the s− (a,m)-convex in the second sense.
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On the basis of these definitions, we will present the classes of functions that will
be the basis of our work ( [3]).

DEFINITION 9. Let h : [0,1] → [0,1] and ψ : [0,σ ] → [0,+∞) be non-negative
functions and the function h is not identically zero. If, ∀x1,x2 ∈ [0,+∞) and θ ∈ [0,1]
the inequality

ψ (θx1 +m(1−θ )x2) � hs(θ )ψ(x1)+m(1−hs(θ ))ψ(x2) (3)

is valid for m ∈ [0,1] and s ∈ [−1,1], then on [0,+∞) the function ψ is called the
(h,m)-convex modified of the first type.

DEFINITION 10. Let h : [0,1] → [0,1] and ψ : [0,σ ]→ [0,+∞) be non-negative
functions and the function h is not identically zero. If, ∀x1,x2 ∈ [0,+∞) and θ ∈ [0,1]
the inequality

ψ (θx1 +m(1−θ )x2) � hs(θ )ψ(x1)+m(1−h(θ ))sψ(x2) (4)

is valid for m ∈ [0,1] and s ∈ [−1,1], then on [0,+∞) the function ψ is called the
(h,m)-convex modified of the second type.

REMARK 1. From Definitions 9 and 10, we have

1. If h(θ ) = θ a with a∈ (0,1] , then ψ is a s− (a,m)-convex function on [0,+∞) .

2. If s = 1, then ψ is an (h,m)-convex function on [0,+∞) .

3. If h(θ ) = θ , s ∈ (0,1] and m = 1, then ψ is a s-convex function on [0,+∞) .

4. If h(θ ) = θ , s ∈ [−1,1] and m = 1, then ψ is an extended s-convex function
on [0,+∞) .

5. If h(θ ) = θ and s = m = 1, then ψ is a convex function on [0,+∞) .

One of the most important inequalities, that has attracted the attention many in-
equality experts in the last few decades, is the famous Hermite–Hadamard inequality:

ψ
(

ρ + σ
2

)
� 1

σ −ρ

∫ σ

ρ
ψ(θ )dθ � ψ(ρ)+ ψ(σ)

2
(5)

which holds for any function ψ convex on the interval [ρ ,σ ] . This inequality was
proved by the French mathematicians Charles Hermite in 1883 and independently, 10
years later, by Jacques Hadamard. The importance of this inequality is that it makes
it possible to estimate the mean value of a convex function, moreover, it provides a
refinement of the well-known Jensen inequality. Several results can be consulted in
[1, 8, 11, 4, 7, 12, 13, 14, 16, 18, 20, 23, 22, 27] as well as the references therein for more
information and other extensions of the Hermite–Hadamard inequality.

To promote the understanding of the subject, we firstly presented the definition of
the classical Riemann-Liouville fractional integrals (with 0 � ρ < θ < σ � ∞).
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DEFINITION 11. Let ψ ∈ L1[ρ ,σ ] . Then, the Riemann-Liouville fractional inte-
grals of order α ∈ C , ℜ(α) > 0 are defined by (right and left respectively):

α Iρ+ψ(x1) =
1

Γ(α)

∫ x1

ρ
(x1−θ )α−1ψ(θ )dθ , x1 > ρ ,

α Iσ−ψ(x1) =
1

Γ(α)

∫ σ

x1

(θ − x1)α−1ψ(θ )dθ , x1 < σ ,

where Γ is the Euler gamma function.

The basis of our work is the next definition of the weighted integral operators:

DEFINITION 12. Let ψ ∈ L1[ρ ,σ ] and w : [0,1] → R+ , w ∈C([0,1]) having the
first and second–order derivatives piecewise continuous on [0,1] , w(0) = 0 and w(1) =
0. Then the weighted fractional integrals are defined by (right and left respectively):

Iρ+ψ(x1) =
∫ x1

ρ
w′′
(

x1−θ
ρ+σ

2 −ρ

)
ψ(θ )dθ , x1 > ρ

Iσ−ψ(x1) =
∫ σ

x1

w′′
(

θ − x1

σ − ρ+σ
2

)
ψ(θ )dθ , x1 < σ .

REMARK 2. If w′′(θ ) = ( σ−ρ
2 )α−1θ (α−1)

Γ(α) , then we obtain the Riemann-Liouville
fractional integral, right and left.

