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HERMITE-HADAMARD WEIGHTED INTEGRAL
INEQUALITIES FOR (4,m)-CONVEX MODIFIED FUNCTIONS

BAHTIYAR BAYRAKTAR* AND JUAN E. NAPOLES VALDES

(Communicated by S. S. Dragomir)

Abstract. In this paper, some new integral inequalities of the Hermite—Hadamard type are were
obtained for (h,m)-convex modified functions. The results are obtained on the basis of the
introduced definition of a generalized weighted integral operator by using the convexity property,
the well-known Holder’s inequality and its modification. Some results existing in the literature
are some special cases of our results.

1. Introduction

A function y: [p, 0] — R, is said to be convex if y(0x;+(1—0)x;) <Oy(x )+
(I —6)y(x2) holds Vxj,x; € [p,o] and 6 € [0,1]. If the above inequality is reversed,
then the function y will be concave on [p, G].

Convex functions have been summed up widely hypothetically ; these extensions
incorporate the m-convex, r-concave, h-convex, s-convex, (h,m)-convex functions
and numerous others. Readers interested in its multiple ramifications and extensions
can consult [26], where a fairly complete overview of the development of the convex
function concept was presented.

DEFINITION 1. [32] Let y:[0,0] = R and m € [0,1], If Vx;,x; € [0,0] and
0 € [0,1] the inequality

V(0x1+ (1 —0)x) < Oy(x))+m(l—0)y(xy) ()
holds. Then y is said to be m-convex on [0, 5].

If the above inequality is holds in reverse, then we say that the function y is
m-concave.

The following definitions are the successive extensions of the concept of convex
function and, as we will see later, they are the particular cases of our Definition.
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DEFINITION 2. [9,15] Let y:[0,0] — R and s € (0,1]. If, ¥x;,x, € [0,0] and
0 € [0,1] the inequality w(6x;+ (1—0)x2) < 0%y (x1)+ (1 —6%)w(xy) is valid, then
on [0, 0] the function v is called the s-convex(in the first sense).

DEFINITION 3. [9,15] Let y:[0,0] — R and s € (0,1]. If Vx;,x; € [0,0] and
0 € [0,1] the inequality w(0x;+ (1—0)x2) < 6y (x1)+ (1 —0)*w(xy) is valid, then
on [0, 0] the function y is called the s-convex(in the second sense).

DEFINITION 4. [34] Let y:[0,0] — R and s € [—1,1]. If Vx;,x; € [0,0] and
0 € (0,1) the inequality y(0x;+ (1 —0)x2) < 0°y(x1)+ (1 —0)°y(xy) is valid, then
on [0,0] the function y is called the extended s-convex.

In [21], the present class of (a,m)-convex functions as follows.

DEFINITION 5. Let y:[0,0] — R and o,m € [0,1]. If ¥x;,x; € [0,0] and 6 €
[0,1] and the inequality w(0x; +m(l — 0)xz) < 0%y (x1) +m(1 — %) w(x,) is valid,
then on [0, o] the function v is called the (a,m)-convex.

In [20], the following definition is introduced.

DEFINITION 6. Let :[0,1] — R and v : [0,6] — [0, +<0) are non-negative func-
tions and the function % is not identically zero. If Vx;,x, € [0,0] and 6 € [0,1] the
inequality

W (8x; +m(1—0)x2) <h(0)y(x1) +mh(1—6)y(x) 2)

is fulfilled for m € [0,1], then on [0, o] the function v is called the (h,m)-convex.

If the above inequality is reversed, then y is said to be (h,m)-concave. Note
that in Definition 6, if we take h(0) = 6, then we get the definition of an m-convex
function, and if, additionally, we take m = 1, then we get the definition of classical
convexity.

In [25], the authors presented the class of s — (a,m)-convex functions as follows
(“redefined” in [35]).

DEFINITION 7. Let y: [0,+o0) — [0,40) and (a,m) € [0,1]?, and s € (0,1]. If,
Vp,0 €]0,+e0) and 6 € [0,1] the inequality

w(0p +m(1-0)o) < 0“y(p)+m(l—6%)y(o)
is valid, then the function y is called the s — (a,m)-convex in the first sense.

