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Abstract. In this article, we study the best approximation of nonlinear mixed fractional inte-
grodifferential equation with Caputo fractional derivative by using a class of stochastic matrix
control functions. Next, using the fixed point method, we study the Ulam-Hyers and Ulam-
Hyers-Rassias stability of the non-linear fractional integrodifferential equation of the mixed type
in MB-space.

1. Introduction

Fractional calculus is an extension of natural number order calculus, which in-
volves study of integrals and derivatives of any real or complex order. It has proved its
importance in describing many physical phenomena in much better sense that leads to
grab the attention from researchers of other fields like physics, chemistry, biology etc.
Researchers have developed different initial and boundary value problems involving
fractional derivatives and study their existence, uniqueness and stability of solutions to
the problems via both analytical and numerical approach.

In [17], authors have studied the existence, uniqueness and boundedness of so-
lutions of non-linear mixed fractional integrodifferential equation with fractional non-
separated boundary conditions in Banach spaces. The Ulam stability for a class of
nonlinear mixed fractional integrodifferential equations was studied in [19]. The ex-
istence of solutions for the mixed iterative fractional integrodifferential equations has
been studied in [16]. The existence and uniqueness of solutions of fractional quasilinear
mixed integrodifferential equations with nonlocal conditions in Banach spaces has been
studied by the authors in [3]. The authors in [15] have studied nonlinear mixed frac-
tional integrodifferential equations with nonlocal condition in Banach spaces. The ex-
istence and uniqueness and Wright stability results of the Riemann-Liouville fractional
integrodifferential equations by Random controllers in MB-spaces have been studied
by the authors in [22].

In [20], the authors used a stochastic controller to stabilize pseudo stochastic Lie
bracket (derivation, derivation) in complex MB-algebras and obtained approximation
by a stochastic Lie bracket and calculated maximum error of the estimate.
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In this article, we study the distribution functions with the ranges in a class of ma-
trix algebras with the generalized triangular norms, to define MB-space and introduce
a new class of matrix control functions.

Motivated by the above cited work, aim of this work is to study the Ulam-Hyers
and Ulam-Hyers-Rassias stability of fractional non-linear integrodifferential equation
of the type,⎧⎨

⎩
CD

0+y(t) = F(t,y(t))+
∫ t

0
H(t,s,y(s))ds+

∫ T

0
K(t,s,y(s))ds

y(0) = m
(1.1)

with t ∈ [0,T ] and a continuous function F(t,y) , also H(t,s,y), K(t,s,y) are con-
tinuous functions with respect to t,s and y on [0,T ]×R×R , m is a fixed number,
CD

0+y(·) denotes Caputo fractional derivative of order  , where 0 �  < 1.

2. Preliminaries

Let 1 = [0,T ], T > 0,2 = (0,), 3 = (0,1], 4 = [0,], = [0,1], i(5) =
(0,1) = interior of 5 .

Let

diagMn(5) =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

a1
. . .

an

⎤
⎥⎦ = diag[a1, · · · ,an],a1, · · · ,an ∈ 5

⎫⎪⎬
⎪⎭ ,

where diagMn(5) is equipped with the partial order relation:

A := diag[a1, · · · ,an],B := [b1, · · · ,bn] ∈ diagMn(5),

A � B ⇔ a j � b j for every j = 1, · · · ,n.
Also, denote A ≺ B ⇔ A �= B; A � B,a j < b j for every j = 1, · · · ,n.
Define K = diag[k, · · · ,k] in diagMn(5) where k ∈ 5. Hence, we can write

1 = diag[1, · · · ,1], 0 = diag[0, · · · ,0]. In this paper, we use extension of the concept of
triangular norms on diagMn(5) as in ([11], [23]).

DEFINITION 2.1. A generalized triangular norm (in short GTN) on diagMn(5)
is an operation � : diagMn(5)×diagMn(5)→ diagMn(5) satisfying the following
conditions:

1. A�1 = A, ∀A ∈ diagMn(5). (Boundary condition)

2. A�B = B�A, ∀(A,B) ∈ diagMn(5)2. (Commutativity)

3. [A� (B�C)] = [(A�B)�C], ∀ (A,B,C) ∈ diagMn(5)3. (Associativity)

4. A � A′and B � B′ ⇒ A�B � A′ �B′, ∀ (A,A′,B,B′) ∈ diagMn(5)4.
(Monotonocity)
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Also, for every A,B∈ diagMn(5) and all sequences {An},{Bn} converging to A
and B , respectively, suppose that

lim
k

(Ak �Bk) = A�B,

then � on diagMn(5) is continuous GTN (in short CGTN). We will see some exam-
ples of CGTN.

