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GENERALIZED FRACTIONAL OSTROWSKI TYPE

INEQUALITIES VIA h− s–CONVEX FUNCTION

ALI HASSAN ∗ AND ASIF RAZA KHAN

(Communicated by S. S. Dragomir)

Abstract. We are introducing very first time a generalized class named it the class of h− s -
convex functions. This class of functions contains many important classes including class of
h -convex, Godunova-Levin s -convex, s -convex in the 2nd kind and hence contains class of con-
vex and MT -convex functions. It also contains class of P -convex functions, class of Godunova-
Levin functions and the class of ordinary convex functions. Also, we would like to state the gen-
eralization of the classical Ostrowski inequality via fractional integrals with respect to another
function, which is obtained for functions whose first derivative in absolute values is h−s -convex
function. Moreover we establish some Ostrowski type inequalities via fractional integrals with
respect to another function and their particular cases for the class of functions whose absolute
values at certain powers of derivatives are h− s -convex functions by using different techniques
including Hölder’s inequality and power mean inequality. Also, various established results would
be captured as special cases. Moreover, some applications in terms of special means would also
be given.

1. Introduction

In this section, from literature, we recall and introduce some definitions for various
convex functions.

DEFINITION 1. [3] A function  : I ⊂ R → R is said to be convex(concave), if

 (tx+(1− t)y) � (�)t(x)+ (1− t)(y),

∀x,y ∈ I , t ∈ [0,1].

DEFINITION 2. [3] A function  : I ⊂R→R is said to be MT -convex(concave),
if  is a non-negative and

 (tx+(1− t)y) � (�)
√

t

2
√

1− t
(x)+

√
1− t

2
√

t
(y),

∀x,y ∈ I , t ∈ [0,1].
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DEFINITION 3. [17] We say that  : I ⊂ R → R is a P-convex(concave), func-
tion, if  is a non-negative and ∀x,y ∈ I and t ∈ [0,1] we have

 (tx+(1− t)y) � (�)(x)+(y).

DEFINITION 4. [20] We say that  : I ⊂ R → R is a Godunova-Levin con-
vex(concave), function, if  is non-negative and ∀x,y ∈ I and t ∈ (0,1) we have

 (tx+(1− t)y) � (�)
1
t
(x)+

1
1− t

(y).

DEFINITION 5. [4] Let s ∈ [0,1]. A function  : I ⊂ [0,) → R is said to be
s-convex(concave), in the 2nd kind, if

 (tx+(1− t)y) � (�)ts(x)+ (1− t)s(y),

∀x,y ∈ I , t ∈ [0,1].

DEFINITION 6. [9] We say that the function  : I ⊂ R → [0,) is of Godunova-
Levin s-convex(concave), function, with s ∈ [0,1], if

 (tx+(1− t)y) � (�)
1
ts
(x)+

1
(1− t)s(y),

∀t ∈ (0,1) and x,y ∈ I.

DEFINITION 7. [33] Let h : J ⊆ R → [0,) with h not identical to 0. We say
that  is an h -convex(concave), function if ∀x,y ∈ I, we have

 (tx+(1− t)y) � (�)h(t)(x)+h(1− t)(y),

∀t ∈ [0,1].

In almost every field of science, inequalities play an important role. Although it is
very vast discipline but our focus is mainly on Ostrowski type inequalities. In 1938,
Ostrowski established the following interesting integral inequality for differentiable
mappings with bounded derivatives. This inequality is well known in the literature
as Ostrowski inequality.

THEOREM 1. [30] Let  : [a,b]→R be differentiable on (a,b) with the property
that | ′(t)| � M ∀t ∈ (a,b). Then

∣∣∣∣(x)− 1
b−a

∫ b

a
(t)dt

∣∣∣∣� (b−a)M

⎡
⎣1

4
+

(
x− a+b

2

b−a

)2
⎤
⎦ , (1)

∀x ∈ (a,b).
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Ostrowski inequality has applications in numerical integration, probability and
optimization theory, statistics, information and integral operator theory. Until now,
a large number of research papers and books have been written on generalizations of
Ostrowski inequalities and their numerous applications in [11]–[16] and [21]–[25].

DEFINITION 8. The Riemann-Liouville integral operator of order  > 0 with a �
0 is defined as

Ja (x) =
1

( )

∫ x

a

(t)
(x− t)1− dt,

J0
a(x) = (x). (2)

Here ( ) =
∫ 
0 e−uu−1du is the Gamma function. In case of  = 1, the fractional

integral reduces to the classical integral.

DEFINITION 9. [31] The Riemann-Liouville integrals Ia+ and Ib− of  ∈
L1[a,b] having order  > 0 with a � 0, a < b are defined by

Ia+(x) =
1

( )

∫ x

a

(t)

(x− t)1−
dt, x > a,

and

Ib−(x) =
1

( )

∫ b

x

(t)

(t− x)1−
dt, x < b,

respectively. Note that I0
a+(x) = I0

b−(x) = (x).

DEFINITION 10. [31] Let g : [a,b] : R be an increasing and positive function on

[a,b], having a continuous derivatives g′(x) on (a,b). The fractional integrals Ia+,g

and Ib−,g of  with respect to the function g on [a,b] of order  > 0 are defined by

Ia+,g(x) =
1

( )

∫ x

a

g′(t)(t)

(g(x)−g(t))1−
dt, x > a,

and

Ib−,g(x) =
1

( )

∫ b

x

g′(t)(t)

(g(t)−g(x))1−
dt, x < b,

respectively.

