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ON THE GENERALIZED IYENGAR TYPE INEQUALITIES
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Abstract. In the paper, we establish two inequalities for differentiable bounded functions and
Lipschitzian function, which are connected with Iyengar integral inequalities, and we present
some new results.

1. Introduction

The following result is known in the literature as Iyengar’s inequality. In 1938,
Iyengar proved the following theorem obtaining bounds for a trapezoidal quadrature
rule for functions whose derivative | f (x)| < M for x ∈ (a,b) (see for example [6]):

THEOREM 1. Let f be a differentiable function on (a,b) and assume that there
is a constant M > 0 such that | f (x)| � M, ∀x ∈ (a,b) . Then, the following inequality
holds:

∣∣∣∣
∫ b

a
f (x)dx− f (a)+ f (b)

2
(b−a)

∣∣∣∣ � M (b−a)2

4
− 1

4M
( f (b)− f (a))2 . (1)

Clearly, detailed analysis shows that the famous Iyengar inequality actually says
that the Trapezoidal formula is a central algorithm for approximating integrals over
an appropriate interval for the class of functions whose derivatives are bounded by a
positive number M . Since 1938, considerable efforts have contributed to extensions
and generalizations of (1). During the past few years many researchers have given
considerable attention to the above inequality and various generalizations, extensions
and variants of these inequalities have appeared in the literature, see [1]–[9] and the
references cited therein.

The theory of fractional calculus has known an intensive development over the
last few decades. It is shown that derivatives and integrals of fractional type provide
an adequate mathematical modelling of real objects and processes see [10]. Therefore,
the study of fractional differential equations need more developmental of inequalities
of fractional type. The main aim of this work is to establish Iyengar type inequali-
ties involving the Riemann-Liouville integrals via the Taylor theorem and Lipschitzian
functions. Let us begin by introducing some definitions.
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2. Preliminaries

Let Cn+1 [a,b] be the set of real valued functions h defined on [a,b] , n times
differentiable at every point and with h(n+1)(x) that exists everywhere on [a,b] except
possibly finitely many points such that h(n+1)(x) is Riemann integrable over [a,b] ,
hence bounded.

THEOREM 2. (Taylor’s Theorem) For n ∈ N , h(x) be a function satisfying the
following conditions:

i) h(k) (x) for 0 � k � n are continuous on the closed interval [a,b] ;
ii) h(n+1)(x) exists in the open interval (a,b) .
Then for any given x ∈ (a,b] there exists at least one point ξ ∈ (a,x) such that

h(x) = h(a)+
n

∑
k=1

h(k) (a)
k!

(x−a)k +
h(n+1) (ξ )
(n+1)!

(x−a)n+1 .

We give some necessary definitions and mathematical preliminaries of fractional
calculus theory which are used throughout this paper.

DEFINITION 1. Let h∈ L1[a,b]. The Riemann-Liouville integrals Jα
a+h and Jα

b−h
of order α > 0 with a � 0 are defined by

Jα
a+h(x) =

1
Γ(α)

∫ x

a
(x− t)α−1 h(t)dt, x > a

and

Jα
b−h(x) =

1
Γ(α)

∫ b

x
(t− x)α−1 h(t)dt, x < b

respectively where Γ(α) =
∫ ∞
0 e−t uα−1du . Here is J0

a+h(x) = J0
b−h(x) = h(x).

3. Main results

We start the main results as the following theorem:

THEOREM 3. Let h be a differentiable function of Cn [a,b] such that m � h(n)(t)�
M for all t ∈ [a,b] . Then, when n is even, for t ∈ [a,b] , α > 0, the following inequal-
ities hold:

m
[
(b− t)α+n +(t−a)α+n]

Γ(α +n+1)
(2)

�
[
Jα
b−h(t)+ Jα

a+h(t)
]− n−1

∑
k=0

h(k)(a)(t−a)α+k +h(k)(b)(b− t)α (t−b)k

Γ(α + k+1)

�
M

[
(b− t)α+n +(t−a)α+n]

Γ(α +n+1)
,



ON THE GENERALIZED IYENGAR TYPE INEQUALITIES 135

and when n is odd, for t ∈ [a,b] , α > 0, the following inequalities hold:

m(t −a)α+n−M (b− t)α+n

Γ(α +n+1)

�
[
Jα
b−h(t)+ Jα

a+h(t)
]− n−1

∑
k=0

h(k)(a)(t−a)α+k +h(k)(b)(b− t)α (t−b)k

Γ(α + k+1)

� M (t−a)α+n−m(b− t)α+n

Γ(α +n+1)
.