1. �M : diag(5)×diag(5) → diag(5) defined by

A�M B = diag[a1, · · · ,an]�M diag[b1, · · · ,bn]
= diag[min{a1,b1}, · · · ,min{an,bn}],

then �M is a CGTN, known is minimum CGTN.

2. �P : diag(5)×diag(5) → diag(5) defined by

A�P B = diag[a1, · · · ,an]�P diag[b1, · · · ,bn] = diag[a1 ·b1, · · · ,an ·bn],

then �P is a CGTN, called as product CGTN.

3. �L : diag(5)×diag(5) → diag(5) defined by

A�L B = diag[a1, · · · ,an]�P diag[b1, · · · ,bn]
= diag[max{a1 +b1−1,0}, · · · ,max{an +bn−1,0}],

then �L is a CGTN, known as Lukasiewicz CGTN.

Now, we have some numerical examples.

diag
[1
3
,1,

2
5
,
4
5

]
�M diag

[2
3
,0,

1
6
,
1
8

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
3

1
2
5

4
5

⎤
⎥⎥⎥⎥⎥⎥⎦

�M

⎡
⎢⎢⎢⎢⎢⎢⎣

2
3

0
1
6

1
8

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
3

0
1
6

1
8

⎤
⎥⎥⎥⎥⎥⎥⎦

= diag
[1
3
,0,

1
6
,
1
8

]
.
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diag
[1
3
,1,

2
5
,
4
5

]
�P diag

[2
3
,0,

1
6
,
1
8

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
3

1
2
5

4
5

⎤
⎥⎥⎥⎥⎥⎥⎦

�P

⎡
⎢⎢⎢⎢⎢⎢⎣

2
3

0
1
6

1
8

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

2
9

0
1
15

1
10

⎤
⎥⎥⎥⎥⎥⎥⎦

= diag
[2
9
,0,

1
15

,
1
10

]
.

diag
[1
3
,1,

2
5
,
4
5

]
�L diag

[2
3
,0,

1
6
,
1
8

]
. =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
3

1
2
5

4
5

⎤
⎥⎥⎥⎥⎥⎥⎦

�L

⎡
⎢⎢⎢⎢⎢⎢⎣

2
3

0
1
6

1
8

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0
0

0
0

⎤
⎥⎥⎦

= diag[0,0,0,0].

Let + denote a set of all matrix-distribution-function-valued (MDF-valued), left
continuous and increasing functions  : R∪{−,}→ diagMn(5) such that 0 = 0
and + = 1. Also, let O+ ⊆ + are all proper mappings  ∈ + such that l− = 1
where l− denotes the left hand limit of  as t →  .

In + , define “ � ” as given below:

 �  ⇔  �  , ∀ ∈ R.

Further, for each t ∈ R,

 t
 =

{
0 i f  � t,

1 i f  > t.

DEFINITION 2.2. Consider CGTN � , a linear space V and MDF-valued  :V →
O+ . Define a matrix Menger normed space (MMN-space)(W,,�) as follows:

• (MMN1) v
 =  0

 , ∀  > 0 iff w = 0.
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• (MMN2) v
 = v



, ∀ v ∈V, ∈ C with  �= 0.

• (MMN3) v1+v2
1+2 �v1

1 �v2
2 , ∀ v1, v2 ∈V, 1, 2 � 0.

In [9, 21], approximation of equations have been studied in MN-spaces, fuzzy
metric spaces and random multi-normed spaces. The stability results and other prop-
erties for stochastic fractional differential and integral equations have been studied in
([1, 2, 5, 6, 10], [12]–[15], [18, 24, 25, 27]).

THEOREM 2.1. ([4, 8]) Let (C,d) be a complete 4 -valued metric space and let
P : C → C be a strictly contractive function with Lipschitz constant l < 1 . Then, for a
given element  ∈ C , either d(Pn , Pn+1) =  , for each n ∈ N or there is n0 ∈ N

such that

1. d(Pn , Pn+1) <  for every n � n0;

2. the fixed point ∗ of P is the limit point of the sequence {Pn};

3. in the set U = { ∈ C : d(Pn0 , ) < } , � is the unique fixed point of P;

4. (1− l)d( , �) � d( , P) for every  ∈ C.

DEFINITION 2.3. the Caputo derivative of fractional of order  is defined by

CD f (t) =
1

(n−)

∫ t

0

f (n)(s)
(t− s)1+−n ds, n−1 <  < n, n = []+1, (2.1)

where [] denotes the integer part of the real number  .