REMARK 1. If we replace g(t) = t the above fractional integrals reduce to the
Riemann-Liouville fractional integrals.
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THEOREM 2. [16] Let  : I → R be differentiable mapping on I0, with a,b ∈ I ,
a < b  ′ ∈ L1[a,b] and for  > 1, Montgomery identity for fractional integrals holds:

(x) =
( )
b−a

(b− x)1−Ja (b)− J−1
a (P1(x,b)(b))+ Ja (P1(x,b) ′(b)),

where P1(x, t) is the fractional Peano Kernel defined by:

P1(x,t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t −a
b−a

( )
(b− x)−1

, if t ∈ [a,x],

t −b
b−a

( )
(b− x)−1

, if t ∈ (x,b].

THEOREM 3. [16] Let  : I → R be differentiable mapping on I0, with a,b ∈ I ,
a < b  ′ ∈ L1[a,b] and for  > 1, generalized Montgomery identity for fractional
integrals holds:

(1− )(x) =
( )
b−a

(b− x)1−Ja (b)− J−1
a (P2(x,b)(b))

− (b− x)1−

2(b−a)1− J0
a(a)+ Ja (P2(x,b) ′(b)), (3)

where P2(x, t) is the fractional Peano Kernel defined by:

P2(x,t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t− 
b−a

( )
(b− x)−1

, if t ∈ [a,x],

t −
b−a

( )
(b− x)−1

, if t ∈ (x,b].

∀x ∈ [ ,] for  = a+  b−a
2 and  = b−  b−a

2 .

Throughout this paper, we will assume that g : [a,b] → R is an increasing and
positive function on [a,b], having a continuous derivative g′(x) on (a,b). In order to
prove our results, we need the following Lemma.

LEMMA 1. [27] Let  : [a,b] → R be a differentiable mapping on (a,b) with
a < b. If  ′ : [a,b]→R be integrable on [a,b]. Then the identity for fractional integrals
holds with respect to another function

(x)−( +1)

⎡
⎣ Ix+,g(b)

2(g(b)−g(x))
+

Ix−,g(a)

2(g(x)−g(a))

⎤
⎦

=
x−a

2(g(x)−g(a))

∫ 1

0

 ′(tx+(1− t)a)

(g(tx+(1− t)a)−g(a))−
dt

− b− x

2(g(b)−g(x))

∫ 1

0

 ′(tx+(1− t)b)

(g(b)−g(tx+(1− t)b))−
dt.
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Throughout this paper, we denote


g

b
a (x) =

[
(x−a)+1

2(g(x)−g(a))
+

(b− x)+1

2(g(b)−g(x))

]
,


,g b

a (x) = (x)−( +1)

⎡
⎣ Ix+,g(b)

2(g(b)−g(x))
+

Ix−,g(a)

2(g(x)−g(a))

⎤
⎦ .

We also make use of the Euler’s beta function, which is for x,y > 0 defined as

B(x,y) =
∫ 1

0
tx−1(1− t)y−1dt =

(x)(y)
(x+ y)

.

The main aim of our study is to present Ostrowski inequality for fractional inte-
grals with respect to another function, which is generalization of the classical Ostrowski
inequality (1) via h− s-convex, which is given in Section 2. Moreover we establish
some Ostrowski type inequalities for the class of functions whose derivatives in abso-
lute values at certain powers are h− s-convex functions by using different techniques
including Hölder’s inequality [35] and power mean inequality [34]. Also we give the
special cases of our results and applications of midpoint inequalities in special means.
In the last section gives us conclusion with some remarks and future ideas to generalize
the results.

2. Generalization of Ostrowski inequality via fractional
with respect to another function

Now, we are introducing the very first time the new type of convex(concave) func-
tions, named as h− s-convexity.

DEFINITION 11. Let h : J ⊆ R → R be a real valued function and s ∈ [0,1]. We
say that the  : I ⊆ R → R is a h− s-convex(concave), function on the interval I if
∀x,y ∈ I we have

 (tx+(1− t)y) � (�)
(

h(t)
t

)−s

(x)+
(

h(1− t)
1− t

)−s

(y), (4)

∀t ∈ (0,1).

REMARK 2. In Definition 11, one can see the following.

1. If we take h(t) = t
s

s+1 where s ∈ [0,1] in (4), we get h -convex function.

2. If we take h(t) = t2 and s ∈ [0,1) in (4), then we get the class of Godunova-
Levin s-convex(concave) functions.

3. If we put h(t)= 1 and s∈ (0,1] in (4), then we get the concept of s-convex(con-
cave) in 2nd kind.
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4. If we put h(t) = t2 and s = 1 in (4), then we get the concept of Godunova-Levin
convex(concave) function.

5. If we put s = 0 in (4), then we get the concept of P-convex(concave) function.

6. If we put h(t) = s = 1 in (4), then we get the concept of ordinary convex(con-
cave) function.

7. If we put s = 1 and h(t) = 2
√

t(1− t) in (4), then we get the concept of MT -
convex(concave) function.