DEFINITION 8. Let y : [0,420) — [0,+c0) and a,m € [0,1], and s € (0,1]. If,
Vp,o € [0,+<0) and 6 € [0,1] the inequality

y(0p +m(1-06)c) < (6°)yw(p)+m(l—0%y(0),

is valid, then the function  is called the s — (a,m)-convex in the second sense.
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On the basis of these definitions, we will present the classes of functions that will
be the basis of our work ( [3]).

DEFINITION 9. Let i :[0,1] — [0,1] and y : [0,0] — [0,+e<) be non-negative
functions and the function 4 is not identically zero. If, Vx;,x; € [0,+e0) and 6 € [0,1]
the inequality

v (0x1 +m(1— 0)x2) <K (8)y(x1) +m(1—h(0))y(x2) 3)

is valid for m € [0,1] and s € [—1,1], then on [0,+o0) the function y is called the
(h,m)-convex modified of the first type.

DEFINITION 10. Let &:[0,1] — [0,1] and v : [0,0] — [0, +e<) be non-negative
functions and the function 4 is not identically zero. If, Vx;,x; € [0,+e<) and 6 € [0,1]
the inequality

v (0x1 +m(1 - 0)x2) <K (8)w(x1) +m(1—h(6))y(x:) 4)

is valid for m € [0,1] and s € [—1,1], then on [0,+oco) the function y is called the
(h,m)-convex modified of the second type.

REMARK 1. From Definitions 9 and 10, we have

1. If h(6) = 6 with a € (0, 1], then y isa s — (a,m)-convex function on [0, +o°).
2. If s=1, then vy is an (h,m)-convex function on [0, o).

3. If () =06, s€(0,1] and m =1, then y is a s-convex function on [0, 4o0).
4. If (@) =6, s [—1,1] and m =1, then y is an extended s-convex function

n [0,4c).
5. If h(0) = 6 and s=m =1, then y is a convex function on [0, +<o).

One of the most important inequalities, that has attracted the attention many in-
equality experts in the last few decades, is the famous Hermite-Hadamard inequality:

W<p+0) / (o (p);rw( ) 5)

which holds for any function W convex on the interval [p,o]. This inequality was
proved by the French mathematicians Charles Hermite in 1883 and independently, 10
years later, by Jacques Hadamard. The importance of this inequality is that it makes
it possible to estimate the mean value of a convex function, moreover, it provides a
refinement of the well-known Jensen inequality. Several results can be consulted in
[1,8,11,4,7,12,13,14,16,18,20,23,22,27] as well as the references therein for more
information and other extensions of the Hermite—-Hadamard inequality.

To promote the understanding of the subject, we firstly presented the definition of
the classical Riemann-Liouville fractional integrals (with 0 < p < 6 < 0 < ).
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DEFINITION 11. Let y € L;[p, c]. Then, the Riemann-Liouville fractional inte-
grals of order o € C, R(o) > 0 are defined by (right and left respectively):

1 X1 _
o ¥(n) = gy /p (x1—0)* 'y(0)d6, x> p,
1

(o)
o w(x) = /(G—xl)“’lw(e)de, X <o,

[(a) Jx
where I is the Euler gamma function.

The basis of our work is the next definition of the weighted integral operators:

DEFINITION 12. Let y € Li[p,0] and w: [0,1] = R™, w € C([0,1]) having the
first and second—order derivatives piecewise continuous on [0, 1], w(0) =0 and w(1) =
0. Then the weighted fractional integrals are defined by (right and left respectively):

! x1—0
%+W@O:i/ W”(;%——JVK@d& x| >p
p = P

o 1" 6—x1
IO'—W(XI):/ w G_ipﬁ l//(@)d97 x1 <O.

X1 2
(727)" ol

REMARK 2. If w’(6) = "~ - then we obtain the Riemann-Liouville
fractional integral, right and left.

REMARK 3. By putting w”(8) = 1, we obtain the classical Riemann integral.

In this paper, within the framework of generalized integral operators (Definition
12), we presented some variants of the inequality (5) for (h,m)-convex modified func-
tions.

2. Hermite—Hadamard type inequalities for (%,m)-convex modified functions

To establish our results, we need the following Lemma.