DEFINITION 2.4. If for every continuously differentiable function y(t) and MDF-
valued  satisfying



(
CD

0+y(t)−F(t,y(t))−∫ t
0 H(t,s,y(s))ds−∫ T

0 K(t,s,y(s))ds

)
 �  t

 ,

for each t ∈ 1 and  ∈ 2 , there exists a solution x(t) of the equation (1.1) and a
fixed number  > 0 with

y(t)−x(t)
 �  t




,

for each t ∈ 1 and  ∈ 2 , where  is independent of y(t) and x(t) , then (1.1) has
Ulam-Hayers-Rassias stability.
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3. Main results

Consider the following hypothesis:

(H1) Assume that M, LF , LH , LK are positive real numbers with 3M(max{LF ,LH ,LK})
∈5 and let F :1×R→R and H, K :1×1×R→R , be continuous func-
tions satisfying

(F(t, y)−F(t, y))
 �y−y


LF

, (3.1)

for all t ∈ 1, y, y ∈ R and  ∈ 2 and

(H(t, s, y)−H(t, s, y))
 �y−y


LH

(3.2)

and
(K(t, s, y)−K(t, s, y))
 �y−y


LK

. (3.3)

THEOREM 3.1. Suppose that the hypothesis (H1 ) holds consider a CDF y :1 →
R satisfying


CD

0+y(t)−F(t, y(t))−∫ t
0 H(t, s, y(s))ds−∫ T

0 K(t, s, y(s))ds
 �  t

 , (3.4)

∀ t, s ∈ 1, y ∈ R and  ∈ 2 and  is MDF-valued, satisfying

y(t)
 �  t

 ⇒
RLI0+y(t)
 �  t


M

, inf
∈1


T
�  t

 , (3.5)

for each t ∈ 1 and  ∈2 . Then, there exists a unique CF x :1 → R such that

x(t) = m+RL I0+F(t, x(t))+RL I0+

∫ 

0
H(t, s, x(s))ds+RL I0+

∫ T

0
K(t, s, x(s))ds.

(3.6)
with

y(t)−x(t)
 �  t

M
1−3M(max{LF , LH , LK})

. (3.7)

Proof. Let y, y ∈ C , we define

d(y, y) = in f
{
 ∈4 | y(t)−y(t)

 �  t



}
, (3.8)

for each t ∈ 1 and  ∈ 2 , where C = {y :1 → R is a CF}. Let P : C → C is given
by

P(y(t)) = m+RL I0+F(t, y(t))+RL I0+

∫ 

0
H(t, s, y(s))ds+RL I0+

∫ T

0
K(t, s, y(s))ds,

(3.9)
∀ y, t ∈ 1.
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Claim 1: P is strictly contractive on C.
Let yy ∈ 4 be a fixed number with d(y, y) � yy, ∀ y, y ∈ C . Then from

equation (3.8), we get

y(t)−y(t)
 �  t


yy

. (3.10)

Let 0 = s1 < s2 < · · · < sn = T, i = si − si−1 =
|T −0|

n
, i = 1,2, · · · ,n and |||| =

max1�i�n(si) , for each t,  ∈1 and  ∈2. Using equations (3.2), (3.5) and (3.10),
we have


[∫ 

0

(
H(t, s, y(s))−H(t, s, y(s))ds

)]


= 
lim||||→0n

i=1

[(
H(t, si, y(si))−H(t, si, y(si))

)
i

]


= lim
||||→0

n
i=1

[(
H(t, si, y(si))−H(t, si, y(si))

)
i

]


� lim
||||→0

�M
[(

H(t, si, y(si))−H(t, si, y(si))
)
i

]

n

� inf
∈1


[(

H(t, , y())−H(t, , y())
)]


ni

� inf
t∈1


[(

H(t, , y())−H(t, , y())
)]


T

� inf
∈1

 
Tyy LH

�  t


Tyy LH

. (3.11)

Also, from equations (3.3), (3.5) and (3.10), we have


[∫ 

0

(
K(t, s, y(s))−K(t, s, y(s))ds

)]


= 
lim||||→0n

i=1

[(
K(t, si, y(si))−K(t, si, y(si))

)
i

]


= lim
||||→0

n
i=1

[(
K(t, si, y(si))−K(t, si, y(si))

)
i

]


� lim
||||→0

�M
[(

K(t, si, y(si))−K(t, si, y(si))
)
i

]

n

� inf
∈1


[(

K(t, , y())−K(t, , y())
)]


ni

� inf
t∈1


[(

K(t, , y())−K(t, , y())
)]