THEOREM 4. Suppose all the assumptions of Lemma 1 hold. Additionally, as-
sume that | ′| is h− s-convex function on [a,b] with h(t) 
= t2 and | ′(x)| � M,
|g′(x)| � L, x ∈ [a,b]. Then for each x ∈ (a,b) the following inequality holds:

∣∣∣,g b
a (x)

∣∣∣� ML
(∫ 1

0
t
([

h(t)
t

]−s

+
[
h(1− t)
1− t

]−s
)

dt

)

g

b
a (x). (5)

Proof. From the Lemma 1 we have

∣∣∣,g b
a (x)

∣∣∣ � x−a

2(g(x)−g(a))

∫ 1

0

| ′(tx+(1− t)a)|
(g(tx+(1− t)a)−g(a))−

dt

+
b− x

2(g(b)−g(x))

∫ 1

0

| ′(tx+(1− t)b)|
(g(b)−g(tx+(1− t)b))−

dt. (6)

Since g is differentiable and |g′(x)|� L on [a,b], we get that g is Lipschizian function,
i.e.

g(tx+(1− t)a)−g(a) � Lt(x−a), (7)

g(b)−g(tx+(1− t)b) � Lt(b− x). (8)

Using the inequalities (7) and (8) in (6), we get

∣∣∣,g b
a (x)

∣∣∣ � L
(x−a)+1

2(g(x)−g(a))

∫ 1

0
t
∣∣ ′ (tx+(1− t)a)

∣∣dt

+L
(b− x)+1

2(g(b)−g(x))

∫ 1

0
t
∣∣ ′ (tx+(1− t)b)

∣∣dt. (9)

Since | ′| is h− s-convex on [a,b] and | ′(x)| � M, we have

∫ 1

0
t
([

h(t)
t

]−s

| ′(x)|+
[
h(1− t)
1− t

]−s

| ′(a)|
)

dt

� M
∫ 1

0
t
([

h(t)
t

]−s

+
[
h(1− t)
1− t

]−s
)

dt (10)
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and similarly

∫ 1

0
t
([

h(t)
t

]−s

| ′(x)|+
[
h(1− t)
1− t

]−s

| ′(b)|
)

dt

� M
∫ 1

0
t
([

h(t)
t

]−s

+
[
h(1− t)
1− t

]−s
)

dt. (11)

By using inequalities (10) and (11) in (9), we get

∣∣∣,g b
a (x)

∣∣∣� ML
(∫ 1

0
t
([

h(t)
t

]−s

+
[
h(1− t)
1− t

]−s
)

dt

)

g

b
a (x),

which completes the proof. �

COROLLARY 1. In Theorem 4, one can see the following.

1. If one takes h(t) = t
s

s+1 where s ∈ [0,1] in (5), then one has the fractional Os-
trowski type inequality for h-convex functions:

∣∣∣,g b
a (x)

∣∣∣� ML
(∫ 1

0
t [h(t)+h(1− t)]dt

)

g

b
a (x).

2. If one takes h(t) = t2 and s∈ [0,1) in (5), then one has the Ostrowski inequality
for Godunova-Levin s-convex functions:

∣∣∣,g b
a (x)

∣∣∣� ML
(

1
1+  − s

+
(1+  )(1− s)
(2+  − s)

)

g

b
a (x).

3. If one takes h(t) = t2 and s∈ [0,1) in (5), then one has the Ostrowski inequality
for Godunova-Levin s-convex functions:

∣∣∣,g b
a (x)

∣∣∣� ML
(

1
1+  + s

+
(1+  )(1+ s)
(2+  + s)

)

gb

a (x).

4. If one takes If one takes g(t) = t , h(t) = 1 and s ∈ (0,1] in inequality (5), then
one has the inequality (2.6) of Theorem 7 in [32].

5. If one takes g(t) = t ,  = h(t) = 1 and s ∈ (0,1] in inequality (5), then one has
the inequality (2.1) of Theorem 2 in [1].

6. If one takes s = 0 in inequality (5), then one has the Ostrowski inequality for
P-convex functions via fractional integrals:

∣∣∣,g b
a (x)

∣∣∣� 2ML

1+ 

gb

a (x).
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7. If one takes h(t) = s = 1 in inequality (5), then one has the Ostrowski inequality
for convex functions via fractional integrals:

∣∣∣,g b
a (x)

∣∣∣� ML

1+ 

g

b
a (x).

8. If one takes g(t) = t , h(t) = s = 1 in inequality (5), then one has the Corollary
1 in [32].

9. If one takes g(t) = t , h(t) =  = s = 1 in inequality (5), then one has inequality
(1.3) of Theorem 3 in [32].

10. If one takes s = 1 and h(t) = 2
√

t(1− t) in (5), then one has the fractional
Ostrowski type inequality MT -convex functions:

∣∣∣,g b
a (x)

∣∣∣� ML
(√

 
[

1
2 + 

]
2 [1+  ]

)

g

b
a (x).

THEOREM 5. Suppose all the assumptions of Lemma 1 hold. Additionally, as-
sume that | ′|q is h− s-convex function on [a,b] , q � 1 with h(t) 
= t2 and | ′(x)| �
M, |g′(x)| � L, x ∈ [a,b]. Then for each x ∈ (a,b) the following inequality holds:

∣∣∣,g b
a (x)

∣∣∣� ML

( +1)1− 1
q

(∫ 1

0

[
t
[
h(t)
t

]−s

+ t
[
h(1− t)
1− t

]−s
]

dt

) 1
q


g

b
a (x).