LEMMA 1. Let w:1=[p,0] = R and y € C*(I°). If ' €Ly (I), then
=5 rove - ow (25%) wviw (P3) -wvowe]  ©

1 p+o p+o
w5 (o (557 riev (559))
2

_ (c—gp) /OIW(O) [w” <9p+(1—9) %) ! (9%4&1—9)0)%9.
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Proof. Denoting

zz/olw(e) [1,/’ (ep+(1—e)¥) Ly <e¥+(1—e)oﬂde
— I+ D

If we integrate by parts and we take into account the definition of w(8), we obtain

I :/O1 w(e)w”<ep+(1— )”;G>de

2ty / pto
_G—_pow(e)w<0p+(l—) 5 )6

2 [2w(8) p+o\
_G——p[p——aw<ep+(l_9)7 .
2 1

5 w”(@)u/<0p+(1 —e)’”Ta>de]

- (0%4,))2 [(w’(l)w(m —W'(OW’(¥>>

—/Olw”(e) w(@p—i—(l—@)p;G)dG}

By using the change of the variable z = 8p + (1 — 60) 222 for 0 € [0,1], which
gives

4 'W, W p+o\] 8 p+o
h= o W) <o>w( : )_+(G_p)31p+w( ! )

Similarly, we obtain

B W (252) wowie)| + v (25,

=,y {w’(l)l{/(p) —w(0)y (%) +w(Dy (%) = w’(0>w(6)}

e (232) e (257)

From here, it is very easy to obtain the required equality. [J



240 B. BAYRAKTAR AND J. E. NAPOLES VALDES

REMARK 4. If we use
0%, 6<[0,1)
W(e) = )
(1 - 9)06’ 0¢c [%71]
then

1. For a > 1, from the lemma above with only y(0p +m(1 —0)c), the Lemma
2.1 of [5] is obtained;

2. If we choose oo =1 and, from the lemma above with only y(6p +m(1—0)0),
the Lemma 2.1 of [6] is obtained;

3. If we choose o =2 and consider the functions y(0p + (1—6)0) and y(60 +
(1—-0)p), then, from (6), we obtain Lemma 2 from [31].

REMARK 5. If we consider the functions y(6p + (1 —0)o) and y(60c+ (1 —
0)p) use w(0) =0 (1 —6)%, then, from (6), we obtain Lemma 3.1 from [5].

REMARK 6. Under the same requirements of the previous Remark, and if we con-
o+l o+l
sider w(60) = % , from the Lemma above with only w(6p + (1—6)0),

the Lemma 2.1 of [33] is obtained.

REMARK 7. If we put w(6) = 6(1 — 0), then from (6), we obtain Lemma 2.1
of [35]. However, if we put w(0) = %,

for Fractional Integral of Riemann-Liouville:

—72“0:“) {w(p)+w<p;(jﬂ— f: )[W(P)Jrl!f (p;(f)] (7
Capw v (57) w( )]
:%/Olea“ {w <9p+(1 e)”;r >+u/ ( p;’ +(1-0) )] ao.

THEOREM 1. Let y:1=[p,0] — R and vy € C*(I°) with y" € L, (I). If
| | is a convex function (h(0) = 6 and s = m = 1), then the inequality

we obtain the following new equality

2070 T, A p+o\] wip)+v (%)
o v (55°) ¢ e (P50 - Yo
(o-p)[V(p)+y (5] ‘ )

4T (o +2)

(c—p) |W”(P)I—\W”(G)I+’W ()| +1y'(o )]

= 8T (o +2) a+3 a+2 '

holds Yoo > 0.
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Proof. 1t is easy to see that for the right-hand side of the identity (7), by using the
properties of the modulus and taking into account the convexity of the function y, we

obtain:
1
/0 9o+l [‘I/U <9P+(1 _ 9)“%) +y (9P+TG+(1 —O)Gﬂde‘

V' (p)| = lv"(o)] n [y (552)] + v (o))
o+3 o+2 '

N

This inequality shows the validity of (8). [

Now we get some new inequalities of the Hermite-Hadamard type.