REMARK 3. By putting w′′(θ ) ≡ 1, we obtain the classical Riemann integral.

In this paper, within the framework of generalized integral operators (Definition
12), we presented some variants of the inequality (5) for (h,m)-convex modified func-
tions.

2. Hermite–Hadamard type inequalities for (h,m)-convex modified functions

To establish our results, we need the following Lemma.

LEMMA 1. Let ψ : I = [ρ ,σ ] → R and ψ ∈C2(I◦) . If ψ ′′ ∈ L1 (I) , then

− 1
2

[
w′(1)ψ(ρ)−w′(0)ψ

(
ρ + σ

2

)
+w′(1)ψ

(
ρ + σ

2

)
−w′(0)ψ(σ)

]
(6)

+
1

σ −ρ

(
Iρ+ψ

(
ρ + σ

2

)
+ Iσ−ψ

(
ρ + σ

2

))

=
(σ−ρ)2

8

∫ 1

0
w(θ )

[
ψ ′′
(

θρ+(1−θ )
ρ+σ

2

)
+ψ ′′

(
θ

ρ+σ
2

+(1−θ )σ
)]

dθ .
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Proof. Denoting

I =
∫ 1

0
w(θ )

[
ψ ′′
(

θρ +(1−θ )
ρ + σ

2

)
+ ψ ′′

(
θ

ρ + σ
2

+(1−θ )σ
)]

dθ

= I1 + I2.

If we integrate by parts and we take into account the definition of w(θ ) , we obtain

I1 =
∫ 1

0
w(θ )ψ ′′

(
θρ +(1−θ )

ρ + σ
2

)
dθ

=
2

σ −ρ

∫ 1

0
w′ (θ )ψ ′

(
θρ +(1−θ )

ρ + σ
2

)
dθ

=
2

σ −ρ

[
2w′ (θ )
ρ −σ

ψ
(

θρ +(1−θ )
ρ + σ

2

)1

0

− 2
ρ −σ

∫ 1

0
w′′ (θ )ψ

(
θρ +(1−θ )

ρ + σ
2

)
dθ
]

=
−4

(σ −ρ)2

[(
w′(1)ψ(ρ)−w′(0)ψ

(
ρ + σ

2

))

−
∫ 1

0
w′′ (θ ) ψ

(
θρ +(1−θ )

ρ + σ
2

)
dθ
]

By using the change of the variable z = θρ +(1−θ ) ρ+σ
2 for θ ∈ [0,1] , which

gives

I1 =
−4

(σ −ρ)2

[
w′(1)ψ(ρ)−w′(0)ψ

(
ρ + σ

2

)]
+

8

(σ −ρ)3
Iρ+ψ

(
ρ + σ

2

)
.

Similarly, we obtain

I2 =
−4

(σ −ρ)2

[
w′(1)ψ

(
ρ + σ

2

)
−w′(0)ψ(σ)

]
+

8

(σ −ρ)3
Iσ−ψ

(
ρ + σ

2

)
.

Then,

I = I1 + I2

=
−4

(σ −ρ)2

[
w′(1)ψ(ρ)−w′(0)ψ

(
ρ + σ

2

)
+w′(1)ψ

(
ρ + σ

2

)
−w′(0)ψ(σ)

]

+
8

(σ −ρ)3

(
Iρ+ψ

(
ρ + σ

2

)
+ Iσ−ψ

(
ρ + σ

2

))
.

From here, it is very easy to obtain the required equality. �
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REMARK 4. If we use

w(θ ) =

⎧⎨
⎩

θ α , θ ∈ [0, 1
2 )

(1−θ )α , θ ∈ [ 1
2 ,1]

,

then

1. For α > 1, from the lemma above with only ψ(θρ +m(1− θ )σ) , the Lemma
2.1 of [5] is obtained;

2. If we choose α = 1 and, from the lemma above with only ψ(θρ +m(1−θ )σ) ,
the Lemma 2.1 of [6] is obtained;

3. If we choose α = 2 and consider the functions ψ(θρ +(1−θ )σ) and ψ(θσ +
(1−θ )ρ) , then, from (6), we obtain Lemma 2 from [31].

REMARK 5. If we consider the functions ψ(θρ + (1− θ )σ) and ψ(θσ + (1−
θ )ρ) use w(θ ) = θ (1−θ )α , then, from (6), we obtain Lemma 3.1 from [5].