Proof. From the inequality (9) and using power mean inequality [34], we have

∣∣∣,g b
a (x)

∣∣∣ � L
(x−a)+1

2(g(x)−g(a))

∫ 1

0
t
∣∣ ′ (tx+(1− t)a)

∣∣q dt

+L
(b− x)+1

2(g(b)−g(x))

∫ 1

0
t
∣∣ ′ (tx+(1− t)b)

∣∣q dt

� L
(x−a)+1

2(g(x)−g(a))

(∫ 1

0
tdt

)1− 1
q
(∫ 1

0
t
∣∣ ′ (tx+(1− t)a)

∣∣q dt

) 1
q

+L
(b− x)+1

2(g(b)−g(x))

(∫ 1

0
tdt

)1− 1
q
(∫ 1

0
t
∣∣ ′ (tx+(1− t)a)

∣∣q dt

) 1
q

.

(12)

Since | ′|q is h− s-convex on [a,b]. and | ′(x)| � M, we get

∫ 1

0
t
∣∣ ′ (tx+(1− t)a)

∣∣q dt � Mq
∫ 1

0
t
([

h(t)
t

]−s

+
[
h(1− t)
1− t

]−s
)

dt (13)
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and

∫ 1

0
t
∣∣ ′ (tx+(1− t)b)

∣∣q dt � Mq
∫ 1

0
t
([

h(t)
t

]−s

+
[
h(1− t)
1− t

]−s
)

dt. (14)

Using the inequalities (12)–(14), we get

∣∣∣,g b
a (x)

∣∣∣� ML 
gb

a (x)

( +1)1− 1
q

(∫ 1

0
t
([

h(t)
t

]−s

+
[
h(1− t)
1− t

]−s
)

dt

) 1
q

,

which completes the proof. �

COROLLARY 2. In Theorem 5, one can see the following.

1. If one takes q = 1, one has the Theorem 4.

2. If one takes h(t) = t
s

s+1 where s ∈ [0,1] in (12), then one has the fractional
Ostrowski type inequality for h-convex functions:

∣∣∣,g b
a (x)

∣∣∣� ML

(1+  )1− 1
q

(∫ 1

0
t [h(t)+h(1− t)]dt

) 1
q


g

b
a (x).

3. If one takes h(t) = t2 and s ∈ [0,1) in (12), then one has the Ostrowski inequal-
ity for Godunova-Levin s-convex functions:

∣∣∣,g b
a (x)

∣∣∣� ML

(1+  )1− 1
q

(
1

1+  − s
+
(1+  )(1− s)
(2+  − s)

) 1
q


g

b
a (x).

4. If one takes h(t) = 1 and s∈ (0,1] in inequality (12), then one has the fractional
Ostrowski type inequality for s-convex functions in 2nd kind:

∣∣∣,g b
a (x)

∣∣∣� ML

( +1)1− 1
q

(
1

1+  + s
+
(1+  )(1+ s)
(2+  + s)

) 1
q


gb

a (x).

5. If one takes g(t) = t , h(t) = 1 and s ∈ (0,1] in inequality (12), then one has the
inequality (2.8) of Theorem 9 in [32].

6. If one takes g(t) = t , h(t) =  = 1 and s ∈ (0,1] in inequality (12), then one
has the inequality (2.3) of Theorem 4 in [1].

7. If one takes s = 0 in inequality (12), then one has the Ostrowski inequality for
P-convex functions via fractional integrals:

∣∣∣,g b
a (x)

∣∣∣� 2
1
q ML

(1+  )1− 1
q


gb

a (x).
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8. If one takes h(t)= s = 1 in inequality (12), then one has the Ostrowski inequality
for convex functions via fractional integrals:

∣∣∣,g b
a (x)

∣∣∣� ML

(1+  )1− 1
q


g

b
a (x).

9. If one takes g(t) = t , h(t) = s = 1 in inequality (12), then one has the inequality
of Corollary 3 in [32].

10. If one takes g(t) = t , h(t)=  = s = 1 in inequality (12), then one has inequality
(1.5) of Theorem 5 in [32].

11. If one takes s = 1 and h(t) = 2
√

t(1− t) in (12), then one has the fractional
Ostrowski type inequality MT -convex functions:

∣∣∣,g b
a (x)

∣∣∣� ML

(1+  )1− 1
q

(√
 

[
1
2 + 

]
2 [1+  ]

) 1
q


gb

a (x).

THEOREM 6. Suppose all the assumptions of Lemma 1 hold. Additionally, as-
sume that | ′|q is h−s-convex function on [a,b],q> 1 with h(t) 
= t2 and | ′(x)|� M,
|g′(x)| � L, x ∈ [a,b]. Then for each x ∈ (a,b) the following inequality holds:

∣∣∣,g b
a (x)

∣∣∣� ML 
gb

a (x)

( p+1)
1
p

(∫ 1

0

([
h(t)
t

]−s

+
[
h(1− t)
1− t

]−s
)

dt

) 1
q

, (15)

where p−1 +q−1 = 1.