Proof. By Taylor’s theorem, we write

h(x) =
n−1

∑
k=0

h(k)(a)
k!

(x−a)k +
h(n)(η)

n!
(x−a)n , a < η < x (3)

h(x) =
n−1

∑
k=0

h(k)(b)
k!

(x−b)k +
h(n)(μ)

n!
(x−b)n , x < μ < b. (4)

Multiplying both sides of (3) by 1
Γ(α) (t− x)α−1 , then integrating the resulting inequal-

ity with respect to x from a to t , we obtain

1
Γ(α)

t∫
a

(t − x)α−1 h(x)dx

=
n−1

∑
k=0

h(k)(a)
k!Γ(α)

t∫
a

(t− x)α−1 (x−a)k dx+
h(n)(η)
n!Γ(α)

t∫
a

(t− x)α−1 (x−a)n dx.

By calculating the above integrals, we have

Jα
a+h(t) =

n−1

∑
k=0

h(k)(a)
Γ(α + k+1)

(t−a)α+k +
h(n)(η)

Γ(α +n+1)
(t−a)α+n . (5)

Note that using the change of the variable we have

t∫
a

(t− x)α−1 (x−a)k dx

= (t−a)α+k
1∫

0

uα−1 (1−u)k du

= (t−a)α+k Γ(α)Γ(k+1)
Γ(α + k+1)

.
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Since m � h(n)(x) � M, then we get

m
Γ(α +n+1)

(t−a)α+n (6)

� Jα
a+h(t)−

n−1

∑
k=0

h(k)(a)
Γ(α + k+1)

(t−a)α+k � M
Γ(α +n+1)

(t−a)α+n .

Similarly, by multiplying both sides of (4) by 1
Γ(α) (x− t)α−1 , then integrating the re-

sulting inequality with respect to x from t to b , we obtain

1
Γ(α)

b∫
t

(x− t)α−1 h(x)dx

=
n−1

∑
k=0

h(k)(b)
k!Γ(α)

b∫
t

(x− t)α−1 (x−b)k dx+
h(n)(μ)
n!Γ(α)

b∫
t

(x− t)α−1 (x−b)n dx.

By calculating the above integrals, we have

m
Γ(α +n+1)

(b− t)α (t−b)n (7)

� Jα
b−h(t)−

n−1

∑
k=0

h(k)(b)
Γ(α + k+1)

(b− t)α (t−b)k � M
Γ(α +n+1)

(b− t)α (t−b)n .

When n is even from (7), it follows that

m
Γ(α +n+1)

(b− t)α+n (8)

� Jα
b−h(t)−

n−1

∑
k=0

h(k)(b)
Γ(α + k+1)

(b− t)α (t −b)k � M
Γ(α +n+1)

(b− t)α+n .

When n is odd, the reversed inequalities of (8) hold. Therefore, from (6) and (8), when
n is even we get the desired result (2). �

COROLLARY 1. With the assumptions of Theorem 3, if we take t = a+b
2 , we have

i) when n is even, the following inequalities hold:

m
(b−a)α+n

2α+n−1Γ(α +n+1)

�
[
Jα
b−h

(
a+b

2

)
+ Jα

a+h

(
a+b

2

)]
−

n−1

∑
k=0

(b−a)α+k

2α+k−1Γ(α + k+1)
h(k)(a)+ (−1)k h(k)(b)

2

� M
(b−a)α+n

2α+n−1Γ(α +n+1)
.
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ii) when n is odd, the following inequalities hold:

(m−M)(b−a)α+n

2α+nΓ(α +n+1)

�
[
Jα
b−h

(
a+b

2

)
+ Jα

a+h

(
a+b

2

)]
−

n−1

∑
k=0

(b−a)α+k

2α+k−1Γ(α + k+1)
h(k)(a)+ (−1)k h(k)(b)

2

� (M−m)(b−a)α+n

2α+nΓ(α +n+1)
.