THEOREM 2. Let y: 1= [p,2] — R and y € C*(I°) with y" € L (I). If
| | is (h,m)-convex modified of the second sense on 1, then

o e (252) 0 (25)
<2 (i (1) wom v () )

with

Ry, = —% [w’(l)u/(p) —w(0)y ("*%) +w(1)y (#) —W’(OW(G)} )

1 1
A:/O Ww(0)[1*(8)d0 and IB%:/O w(0)[ (1—h(6))'d6.

Proof. From Lemma 1, it follows that

o r(257) ()

< (G_8P>2 (h+D).
with
= o) |v (ep+(1-0) 252 ) as
— [ wto|v (op-+mt1-0)2-%) a0
and
b= 1|w(6)‘ly” 6p+6+(1—6)6>’d6
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To obtain the inequality (9), just use the (h,m)-convex modified of the second
sense of |y”], in I} and I, apply the elementary properties of the module and group

like terms. [J
REMARK 8. For h(0) = 0, that is, if v is a (s,m)-convex function, then

1. By taking into account Remark 4.1, it is not difficult to obtain Theorem 2.1
of [51];

2. By taking into account Remark 4.2, it is easy to obtain Theorem 2.1 of [6];

3. By taking into account Remark 5, we obtain Theorem 3.1 of [5].

REMARK 9. By taking into account Remark 4.3, it is easy to obtain Theorem 3
of [31] by considering that y that is a convex function that is, if #(6) =60 and s = 1.

THEOREM 3. Let w:1=[p,2] — R and y € C*(I°) such that y" € L, (I).
If |\w|? is (h,m)-convex modified of the second sense on 1, q > 1, then

A A )
<@(/Ol|w<e>|"dt)’l’
v (250)=)

ey (2)'5)',

x {(lw”(p)VHl +m
()

Ro=—3 [vwio)-wow (252 +www (252) -wow)|.

lefolh“‘(e)dt and H2:/01(1—h(6))“'dt.

Proof. From Lemma 1 and using well-known Hélder’s integral inequality, we get

o DRTCL) [

2 (o) i)

with 5 = [y |y (0p +(1—-0)252)|"a0, L = [y |y" (6232 +(1-6)0)|"d6.
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Since |y"|? is (h,m)-convex modified of the second sense on [p, 2], we know

that for 6 € [0, 1]
EAYE
v (%)

(11)

v Gl

12)

)

q
v (0 4m(1-0) 2N <o)y ()] +m(1 - h(o))

w22
Hence, by substituting (11) and (12) in (10), we get
ORE : 13$+Lfl’ < ([ weeyrae ’
! I
{ (f [ v @isma-no | (2:2) [ a )
« (ol (559 v (@)l)'}
- ([ |w<e>”de)’l’{(|w”<p>|qm+ " “’(p;—f) qﬂz)‘lf
(v (25) s ()’

which completes the proof. [

+m(1—h(6))

'u/ ( p;GJr (1—9)%)

+m(1—h(0))°

REMARK 10. By considering w(6) = 6(1 — 0) and taking y” as a function
(or,m)-convex, we obtain Theorem 3.1 of [35].

A variant of the previous result is given in the following theorem.

THEOREM 4. Let y:1=[p,2] — R and y € C*(I°) such that y" € L, (I).
If |y|? is (h,m)-convex modified of the second sense on I, q > 1, then

Rw+ﬁ<p+w<p+0>+m_w<¥>>l (13)
< (60— P </| Pd9>
x {(IW”(p)|”H1+ m‘u/” (%) qHzf
qH1+m‘W"<%>"1H2>;},

(e




244 B. BAYRAKTAR AND J. E. NAPOLES VALDES

with
Ro=—3 Yo WO (P32) 4wy (252) -woie)|.
le/ol h(6)d6 and sz/ol(l—h(e))‘de.

Proof. From Lemma 1 and by using well-known power mean inequality, we have

o o (252) e (232) s
([ o) )

= ([ o]y o0+ 1-0)25%) as)

16:<01|w(6) v ( p;G+(1—e)o) qd@).

Since |y"|? is (h,m)-convex modified of the second sense on [p, 2], we have
(11) and (12).

By substituting these values in (14), grouping the terms and proceeding as the
previous Theorem, we obtain the inequality (13).