Proof. From the inequality (9) and using Hölder’s inequality [35], we have

∣∣∣,g b
a (x)

∣∣∣ � L
(x−a)+1

2(g(x)−g(a))

(∫ 1

0
t pdt

) 1
p
(∫ 1

0

∣∣ ′ (tx+(1− t)a)
∣∣q dt

) 1
q

+L
(b− x)+1

2(g(b)−g(x))

(∫ 1

0
t pdt

) 1
p
(∫ 1

0

∣∣ ′ (tx+(1− t)b)
∣∣q dt

) 1
q

. (16)

Since | ′|q is h− s-convex and | ′(x)| � M, we have

∫ 1

0

∣∣ ′ (tx+(1− t)a)
∣∣q dt � Mq

∫ 1

0

([
h(t)
t

]−s

+
[
h(1− t)
1− t

]−s
)

dt, (17)

and

∫ 1

0

∣∣ ′ (tx+(1− t)b)
∣∣q dt � Mq

∫ 1

0

([
h(t)
t

]−s

+
[
h(1− t)
1− t

]−s
)

dt. (18)
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Using inequalities (16)–(18), we get

∣∣∣,g b
a (x)

∣∣∣� ML 
gb

a (x)

( p+1)
1
p

(∫ 1

0

([
h(t)
t

]−s

+
[
h(1− t)
1− t

]−s
)

dt

) 1
q

,

which completes the proof. �

COROLLARY 3. In Theorem 6, one can see the following.

1. If one takes h(t) = t
s

s+1 where s ∈ [0,1] in (15), then one has the fractional
Ostrowski type inequality for h-convex functions:

∣∣∣,g b
a (x)

∣∣∣� ML

( p+1)
1
p

(∫ 1

0
[h(t)+h(1− t)]dt

) 1
q


g

b
a (x).

2. If one takes h(t) = t2 and s ∈ [0,1) in (15), then one has the Ostrowski inequal-
ity for Godunova-Levin s-convex functions:

∣∣∣,g b
a (x)

∣∣∣� ML

( p+1)
1
p

(
2

1− s

) 1
q


g

b
a (x).

3. If one takes h(t) = 1 and s∈ (0,1] in inequality (15), then one has the fractional
Ostrowski type inequality for s-convex functions in 2nd kind:

∣∣∣,g b
a (x)

∣∣∣� ML

( p+1)
1
p

(
2

1+ s

) 1
q


gb

a (x).

4. If one takes g(t) = t , h(t) = 1 and s ∈ (0,1] in inequality (15), then one has the
inequality (2.7) of Theorem 8 in [32].

5. If one takes g(t) = t , h(t) =  = 1 and s ∈ (0,1] in inequality (15), then one
has the inequality (2.4) of Theorem 3 in [1].

6. If one takes s = 0 in inequality (15), then one has the Ostrowski inequality for
P-convex functions via fractional integrals:

∣∣∣,g b
a (x)

∣∣∣� 2
1
q ML

( p+1)
1
p


g

b
a (x).

7. If one takes h(t)= s = 1 in inequality (15), then one has the Ostrowski inequality
for convex functions via fractional integrals:

∣∣∣,g b
a (x)

∣∣∣� ML

( p+1)
1
p


g

b
a (x).
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8. If one takes g(t) = t , h(t) = s = 1 in inequality (15), then one has Corollary 2
in [32].

9. If one takes g(t) = t , h(t)=  = s = 1 in inequality (15), then one has inequality
(1.4) of Theorem 4 in [32].

10. If one takes s = 1 and h(t) = 2
√

t(1− t) in (15), then one has the fractional
Ostrowski type inequality MT -convex functions:

∣∣∣,g b
a (x)

∣∣∣� ML

( p+1)
1
p

(
2

) 1
q 

g
b
a (x).

THEOREM 7. Let  : [a,b] → R be differentiable on (a,b),  ′ : [a,b] → R be
integrable on [a,b] and  : I ⊂ R → R, be a h− s-convex(concave) function, then we
have the inequalities


[
(1− )(x)− ( )

b−a
(b− x)1−Ja (b)

+ J−1
a (P2(x,b)(b))+

(b− x)1−

2(b−a)1− J0
a(a)

]

� (�)
(b− x)1−

(x−a)

[
b−a
x−a

h

(
x−a
b−a

)]−s ∫ x

a

[
(t− ) ′(t)
(b− t)1−

]
dt

+
1

(b− x)

[
b−a
b− x

h

(
b− x
b−a

)]−s ∫ b

x

[
(t−) ′(t)
(b− t)1−

]
dt, (19)

∀x ∈ [ ,] and  ∈ [0,1].