REMARK 6. Under the same requirements of the previous Remark, and if we con-

sider w(θ ) = 1− (1−θ)α+1− θ α+1

α+1 , from the Lemma above with only ψ(θρ +(1−θ )σ) ,
the Lemma 2.1 of [33] is obtained.

REMARK 7. If we put w(θ ) = θ (1− θ ) , then from (6), we obtain Lemma 2.1

of [35]. However, if we put w(θ ) = θ (α+1)

α(α+1)Γ(α) , we obtain the following new equality
for Fractional Integral of Riemann-Liouville:

− 1
2Γ(α +1)

[
ψ(ρ)+ ψ

(
ρ + σ

2

)]
− σ −ρ

4Γ(α +2)

[
ψ ′(ρ)+ ψ ′

(
ρ + σ

2

)]
(7)

+
2α−1

(σ −ρ)α

[
α Iρ+ψ

(
ρ + σ

2

)
+ α Iσ−ψ

(
ρ + σ

2

)]

=
(σ−ρ)2

8Γ(α+2)

∫ 1

0
θ α+1

[
ψ ′′
(

θρ+(1−θ )
ρ+σ

2

)
+ψ ′′

(
θ

ρ+σ
2

+(1−θ )σ
)]

dθ .

THEOREM 1. Let ψ : I = [ρ ,σ ] −→ R and ψ ∈ C2(I◦) with ψ ′′ ∈ L1 (I) . If
| ψ ′′| is a convex function (h(θ ) = θ and s = m = 1 ), then the inequality∣∣∣∣∣ 2α−1

(σ −ρ)α

[
α Iρ+ψ

(
ρ + σ

2

)
+ α Iσ−ψ

(
ρ + σ

2

)]
− ψ(ρ)+ ψ

(ρ+σ
2

)
2Γ(α +1)

− (σ −ρ)
[
ψ ′(ρ)+ ψ ′ (ρ+σ

2

)]
4Γ(α +2)

∣∣∣∣∣ (8)

� (σ −ρ)2

8Γ(α +2)

[
|ψ ′′(ρ)|− |ψ ′′(σ)|

α +3
+

∣∣ψ ′′ (ρ+σ
2

)∣∣+ |ψ ′′(σ)|
α +2

]
.

holds ∀α > 0.
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Proof. It is easy to see that for the right-hand side of the identity (7), by using the
properties of the modulus and taking into account the convexity of the function ψ , we
obtain:∣∣∣∣

∫ 1

0
θ α+1

[
ψ ′′
(

θρ +(1−θ )
ρ + σ

2

)
+ ψ ′′

(
θ

ρ + σ
2

+(1−θ )σ
)]

dθ
∣∣∣∣

� |ψ ′′(ρ)|− |ψ ′′(σ)|
α +3

+

∣∣ψ ′′ (ρ+σ
2

)∣∣+ |ψ ′′(σ)|
α +2

.

This inequality shows the validity of (8). �
Now we get some new inequalities of the Hermite-Hadamard type.

THEOREM 2. Let ψ : I =
[
ρ , σ

m

] −→ R and ψ ∈ C2(I◦) with ψ ′′ ∈ L1 (I) . If
| ψ ′′| is (h,m)-convex modified of the second sense on I , then∣∣∣∣Rw +

1
σ −ρ

(
Iρ+ψ

(
ρ + σ

2

)
+ Iσ−ψ

(
ρ + σ

2

))∣∣∣∣ (9)

� (σ−ρ)2

8

[(∣∣ψ ′′ (ρ)
∣∣+ ∣∣∣∣ψ ′′

(
ρ+σ

2

)∣∣∣∣
)

A+m

(∣∣∣∣ψ ′′
(

ρ+σ
2m

)∣∣∣∣+
∣∣∣ψ ′′

(σ
m

)∣∣∣)B

]
,

with

Rw = −1
2

[
w′(1)ψ(ρ)−w′t(0)ψ

(
ρ + σ

2

)
+w′(1)ψ

(
ρ + σ

2

)
−w′(0)ψ(σ)

]
,

A =
∫ 1

0
|w(θ )|hs(θ )dθ and B =

∫ 1

0
|w(θ )| (1−h(θ ))sdθ .