Theh, this completes the proof. [l

with

and

REMARK 11. By taking into account Remark 10, it is easy to obtain the Theorem
3.2 of [35] from the above result.

3. Conclusions

Although we have pointed out throughout the article that our results have special
cases, some of which are found in the literature, we wanted to point out one more detail.
If we consider the function
olve,  gelol)
w(0) =
(1-0)"", 0 €[3,1],

from Lemma 1, we will obtain the equality

l+o 3p+o p+30 2971 (o +2)
e () v (505

Py ¥ (257 7 VO T V)0 v (22°)
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:(G_p)2 {/01/2t”°‘ [l//”(taJr(l—t)p;G)+l//”<th2rG+(1—t) G)]d’
+/ 1+°‘[ (m+(1—t)pJ2rG>+w”<tpga+(1—t)0)}df}~

This result is better than the one offered in Remark 7 and it is not reported in the
literature.
In this way, we have the following inequality:

THEOREM 5. Let y: I = [p,0] — R and vy € C*(I°) with w' € Ly (I). If
| v"| is a convex function (h(0) = 6 and s = m = 1), then the inequality

27T (042) | 4 +0 o
oo ey Y (57) egey v "

) V0 (pM) e () e (5)]

(c—p)* (¥ (p)l—Iv"(0)]) (a + 60+ 10)
2045 (g4 2) 2(a+3)

oo (v (257) )]

holds Yoo > 0.

Proof. From (15) and the module properties, we can write

2971 (0 +2)
(c—p)*

) l’f@)*"’(p?)“‘("pﬁcyw( )+I‘(”3p+o) w(p)+1‘("#)w<¥>
e C]
g(a p)’ (/Ol/zt”“ 74 (ta+(1—t)p )+1V”<th2rG+(1—t)a)

2
+//2 )+ (m+ 1_; ) ( (l—t)0'> dt).

Since y is a convex for the integrals, we get:

1/2
|11\:/0 fito l//”(ta—k(l—t)p_;G)+W//<tp;G+(1—t) a)

< (|1V”(p)|—|1V”(cr)|)/01/29a+2d9+ (‘w”(%)‘ﬂw”(a)}) /01/290:+1d9

dt
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v’ (52)] + 1y (o)
Do+2 ’

' (p)—1v"(0)] N
- 2043

and

= [ -0
< [,0-0 lolyp)|+(1-0)

1/2

dt

v’ (m+(l—t)pj2LG>+w”<tp;G+(1—t)a>
v (%)
10|y (M) +(1—9)}1{/’(0)|d9]

2
1
= (|v"(p)| - |w (0)|)/1/2(1—e)1+ 046

+ ( 74 (’HTG> +|n//’(a)}) /1;2(1—9)”%19

(e+4) (" Pl =1v"(@)) , [v' (52) [+ (o)

- 2083 (o0 +2) (a4 3) + 2042 (g +2)

By summing the last inequality, we get:
1|+ ||

< W) -1y"(9)l
= Q0+3

[y (B52)]+|y"(0)|
2a+2

+

(a4 (v (P~ [¥" (o)) v (552)] + v (0)]
2083 (o0 +2) (e +3) 2042 (a+2)

W)l 1v"(0) o+4 (v (252) |+ [v"(0)]) (@ +3)
G (” <a+2><a+3>> M ey |

. . . . . . (6—p)?
Or, by multiplying both sides of the inequality by the expression “—

, we get

(0] +|])

(c—p)? [I¥"(p)|— v (o) o +4
8 [ 2043 <1+((x+2)((x+3)>

(lv" (55%)|+v"(0)]) (e +3)
(0+2)20+2

__(o-p) [(w”(p)—w”(a))(a2+6a+10)
(o +2)204 2(0+3)

# (v (232 + @) @+3)

The proof is completed. [J]

(c—p)?
8

<

+
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Finally, we must remember that the presented results contain generalized inequal-

ities wich are valid for convex functions, m-convex functions, /-convex functions, and
s-convex functions in the second sense, and defined in a closed interval of negative
non-real numbers. It is clear that the problem of extending these results to the case of
(h,m)-convex functions of the first type remains open.
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