Proof. Utilizing the generalized montgomery identity (3) for fractional, we get

(1− )(x)− ( )
b−a

(b− x)1−Ja (b)

+J−1
a (P2(x,b)(b))+

(b− x)1−

2(b−a)1− J0
a(a)

= Ja (P2(x,b) ′(b))

=
1

( )

∫ b

a
P2(x,t)

 ′(t)
(b− t)1− dt

=
(

x−a
b−a

)[
(b− x)1−

x−a

∫ x

a

{t− } ′(t)
(b− t)1− dt

]

+
(

b− x
b−a

)[
(b− x)1−

b− x

∫ b

x

{t−} ′(t)
(b− t)1− dt

]
,
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∀x∈ [ ,] and  ∈ [0,1]. Next by using  : I ⊂ [0,)→R, the h−s-convex(concave)
function, we get


[
(1− )(x)− ( )

b−a
(b− x)1−Ja (b)

+J−1
a (P2(x,b)(b))+

(b− x)1−

2(b−a)1− J0
a(a)

]

� (�)
[
b−a
x−a

h

(
x−a
b−a

)]−s



[
(b− x)1−

x−a

∫ x

a

{t− } ′(t)
(b− t)1− dt

]

+
[
b−a
b− x

h

(
b− x
b−a

)]−s



[
(b− x)1−

b− x

∫ b

x

{t−} ′(t)
(b− t)1− dt

]
,

∀x∈ [ ,] and  ∈ [0,1]. Applying Jensen’s integral inequality [8], we get the inequal-
ity (19). �

REMARK 3. In Theorem 7, if we put  = 0, in (19). we get


[
(x)− ( )

b−a
(b− x)1−Ja (b)+ J−1

a (P1(x,b)(b))
]

� (�)
(b− x)1−

(x−a)

[
b−a
x−a

h

(
x−a
b−a

)]−s ∫ x

a

[
(t −a) ′(t)
(b− t)1−

]
dt

+
1

(b− x)

[
b−a
b− x

h

(
b− x
b−a

)]−s ∫ b

x

[
(t −b) ′(t)
(b− t)1−

]
dt.

COROLLARY 4. In Theorem 7, one can see the following.

1. If one takes h(t) = t
s

s+1 where s ∈ [0,1] in (19), then one has the fractional
Ostrowski type inequality for h-convex(concave) functions:


[
(1− )(x)− ( )

b−a
(b− x)1−Ja (b)

+J−1
a (P2(x,b)(b))+

(b− x)1−

2(b−a)1− J0
a(a)

]

� (�) h

(
x−a
b−a

)[
(b− x)1−

x−a

∫ x

a

[
(t − ) ′(t)
(b− t)1−

]
dt

]

+h

(
b− x
b−a

)[
1

(b− x)

∫ b

x

[
(t−) ′(t)
(b− t)1−

]
dt

]
. (20)
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REMARK 4. If we choose  = 0 in (20), we get


[
(x)− ( )

b−a
(b− x)1−Ja (b)+ J−1

a (P1(x,b)(b))
]

� (�) h

(
x−a
b−a

)[
(b− x)1−

x−a

∫ x

a

[
(t−a) ′(t)
(b− t)1−

]
dt

]

+h

(
b− x
b−a

)[
1

(b− x)

∫ b

x

[
(t −b) ′(t)
(b− t)1−

]
dt

]
.

2. If one takes h(t) = t2 and s ∈ [0,1) in (19), then one has the Ostrowski inequal-
ity for Godunova-Levin s-convex(concave) functions:


[
(1− )(x)− ( )

b−a
(b− x)1−Ja (b)

+J−1
a (P2(x,b)(b))+

(b− x)1−

2(b−a)1− J0
a(a)

]

� (�)
(b−a)s(b− x)1−

(x−a)1+s

∫ x

a

[
(t− ) ′(t)
(b− t)1−

]
dt

+
(b−a)s

(b− x)+s

∫ b

x

[
(t−) ′(t)
(b− t)1−

]
dt. (21)

REMARK 5. If we choose  = 0 in (21), we get


[
(x)− ( )

b−a
(b− x)1−Ja (b)+ J−1

a (P1(x,b)(b))
]

� (�)
(b−a)s(b− x)1−

(x−a)1+s

∫ x

a

[
(t −a) ′(t)
(b− t)1−

]
dt

+
(b−a)s

(b− x)+s

∫ b

x

[
(t −b) ′(t)
(b− t)1−

]
dt.

3. If one takes h(t) = t2 and s = 1 in (19), then one has the fractional Ostrowski
type inequality for Godunova-Levin convex(concave) function:


[
(1− )(x)− ( )

b−a
(b− x)1−Ja (b)

+J−1
a (P2(x,b)(b))+

(b− x)1−

2(b−a)1− J0
a(a)

]

� (�)
(b−a)(b− x)1−

(x−a)2

∫ x

a

[
(t− ) ′(t)
(b− t)1−

]
dt

+
(b−a)

(b− x)+1

∫ b

x

[
(t−) ′(t)
(b− t)1−

]
dt. (22)



GENERALIZATION OF OSTROWSKI INEQUALITY 35

REMARK 6. If we choose  = 0 in (22), we get


[
(x)− ( )

b−a
(b− x)1−Ja (b)+ J−1

a (P1(x,b)(b))
]

� (�)
(b−a)(b− x)1−

(x−a)2

∫ x

a

[
(t −a) ′(t)
(b− t)1−

]
dt

+
(b−a)

(b− x)+1

∫ b

x

[
(t −b) ′(t)
(b− t)1−

]
dt.