Proof. From Lemma 1, it follows that∣∣∣∣Rw +
1

(σ −ρ)

(
Iρ+ψ

(
ρ + σ

2

)
+ Iσ−ψ

(
ρ + σ

2

))∣∣∣∣
� (σ −ρ)2

8
(I1 + I2) .

with

I1 =
∫ 1

0
|w(θ )|

∣∣∣∣ψ ′′
(

θρ +(1−θ )
ρ + σ

2

)∣∣∣∣dθ

=
∫ 1

0
|w(θ )|

∣∣∣∣ψ ′′
(

θρ +m(1−θ )
ρ + σ
2m

)∣∣∣∣dθ

and

I2 =
∫ 1

0
|w(θ )|

∣∣∣∣ψ ′′
(

θ
ρ + σ

2
+(1−θ )σ

)∣∣∣∣dθ

=
∫ 1

0
|w(θ )|

∣∣∣∣ψ ′′
(

θ
ρ + σ

2
+m(1−θ )

σ
m

)∣∣∣∣dθ .
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To obtain the inequality (9), just use the (h,m)-convex modified of the second
sense of |ψ ′′| , in I1 and I2 , apply the elementary properties of the module and group
like terms. �

REMARK 8. For h(θ ) = θ , that is, if ψ is a (s,m)-convex function, then

1. By taking into account Remark 4 .1, it is not difficult to obtain Theorem 2.1
of [5];

2. By taking into account Remark 4 .2, it is easy to obtain Theorem 2.1 of [6];

3. By taking into account Remark 5, we obtain Theorem 3.1 of [5].

REMARK 9. By taking into account Remark 4 .3, it is easy to obtain Theorem 3
of [31] by considering that ψ that is a convex function that is, if h(θ ) = θ and s = 1.

THEOREM 3. Let ψ : I =
[
ρ , σ

m

]−→ R and ψ ∈C2(I◦) such that ψ ′′ ∈ L1 (I) .
If |ψ |q is (h,m)-convex modified of the second sense on I , q � 1 , then∣∣∣∣Rw +

1
(σ −ρ)

(
Iρ+ψ

(
ρ + σ

2

)
+ Iσ−ψ

(
ρ + σ

2

))∣∣∣∣
� (σ −ρ)2

8

(∫ 1

0
|w(θ )|pdt

) 1
p

×
{(∣∣ψ ′′ (ρ)

∣∣q H1 + m

∣∣∣∣ψ ′′
(

ρ + σ
2m

)∣∣∣∣
q

H2

) 1
q

+
(∣∣∣∣ψ ′′

(
ρ + σ

2

)∣∣∣∣
q

H1 + m
∣∣∣ψ ′′

(σ
m

)∣∣∣qH2

) 1
q
}

,

with

Rw = −1
2

[
w′(1)ψ(ρ)−w′(0)ψ

(
ρ + σ

2

)
+w′(1)ψ

(
ρ + σ

2

)
−w′(0)ψ(σ)

]
,

H1 =
∫ 1

0
hs(θ )dt and H2 =

∫ 1

0
(1−h(θ ))sdt.

Proof. From Lemma 1 and using well–known Hölder’s integral inequality, we get∣∣∣∣Rw +
1

(σ −ρ)

(
Iρ+ψ

(
ρ + σ

2

)
+ Iσ−ψ

(
ρ + σ

2

))∣∣∣∣ (10)

� (σ −ρ)2

8

(∫ 1

0
|w(θ )|p dθ

) 1
p
{

I
1
q
3 + I

1
q
4

}
,

with I3 =
∫ 1
0

∣∣ψ ′′ (θρ +(1−θ ) ρ+σ
2

)∣∣q dθ , I4 =
∫ 1
0

∣∣ψ ′′ (θ ρ+σ
2 +(1−θ )σ

)∣∣q dθ .
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Since |ψ ′′|q is (h,m)-convex modified of the second sense on
[
ρ , σ

m

]
, we know

that for θ ∈ [0,1]∣∣∣∣ψ ′′
(

θρ +m(1−θ )
ρ + σ
2m

)∣∣∣∣
q

�hs(θ )
∣∣ψ ′′ (ρ)

∣∣q +m(1−h(θ ))s
∣∣∣∣ψ ′′

(
ρ + σ
2m

)∣∣∣∣
q

,

(11)∣∣∣∣ψ ′′
(

θ
ρ + σ

2
+m(1−θ )