T

� inf
∈1

 
Tyy LK

�  t


Tyy LK

. (3.12)
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Now, by using equations (3.1), (3.5), (3.6), (3.10), (3.11), (3.12) we will have

(Py)(t)−(Py)(t)


= 
RLI0+[F(t,y(t))−F(t,y(t))]+RLI0+

[∫ t
0

(
H(t,s,y(s))−H(t,s,y(s))

)
ds

]
+RLI0+

[∫ T
0

(
K(t,s,y(s))−K(t,s,y(s))

)
ds

]


�
RLI0+[F(t, y(t))−F(t, y(t))]

3

�
RLI0+

[∫ t
0

(
H(t, s, y(s))−H(t, s, y(s))

)
ds

]

3

�
RLI0+

[∫ T
0

(
K(t, s, y(s))−K(t, s, y(s))

)
ds

]

3

�  t


3Myy LF

� t


3Myy LH

� t


3Myy LK

�  t


3Myy

[
max{LF ,LH ,LK}

] .

(3.13)
So, we get, d(Py, Py) � 3Myy

[
max{LF , LH , LK}

]
, ∀ t ∈ 1, ∈ 2.

Therefore, we deduce that d(Py, Py) � [3M
(
max{LF ,LH ,LK}

)
]d(y, y) for any

y, y ∈ C where 3M
[
max{LF , LH , LK}

] ∈ i(5). From equation (3.6), we can find a
fixed number  ∈ 2 such that

y(t)−y0(t)
 = 

[
m+RLI0+F(t, y(t))+RLI0+

∫ t
0 H(t, s, y(s))ds+RLI0+

∫ T
0 K(t, s, y(s))ds−y0(t)

]


�  t


,

for arbitrary y0 ∈ C, ∀ t ∈1, ∈2.
Since F(t, y0(t)), H(t, s, y0(s)), K(t, s, y0(s)), y0(t), mint∈1 

t
 > 0, are

bounded, using equation (3.8) will imply that d(Py, y0) <. Then from Theorem 2.1,
there exists a CF x :1 → R such that Pnx → x in (C, d) and Px = x.

As y, x both are bounded on 1 , for each y ∈ C andmint∈1 
t
 > 0, we get a

fixed number y ∈ 4 such that

(y0(t)−y(t))
 �  t


y

,

for any t ∈ 1,  ∈ 2. Hence, d(y0, y) <  for any y ∈ C. Therefore, we get
C = {y ∈ C | d(y0, y) < } . Further, from Theorem 2.1 and equation (3.6) will imply
the uniqueness of y0.

Now, using the equations (3.3), (3.5) and (3.9), we get

y(t)−m−RLI0+F(t, y(t))−RLI0+
∫ t
0 H(t, s, y(s))ds−RLI0+

∫ T
0 K(t, s, y(s))ds

 �  t

M

.

Thus, we get

y(t)−Py(t)
 �  t


M

,

for any t ∈ 1 and  ∈ 2 which gives

d(y, Py) � M. (3.14)
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Also, from Theorem 2.1 and equation (3.14), we deduce that

d(y, x) � 1
1−3M(max{LF , LH , LK})d(Py, y) � M

1−3M(max{LF , LH , LK}) ,

which implies equation (3.7). �

THEOREM 3.2. Let LF , LH , LK ∈ 2 be fixed numbers such that 3M(max{LF ,
TLH , TLK}) ∈ i(5). Consider CFs F : 1 ×R → R, H : 1 ×1 ×R → R sat-
isfying equations (1.1), (3.2) and (3.3) respectively. If for  � 0,  ∈ 2,  :=

diag

[
e−


 , · · · , e−




]
and a CDF y :1 → R satisfies


CD

0+y(t)−F(t, y(t))−∫ t
0 H(t, s, y(s))ds−∫ T

0 K(t, s, y(s))ds
 �  ,

for all t, s ∈ 1, y ∈ R and  ∈ 2 , then we there exists a unique CF x : 1 → R

satisfying equation (3.6) and

(y(t)−x(t))
 �  M

1−3M(max{LF , TLH , TLK})
,∀t ∈ 1, ∀y ∈ R. (3.15)

Proof. Let y, y ∈ C , we define

d(y, y) = in f
{
 ∈4 | y(t)−y(t)

 �  


}
, (3.16)

for each t ∈ 1 and  ∈ 2 , where C = {y :1 → R is a CF}. Let P : C → C is given
by

P(y(t)) = m+RL I0+F(t, y(t))+RL I0+

∫ 

0
H(t, s, y(s))ds+RL I0+

∫ T

0
K(t, s, y(s))ds,

(3.17)
∀y, t ∈1. First, we prove that the operator P is strictly contractive on C. Let yy ∈4

be a fixed number with d(y, y) � yy, ∀y, y ∈ C . Then from equation (3.16), we get

y(t)−y(t)
 �  

yy
, (3.18)