4. If one takes h(t) = 1 and s∈ (0,1] in (19), then one has the fractional Ostrowski
type inequality for s-convex(concave) functions in 2nd kind:


[
(1− )(x)− ( )

b−a
(b− x)1−Ja (b)

+J−1
a (P2(x,b)(b))+

(b− x)1−

2(b−a)1− J0
a(a)

]

� (�)
(x−a)s−1(b− x)1−

(b−a)s

∫ x

a

[
(t− ) ′(t)
(b− t)1−

]
dt

+
(b− x)s−

(b−a)s

∫ b

x

[
(t−) ′(t)
(b− t)1−

]
dt. (23)

REMARK 7. If we choose  = 0 in (23), we get


[
(x)− ( )

b−a
(b− x)1−Ja (b)+ J−1

a (P1(x,b)(b))
]

� (�)
(x−a)s−1(b− x)1−

(b−a)s

∫ x

a

[
(t−a) ′(t)
(b− t)1−

]
dt

+
(b− x)s−

(b−a)s

∫ b

x

[
(t −b) ′(t)
(b− t)1−

]
dt.

5. If one takes s = 0 in (19), then one has the fractional Ostrowski type inequality
for P-convex (concave) functions:


[
(1− )(x)− ( )

b−a
(b− x)1−Ja (b)

+J−1
a (P2(x,b)(b))+

(b− x)1−

2(b−a)1− J0
a(a)

]

� (�)
(b− x)1−

(x−a)

∫ x

a

[
(t − ) ′(t)
(b− t)1−

]
dt +

1

(b− x)

∫ b

x

[
(t −) ′(t)
(b− t)1−

]
dt.

(24)
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REMARK 8. If we choose  = 0 in (24), we get


[
(x)− ( )

b−a
(b− x)1−Ja (b)+ J−1

a (P1(x,b)(b))
]

� (�)
(b− x)1−

(x−a)

∫ x

a

[
(t −a) ′(t)
(b− t)1−

]
dt +

1

(b− x)

∫ b

x

[
(t −b) ′(t)
(b− t)1−

]
dt.

6. If one takes h(t) = s = 1 in (19), then one has the fractional Ostrowski type
inequality for convex(concave) functions:


[
(1− )(x)− ( )

b−a
(b− x)1−Ja (b)

+J−1
a (P2(x,b)(b))+

(b− x)1−

2(b−a)1− J0
a(a)

]

� (�)
(b− x)1−

b−a

[∫ x

a

[
(t− ) ′(t)
(b− t)1−

]
dt +

∫ b

x

[
(t−) ′(t)
(b− t)1−

]
dt

]
.

(25)

REMARK 9. If we choose  = 0 in (25), we get


[
(x)− ( )

b−a
(b− x)1−Ja (b)+ J−1

a (P1(x,b)(b))
]

� (�)
(b− x)1−

b−a

[∫ x

a

[
(t−a) ′(t)
(b− t)1−

]
dt +

∫ b

x

[
(t−b) ′(t)
(b− t)1−

]
dt

]
.

7. If one takes s = 1 and h(t) = 2
√

t(1− t) in (19), then one has the fractional
Ostrowski type inequality for MT -convex(concave) functions:


[
(1− )(x)− ( )

b−a
(b− x)1−Ja (b)

+J−1
a (P2(x,b)(b))+

(b− x)1−

2(b−a)1− J0
a(a)

]

� (�)
(b− x)

1
2−

2
√

(x−a)

[∫ x

a

[
(t− ) ′(t)
(b− t)1−

]
dt +

∫ b

x

[
(t−) ′(t)
(b− t)1−

]
dt

]
.

(26)

REMARK 10. If we choose  = 0 in (26), we get


[
(x)− ( )

b−a
(b− x)1−Ja (b)+ J−1

a (P1(x,b)(b))
]

� (�)
(b− x)

1
2−

2
√

(x−a)

[∫ x

a

[
(t−a) ′(t)
(b− t)1−

]
dt +

∫ b

x

[
(t−b) ′(t)
(b− t)1−

]
dt

]
.
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3. Applications of midpoint inequalities

If we replace  by − and x = a+b
2 in Theorem 7, we get

THEOREM 8. Let  : [a,b] → R be differentiable on (a,b),  ′ : [a,b] → R be
integrable on [a,b] and  : I ⊂ R → R, be a h− s-convex(concave) function, then



⎡
⎣( )

(
b−a
2

)1−
b−a

Ja (b)−
(

a+b
2

)

−J−1
a

(
P2

(
a+b

2
,b

)
(b)

)
− 

22− J0
a(a)

]

� (�)
2
[
2 h
(

1
2

)]−s

(b−a)

[∫ a

a+b
2


[
(t−a) ′(t)
(b− t)1−

]
dt

+
∫ a+b

2

b

[
(t −b) ′(t)
(b− t)1−

]
dt

]
.

(27)

∀ ∈ [0,1].

REMARK 11. In Theorem 8, one can see the following.

1. If we put  = 0, in (27). we get



⎡
⎣( )

(
b−a
2

)1−
b−a

Ja (b)−
(

a+b
2

)
− J−1

a

(
P1

(
a+b

2
,b

)
(b)

)⎤⎦

� (�)
2
[
2 h
(

1
2

)]−s

(b−a)

[∫ a

a+b
2


[
(t−a) ′(t)
(b− t)1−

]
dt +

∫ a+b
2

b

[
(t −b) ′(t)
(b− t)1−

]
dt

]
.

2. If we put  = 1 in (27). we get


[
(−1)

(
a+b

2

)
− 

(a)+(b)
2

+
1

b−a

∫ b

a
(t)dt

]

� (�)
2
[
2 h
( 1

2

)]−s

b−a

[∫ a+b
2

a

[
(− t) ′(t)

]
dt +

∫ b

a+b
2


[
(− t) ′(t)

]
dt

]
.