σ
m

)∣∣∣∣
q

�hs(θ )
∣∣∣∣ψ ′′

(
ρ + σ

2

)∣∣∣∣
q

+m(1−h(θ ))s
∣∣∣ψ ′′

(σ
m

)∣∣∣q
(12)

Hence, by substituting (11) and (12) in (10), we get(∫ 1

0
|w(θ )|p dθ

) 1
p
{

I
1
q
3 + I

1
q
4

}
�
(∫ 1

0
|w(θ )|pdθ

) 1
p

×
{ (∫ 1

0

[
hs(θ )

∣∣ψ ′′ (ρ)
∣∣q +m(1−h(θ ))s

∣∣∣∣ψ ′′
(

ρ + σ
2m

)∣∣∣∣
q]

dθ
) 1

q

+
(∫ 1

0

[
hs(θ )

∣∣∣∣ψ ′′
(

ρ + σ
2

)∣∣∣∣
q

+m(1−h(θ ))s
∣∣∣ψ ′′

(σ
m

)∣∣∣q]dθ
) 1

q
}

=
(∫ 1

0
|w(θ )|pdθ

) 1
p
{(∣∣ψ ′′ (ρ)

∣∣q H1 + m

∣∣∣∣ψ ′′
(

ρ + σ
2m

)∣∣∣∣
q

H2

) 1
q

+
(∣∣∣∣ψ ′′

(
ρ + σ

2

)∣∣∣∣
q

H1 + m
∣∣∣ψ ′′

(σ
m

)∣∣∣qH2

) 1
q
}

which completes the proof. �

REMARK 10. By considering w(θ ) = θ (1 − θ ) and taking ψ ′′ as a function
(α,m)-convex, we obtain Theorem 3.1 of [35].

A variant of the previous result is given in the following theorem.

THEOREM 4. Let ψ : I =
[
ρ , σ

m

]−→ R and ψ ∈C2(I◦) such that ψ ′′ ∈ L1 (I) .
If |ψ |q is (h,m)-convex modified of the second sense on I, q > 1 , then∣∣∣∣Rw +

1
(σ −ρ)

(
Iρ+ψ

(
ρ + σ

2

)
+ Iσ−ψ

(
ρ + σ

2

))∣∣∣∣ (13)

� (σ −ρ)2

8

(∫ 1

0
|w(θ )|pdθ

) 1
p

×
{(∣∣ψ ′′ (ρ)

∣∣q H1 + m

∣∣∣∣ψ ′′
(

ρ + σ
2m

)∣∣∣∣
q

H2

) 1
q

+
(∣∣∣∣ψ ′′

(
ρ + σ

2

)∣∣∣∣
q

H1 + m
∣∣∣ψ ′′

(σ
m

)∣∣∣qH2

) 1
q
}

,
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with

Rw = −1
2

[
w′(1)ψ(ρ)−w′(0)ψ

(
ρ + σ

2

)
+w′(1)ψ

(
ρ + σ

2

)
−w′(0)ψ(σ)

]
,

H1 =
∫ 1

0
|hs(θ )dθ and H2 =

∫ 1

0
(1−h(θ ))sdθ .

Proof. From Lemma 1 and by using well–known power mean inequality, we have∣∣∣∣Rw +
1

(σ −ρ)

(
Iρ+ψ

(
ρ + σ

2

)
+ Iσ−ψ

(
ρ + σ

2

))∣∣∣∣ (14)

� (σ −ρ)2

8

(∫ 1

0
|w(θ )|dθ

)1− 1
q
{

I
1
q
5 + I

1
q
6

}
,

with

I5 =
(∫ 1

0
|w(θ )|

∣∣∣∣ψ ′′
(

θρ +(1−θ )
ρ + σ

2

)∣∣∣∣
q

dθ
)

and

I6 =
(∫ 1

0
|w(θ )|

∣∣∣∣ψ ′′
(

θ
ρ + σ

2
+(1−θ )σ

)∣∣∣∣
q

dθ
)

.

Since |ψ ′′|q is (h,m)-convex modified of the second sense on
[
ρ , σ

m

]
, we have

(11) and (12).
By substituting these values in (14), grouping the terms and proceeding as the

previous Theorem, we obtain the inequality (13).
Theh, this completes the proof. �

REMARK 11. By taking into account Remark 10, it is easy to obtain the Theorem
3.2 of [35] from the above result.