Let 0 = s1 < s2 < · · ·< sn = T, i = si−si−1 =
|T −0|

n
, i = 1, 2, · · · , n and ||||=

max1�i�n(si) , for each t,  ∈ 1 and  ∈ 2. Using equations (3.2) and (3.17), we
have


[∫ 

0

(
H(t, s, y(s))−H(t, s, y(s))ds

)]


= 
lim||||→0n

i=1

[(
H(t, si, y(si))−H(t, si, y(si))

)
i

]


= lim
||||→0

n
i=1

[(
H(t, si, y(si))−H(t, si, y(si))

)
i

]
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� lim
||||→0

�M
[(

H(t, si, y(si))−H(t, si, y(si))
)
i

]

n

� inf
∈1


[(

H(t, , y())−H(t, , y())
)]


ni

� inf
t∈1


[(

H(t, , y())−H(t, , y())
)]


T

� inf
∈1

 
Tyy LH

� t


Tyy LH

. (3.19)

Also, from equations (3.3) and (3.18), we have


[∫ 

0

(
K(t, s, y(s))−K(t, s, y(s))ds

)]


= 
lim||||→0n

i=1

[(
K(t, si, y(si))−K(t, si, y(si))

)
i

]


= lim
||||→0

n
i=1

[(
K(t, si, y(si))−K(t, si, y(si))

)
i

]


� lim
||||→0

�M
[(

K(t, si, y(si))−K(t, si, y(si))
)
i

]

n

� inf
∈1


[(

K(t, , y())−K(t, , y())
)]


ni

� inf
t∈1


[(

K(t, , y())−K(t, , y())
)]


T

� inf
∈1

 
Tyy LH

� t


Tyy LK

. (3.20)

Now, by using equations (3.1), (3.17) and (3.18), we will have

(Py)(t)−(Py)(t)


= 
RLI0+[F(t,y(t))−F(t,y(t))]+RLI0+

[∫ t
0

(
H(t,s,y(s))−H(t,s,y(s))

)
ds

]
+RLI0+

[∫ T
0

(
K(t,s,y(s))−K(t,s,y(s))

)
ds

]


�
RLI0+[F(t, y(t))−F(t,y(t))]

3

�
RLI0+

[∫ t
0

(
H(t, s, y(s))−H(t, s, y(s))

)
ds

]

3

�
RLI0+

[∫ T
0

(
K(t, s, y(s))−K(t, s, y(s))

)
ds

]

3

�  
3Myy LF

�  
3Myy TLH

�  
3Myy TLK

�  

3Myy

[
max{LF , TLH , TLK}

] .

(3.21)
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for each t ∈1 and  ∈2. So, we get, d(Py,Py)� 3Myy
[
max{LF ,TLH ,TLK}d(y, y)

]
,

∀ t ∈ 1,  ∈ 2, for any y, y ∈ C, where 3M(max{LF , TLH , TLK}) ∈ i(5). From
equation (3.6), we can find a fixed number  ∈2 such that

Py(t)−y0(t)
 = 

[
m+RLI0+F(t, y(t))+RLI0+

∫ t
0 H(t, s, y(s))ds+RLI0+

∫ T
0 K(t, s, y(s))ds−y0(t)

]


�  

,

for arbitrary y0 ∈ C, ∀ t ∈1,  ∈2.
As F(t, y0(t)), H(t, s, y0(s)), K(t, s, y0(s)), y0(t) are bounded and using

equation (3.16) will imply that d(Py, y0) < . Then from Theorem 2.1, there exists a
CF x : 1 → R such that Pnx → x in (C, d) and Px = x. By using the method that is
followed in the proof of Theorem 3.1, we obtain C = {y ∈ C | d(y0, y) < } . Further,
the Theorem 2.1 and equation (3.9), we get the uniqueness of y0.

Now, using the equation (3.3) and Theorem 5 in [7]

y(t)−m−RLI0+F(t, x(t))−RLI0+
∫ 
0 H(t, s, x(s))ds−RLI0+

∫ T
0 K(t, s, x(s))ds

 �  
M

.

for any t ∈ 1 and  ∈ 2 which gives

d(y, Py) � M. (3.22)

Also, from Theorem 2.1 and equation (3.14), we deduce that

(y(t)−x(t))
 �  M

1−3M(max{LF , TLH , TLK})

which implies equation (3.15) for all t ∈ 1 . �
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