REMARK 1. If we choose α = 1 and m = −M in Corollary 1, we have the fol-
lowing inequalities hold:

∣∣∣∣∣∣
b∫

a

h(x)dx−
n−1

∑
k=0

(b−a)1+k

2kΓ(k+2)
h(k)(a)+ (−1)k h(k)(b)

2

∣∣∣∣∣∣ � M
(b−a)n+1

2nΓ(n+2)
.

If we take n = 1 in the above inequality, it follows that

∣∣∣∣∣∣
b∫

a

h(x)dx− (b−a)
h(a)+h(b)

2

∣∣∣∣∣∣ � M
(b−a)2

4
.

THEOREM 4. Let h be a function and for all x ∈ [a,b] and M > 0 the following
conditions hold

|h(x)−h(a)|� M (x−a) and |h(x)−h(b)|� M (b− x). (9)

Then, for t ∈ [a,b] , α > 0, the following inequalities hold:

∣∣∣∣∣
[
Jα
b−h(t)+ Jα

a+h(t)
]− h(a)(t −a)α+1 +h(b)(b− t)α+1

Γ(α +1)

∣∣∣∣∣ (10)

� M
(t−a)α+1 +(b− t)α+1

Γ(α +2)
.

Proof. By using (9), we have

h(a)−M (x−a) � h(x) � h(a)+M (x−a) (11)

and
h(b)−M (b− x) � h(x) � h(b)+M (b− x). (12)

Multiplying both sides of (11) and (12) by 1
Γ(α) (t − x)α−1 and 1

Γ(α) (x− t)α−1 , respec-
tively, then integrating the resulting inequality with respect to x from a to t , and from
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t to b, respectively, we obtain

h(a)
Γ(α)

t∫
a

(t− x)α−1 dx− M
Γ(α)

t∫
a

(t− x)α−1 (x−a)dx

� 1
Γ(α)

t∫
a

(t− x)α−1 h(x)dx

� h(a)
Γ(α)

t∫
a

(t− x)α−1 dx+
M

Γ(α)

t∫
a

(t− x)α−1 (x−a)dx

and

h(b)
Γ(α)

b∫
t

(x− t)α−1 dx− M
Γ(α)

b∫
t

(x− t)α−1 (b− x)dx

� 1
Γ(α)

b∫
t

(x− t)α−1 h(x)dx

� h(b)
Γ(α)

b∫
t

(x− t)α−1 dx+
M

Γ(α)

b∫
t

(x− t)α−1 (b− x)dx.

By calculating the above integrals, we have

− M (t−a)α+1

Γ(α +2)
� Jα

a+h(t)− h(a)(t −a)α

Γ(α +1)
� M (t−a)α+1

Γ(α +2)
(13)

and similarly

− M (b− t)α+1

Γ(α +2)
� Jα

b−h(t)− h(b)(b− t)α

Γ(α +1)
� M (b− t)α+1

Γ(α +2)
. (14)

By adding (13) and (14) and using the properties of the modulus we get the desired
result (10). This completes the proof. �

COROLLARY 2. With the assumptions of Theorem 4, if we take t = a+b
2 , we have

∣∣∣∣
[
Jα
b−h

(
a+b

2

)
+ Jα

a+h

(
a+b

2

)]
− (b−a)α

2α−1Γ(α +1)
h(a)+h(b)

2

∣∣∣∣ � M
(b−a)α+1

2α Γ(α +2)
.

REMARK 2. If we choose α = 1 in Corollary 2, we have
∣∣∣∣∣∣

b∫
a

h(x)dx− (b−a)
h(a)+h(b)

2

∣∣∣∣∣∣ � M
(b−a)2

4
.
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