3. Conclusions

Although we have pointed out throughout the article that our results have special
cases, some of which are found in the literature, we wanted to point out one more detail.

If we consider the function

w(θ ) =

⎧⎨
⎩

θ 1+α , θ ∈ [0, 1
2

)
(1−θ )1+α , θ ∈ [ 1

2 ,1],

from Lemma 1, we will obtain the equality

− 1+ α
2α

[
ψ
(

3ρ + σ
4

)
+ ψ

(
ρ +3σ

4

)]
+

2α−1Γ(α +2)
(σ −ρ)α (15)

×
[
Iα(

3ρ+σ
4

)+ψ
(

ρ+σ
2

)
+Iα(

ρ+3σ
4

)+ψ (σ)+Iα(
3ρ+σ

4

)−ψ (ρ)+Iα(
ρ+3σ

2

)−ψ
(

ρ+σ
2

)]
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=
(σ −ρ)2

8

{∫ 1/2

0
t1+α

[
ψ ′′
(

ta+(1− t)
ρ + σ

2

)
+ ψ ′′

(
t
ρ + σ

2
+( 1− t) σ

)]
dt

+
∫ 1

1/2
(1−θ )1+α

[
ψ ′′
(

ta+(1− t)
ρ + σ

2

)
+ ψ ′′

(
t
ρ + σ

2
+(1− t)σ

)]
dt

}
.

This result is better than the one offered in Remark 7 and it is not reported in the
literature.

In this way, we have the following inequality:

THEOREM 5. Let ψ : I = [ρ ,σ ] −→ R and ψ ∈ C2(I◦) with ψ ′′ ∈ L1 (I) . If
| ψ ′′| is a convex function (h(θ ) = θ and s = m = 1 ), then the inequality∣∣∣∣∣2

α−1Γ(α +2)
(σ −ρ)α

[
Iα(

3ρ+σ
4

)+ψ
(

ρ + σ
2

)
+ Iα(

ρ+3σ
4

)+ψ (σ) (16)

+Iα(
3ρ+σ

4

)−ψ (ρ)+Iα(
ρ+3σ

2

)−ψ
(

ρ+σ
2

)]
−1+α

2α

[
ψ
(

3ρ+σ
4

)
+ψ

(
ρ+3σ

4

)]∣∣∣∣
� (σ −ρ)2

2α+5 (α +2)

[
(|ψ ′′(ρ)|− |ψ ′′(σ)|)(α2 +6α +10

)
2(α +3)

+(α +3)
(∣∣∣∣ψ ′′

(
ρ + σ

2

)∣∣∣∣+ ∣∣ψ ′′(σ)
∣∣)] .

holds ∀α > 0.

Proof. From (15) and the module properties, we can write∣∣∣∣2α−1Γ(α +2)
(σ −ρ)α

×
[
Iα(

3ρ+σ
4

)+ψ
(

ρ+σ
2

)
+Iα(

ρ+3σ
4

)+ψ (σ)+Iα(
3ρ+σ

4

)−ψ (ρ)+Iα(
ρ+3σ

4

)−ψ
(

ρ+σ
2

)]

−1+ α
2α

[
ψ
(

3ρ + σ
4

)
+ ψ

(
ρ +3σ

4

)]∣∣∣∣
� (σ −ρ)2

8

(∫ 1/2

0
t1+α

∣∣∣∣ψ ′′
(

ta+(1− t)
ρ + σ

2

)
+ ψ ′′

(
t
ρ + σ

2
+(1− t)σ

)∣∣∣∣dt

+
∫ 1

1/2
(1−θ )1+α

∣∣∣∣ψ ′′
(

ta+(1− t)
ρ + σ

2

)
+ ψ ′′

(
t
ρ + σ

2
+(1− t)σ

)∣∣∣∣dt

)
.