3. If we put  = 0,  = 1 in (27). we get


[

1
b−a

∫ b

a
(t)dt−

(
a+b

2

)]

� (�)
2
[
2 h
(

1
2

)]−s

b−a

[∫ a+b
2

a

[
(− t) ′(t)

]
dt +

∫ b

a+b
2


[
(− t) ′(t)

]
dt

]
.
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REMARK 12. Assume that  : I ⊂ [0,)→R be an h−s-convex(concave) func-
tion:

1. If we take  = 1, (t) = 1
t in inequality (28) where t ∈ [a,b]⊂ (0,), then we

have


[
A(a,b)+ (−1)L(a,b)

A(a,b)L(a,b)
− 

A(a,b)
G2(a,b)

]

� (�)
2
[
2 h
(

1
2

)]−s

b−a

[∫ a+b
2

a

[
t −a
t2

]
dt +

∫ b

a+b
2


[
t −b
t2

]
dt

]
.

2. If we take  = 1, (t) =− ln t in inequality (28), where t ∈ [a,b]⊂ (0,), then
we have



[
ln

(
exp [A(lna, lnb)]A(1−)(a,b)

I(a,b)

)]

� (�)
2
[
2 h
(1

2

)]−s

b−a

[∫ a+b
2

a

[
t −a

t

]
dt +

∫ b

a+b
2


[
t −b

t

]
dt

]
.

3. If we take  = 1, (t) = t p , p ∈ R \ {0,−1} in inequality (28), where t ∈
[a,b] ⊂ (0,), then we have


[
Lp

p(a,b)+ (−1)Ap(a,b)− A(ap,bp)
]

� (�)
2
[
2 h
( 1

2

)]−s

b−a

[∫ a+b
2

a

[

p(a− t)
t1−p

]
dt +

∫ b

a+b
2


[

p(b− t)
t1−p

]
dt

]
.

REMARK 13. In Theorem 5, one can see the following.

1. Let g(t) = t , x = a+b
2 ,  = 1, 0 < a < b, q � 1 and  : R → R

+, (t) = tn in
(12). Then

|An (a,b)−Ln
n (a,b)|

� M (b−a)

(2)2− 1
q

(∫ 1

0
t

((
h(t)
t

)−s

+
(

h(1− t)
1− t

)−s
)

dt

) 1
q

.

2. Let g(t) = t , x = a+b
2 ,  = 1, 0 < a < b, q � 1 and  : (0,1]→R, (t) =− lnt

in (12). Then

∣∣∣∣ln
(

A(a,b)
I (a,b)

)∣∣∣∣� M (b−a)

(2)2− 1
q

(∫ 1

0
t

((
h(t)
t

)−s

+
(

h(1− t)
1− t

)−s
)

dt

) 1
q

.
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REMARK 14. In Theorem 6, one can see the following.

1. Let g(t) = t , x = a+b
2 ,  = 1, 0 < a < b, p−1 + q−1 = 1 and  : R → R

+,
(t) = tn in (15). Then

|An (a,b)−Ln
n (a,b)|

� M (b−a)

2(p+1)
1
p

(∫ 1

0

((
h(t)
t

)−s

+
(

h(1− t)
1− t

)−s
)

dt

) 1
q

.

2. Let g(t) = t , x = a+b
2 ,  = 1, 0 < a < b, p−1 + q−1 = 1 and  : (0,1] → R,

(t) = − lnt in (15). Then

∣∣∣∣ln
(

A(a,b)
I (a,b)

)∣∣∣∣� M (b−a)

2(p+1)
1
p

(∫ 1

0

((
h(t)
t

)−s

+
(

h(1− t)
1− t

)−s
)

dt

) 1
q

.

4. Conclusion

Ostrowski inequality is one of the most celebrated inequalities, we can find its
various generalizations and variants in literature. In this paper, the generalization of
Fractional Ostrowski inequality via generalized Montgomery identity [16] with h−
s-convex functions, which we used the very first time here. This class of functions
contains many important classes including class of h -convex [33], Godunova-Levin
s-convex [9], s-convex in the 2nd kind [4] (and hence contains class of convex and
MT -convex functions [3]). It also contains class of P-convex functions [17] and class
of Godunova-Levin functions [20]. We have stated our main result in section 2, which
is the generalization of Ostrowski inequality via generalized Montgomery identity by
fractional integrals for h− s-convex functions. Further, we used different techniques
including Hölder’s inequality [35] and power mean inequality [34] for generalization of
Ostrowski inequality. In second last section we have given some applications in terms
of special means including arithmetic, geometric, harmonic, logarithmic, identric and
p -logarithmic means by using the midpoint inequalities.
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[35] X. YANG, A note on Hölder inequality, Appl. Math. Comput., 134, (2003), 319–322.

(Received May 19, 2022) Ali Hassan
Department of Mathematics
Shah Abdul Latif University

Khairpur-66020, Pakistan
e-mail: alihassan.iiui.math@gmail.com

Asif Raza Khan
Department of Mathematics

University of Karachi
University Road, Karachi-75270, Pakistan

e-mail: asifrk@uok.edu.pk

Fractional Differential Calculus
www.ele-math.com
fdc@ele-math.com