Since ψ is a convex for the integrals, we get:

|I1| =
∫ 1/2

0
t1+α

∣∣∣∣ψ ′′
(

ta+(1− t)
ρ + σ

2

)
+ ψ ′′

(
t
ρ + σ

2
+( 1− t) σ

)∣∣∣∣dt

�
(∣∣ψ ′′(ρ)

∣∣− ∣∣ψ ′′(σ)
∣∣)∫ 1/2

0
θ α+2dθ+

(∣∣∣∣ψ ′′
(

ρ + σ
2

)∣∣∣∣+ ∣∣ψ ′′(σ)
∣∣)∫ 1/2

0
θ α+1dθ
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=
|ψ ′′(ρ)|− |ψ ′′(σ)|

2α+3 +

∣∣ψ ′′ (ρ+σ
2

)∣∣+ |ψ ′′(σ)|
2α+2 ,

and

|I2| =
∫ 1

1/2
(1−θ )1+α

∣∣∣∣ψ ′′
(

ta+(1− t)
ρ + σ

2

)
+ ψ ′′

(
t
ρ + σ

2
+(1− t)σ

)∣∣∣∣dt

�
∫ 1

1/2
(1−θ )1+α

[
θ
∣∣ψ ′′(ρ)

∣∣+(1−θ )
∣∣∣∣ψ ′′

(
ρ+σ

2

)∣∣∣∣
+θ
∣∣∣∣ψ ′′

(
ρ + σ

2

)∣∣∣∣+(1−θ )
∣∣ψ ′′(σ)

∣∣dθ
]

=
(∣∣ψ ′′(ρ)

∣∣− ∣∣ψ ′′(σ)
∣∣)∫ 1

1/2
(1−θ )1+α θdθ

+
(∣∣∣∣ψ ′′

(
ρ + σ

2

)∣∣∣∣+ ∣∣ψ ′′(σ)
∣∣)∫ 1

1/2
(1−θ )1+α dθ

=
(α +4)(|ψ ′′(ρ)|− |ψ ′′(σ)|)

2α+3 (α +2)(α +3)
+

∣∣ψ ′′ (ρ+σ
2

)∣∣+ |ψ ′′(σ)|
2α+2 (α +2)

.

By summing the last inequality, we get:

|I1|+ |I2|

� |ψ ′′(ρ)|− |ψ ′′(σ)|
2α+3 +

∣∣ψ ′′ (ρ+σ
2

)∣∣+ |ψ ′′(σ)|
2α+2

+
(α +4)(|ψ ′′(ρ)|− |ψ ′′(σ)|)

2α+3 (α +2)(α +3)
+

∣∣ψ ′′ (ρ+σ
2

)∣∣+ |ψ ′′(σ)|
2α+2 (α +2)

=
|ψ ′′(ρ)|− |ψ ′′(σ)|

2α+3

(
1+

α +4
(α +2)(α +3)

)
+

(∣∣ψ ′′ (ρ+σ
2

)∣∣+ |ψ ′′(σ)|)(α +3)
2α+2(α +2)

.

Or, by multiplying both sides of the inequality by the expression (σ−ρ)2
8 , we get

(σ −ρ)2

8
(|I1|+ |I2|)

� (σ −ρ)2

8

[ |ψ ′′(ρ)|− |ψ ′′(σ)|
2α+3

(
1+

α +4
(α +2)(α +3)

)

+

(∣∣ψ ′′ (ρ+σ
2

)∣∣+ |ψ ′′(σ)|) (α +3)
(α +2)2α+2

]

=
(σ −ρ)2

(α +2)2α+5

[
(|ψ ′′(ρ)|− |ψ ′′(σ)|)(α2 +6α +10

)
2(α +3)

+
(∣∣∣∣ψ ′′

(
ρ + σ

2

)∣∣∣∣+ ∣∣ψ ′′(σ)
∣∣)(α +3)

]

The proof is completed. �
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Finally, we must remember that the presented results contain generalized inequal-
ities wich are valid for convex functions, m-convex functions, h -convex functions, and
s-convex functions in the second sense, and defined in a closed interval of negative
non-real numbers. It is clear that the problem of extending these results to the case of
(h,m)-convex functions of the first type remains open.
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[1] M. A. ALI, J. E. NÁPOLES VALDÉS, A. KASHURI AND Z. ZHANG, Fractional non conformable
Hermite-Hadamard inequalities for generalized ϕ -convex functions, Fasciculi Mathematici, 64,
(2020), 5–16, https://doi.org/10.21008/j.0044-4413.2020.0007 .

[2] M. ALOMARI, M. DARUS AND S. S. DRAGOMIR, New Inequalities Of Hermite–Hadamard Type
for Functions Whose Second Derivatives absolute Values Are Quasi–Convex, Tamkang Journal Of
Mathematics, 41 4, (2010) 353–359.
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