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Abstract. This paper exploits non-autonomous Caputo-type systems associated with unbounded
delayed arguments. We formulate a new theorem and provide proof that gives limiting behaviour
of nontrivial solutions to zero vector. Two examples are provided to illustrate the proposed
theorem.

1. Introduction

Real order systems (well known as fractional order systems) describe evolution of
state variables in a mathematical space that containing long-term memory. Applications
of real order systems are inevitable in diverse areas of science and engineering [15, 21,
20, 14, 3, 11, 13, 2].

Time-delays are inherent and the effect of time-delays has been well established
for integer time-delay differential systems [9, 6]. It adds an extra degree of freedom
to such systems by the inclusion of section-wise memory of state variables before the
current state of time. Such investigations demonstrate that the presence of time-delay
in such systems might affect the performance of such systems and thus, it cannot be
neglected in real order systems. Real order time-delay systems are very difficult in con-
trast to integer order time-delay systems. Recently, the stability analysis of real order
systems that involve time-delay or no time-delay has received significant attention from
many researchers (see, [5,17,18,26,8,23,16,4,19,22,10,7,24]). Different methods, such
as the Lyapunov method, comparison method, Laplace transform method, has been pro-
posed in these researches that provide useful tools for obtaining the conditions for the
asymptotic stability analysis of such systems. Moreover, Tuan and Trinh [24] devel-
oped an asymptotic stability theory for autonomous nonlinear bounded or unbounded
delay systems for the case when the fractional orders are equal. Further, in [25], Tuan
et al. developed criteria for autonomous linear unbounded delay systems for the case
when the fractional orders were different. He et al. [10] developed a theory for un-
bounded delay systems that involve equal fractional order. These works established
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asymptotic stability criteria of such systems that are dependent on time-delays, depen-
dent on fractional orders, independent of time-delays, independent of fractional orders,
and a combination of these arguments. In [7], Gallegos et al. have developed a frac-
tional vector Lyapunov-like method for the asymptotic stability analysis of real order
systems that involve bounded delays.

The question of asymptotic stability analysis of many real order time-delay sys-
tems is quite challenging and difficult. We ask the following question: Can we discover
some relative simple real order system if equations are associated with unbounded de-
lays? Motivated by the mentioned question, this paper investigates nonautonomous
Caputo time-delay system

CDα̂
0,tx(t) = f (t,x,x(t − τ1(t)), · · · ,x(t − τm(t))) (1)

subject to the initial continuous function x(t) = φ(t) = (φ1(t), · · · ,φn(t))
T on [−τ, 0] ,

where τ j(t) is nonnegative, continuous and satisfies t−τ j(t) �−τ j with t−τ j(t)→ ∞

as t → ∞ , τ = max{τ1, · · · ,τm} , x(t)∈R
n , CDα̂

0,tx(t) =
(

CDα1
0,t x1(t), · · · ,CDαn

0,t xn(t)
)T ∈

R
n , CD�

0,t xi(t) stands for Caputo operator, α̂ =(α1, · · · ,αn) , α1, · · · ,αn ∈ (0,1] , and the

function f : [0,∞)×R
(m+1)n →R

n is continuously differentiablewith f (t,0,0, · · · ,0)=
0, ∀t � 0.

2. Background

Let R be the set of real numbers, N the set of natural numbers, R
n the Euclidean

space and ‖·‖ the Euclidean norm. The inequality x � y means its components xi and
yi satisfy xi � yi for i = 1,2, · · · ,n , where x,y ∈ R

n . The symbol i = 1(1)n means
i = 1,2, · · · ,n .

Here, we recall the popular fractional Riemann-Liouville (RL) and Caputo (C)
operators [21, 20]. The α -order Riemann-Liouville operator of x : [0,∞) → R is given
by

RLD−α
0,t x(t) =

1
Γ(α)

∫ t

0
(t− τ)α−1 x(τ)dτ, t > 0, (2)

where 0 < α ∈ R and Γ(α) =
∫ ∞
0 e−ttα−1dt .

The α -order Caputo operator of x : [0,∞) → R is given by

CDα
0,tx(t) =

⎧⎨
⎩

RLD−(n−α)
0,t

(
dnx(t)
dtn

)
, if α ∈ (n−1,n),

dnx(t)
dtn , if α = n,

(3)

where n ∈ N and 0 < α ∈ R .
A square matrix A ∈ R

n×n is called a Metzler matrix if its off-diagonal elements
are non-negative [12].

Next, we introduce the following definition.
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DEFINITION 1. Throughout this work, a function g = (g1, · · · ,gm)T : R×R
n ×

R
p → R

m is called a quasi-monotone non-decreasing (QN) function of class W ∗ if, for
every fixed t ∈ R and y ∈ R

p , there exists a h = (h1, · · · ,hm)T : R×R
n ×R

p → R
m

with gi(t,u,y) � hi(t, û,y) , i = 1(1)m , for all u, û ∈ R
n such that u j � û j , ui = ûi ,

j = 1(1)m , i �= j , where ui denotes the i-th component of u .

When the function g is given by g = h : R×R
n ×R

p → R
m , then it becomes

quasi-monotone nondecreasing function (see [7]).

DEFINITION 2. We say the null solution to system (1) is globally asymptoti-
cally stable (GAS) if, for any initial continuous function φ(t) on [−τ,0] , the limit
lim
t→∞

‖x(t)‖ = 0 holds.

LEMMA 1. (Comparison principle) Consider the fractional differential inequality

CDαi
0,t xi(t) � CDαi

0,tyi(t) (4)

with yi(t) � xi(t) = φi(t) � 0 on [−τ,0] , for i = 1(1)n, where φ1(t), · · · ,φn(t) are
continuous, τ > 0 and α1, · · · ,αn ∈ (0,1] . Then, the inequality

0 � xi(t) � yi(t), ∀t � −τ, i = 1(1)n (5)

holds.

Proof. Let zi(t) = CDαi
0,t xi(t)−CDαi

0,t yi(t) , for i = 1(1)n . Applying the RL opera-
tor, one gets

xi(t)− yi(t) = xi(0)− yi(0)+
1

Γ(αi)

∫ t

0
(t− τ)αi−1zi(τ)dτ, i = 1(1)n. (6)

Since zi(t) � 0 and yi(0) � xi(0) , one obtains xi(t) � yi(t) , ∀t �−τ for i = 1(1)n . Set
wi(t) = yi(t)−xi(t) for i = 1(1)n . Then, one can obtain wi(t) � 0 for all t �−τ . Note
that if xi(t) � 0 for all t � −τ , then wi(t) � yi(t) for all t � −τ . Consequently, one
gets xi(t) � 0 on [−τ,0] . It violets the priori assumption xi(t) = φi(t) � 0 on [−τ,0] .
Thus, one must have xi(t) � 0 for all t �−τ , for i = 1(1)n . This closes the proof. �

REMARK 1. Finding some new different proofs to Lemma 1 often fascinates to
many students and researches. This problem remains an open exercise problem in the
comparison principle theory.

3. Main results

Let V (t,x) : [0,∞)×D ⊆ R
n → R

d
�0 be a continuously differentiable vector func-

tion with V (t,0) = 0 ∀t � 0 for some d ∈ N . Define the vector function V (t,x) =
(v1(t,x),v2(t,x), · · · ,vd(t,x))

T , where vi(t,x) : [0,∞)×D ⊆ R
n → R�0 are continu-

ously differentiable with vi(t,0) = 0 ∀t � 0, for i = 1(1)d .
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DEFINITION 3. Whenever V (t,x) ∈ R
d
�0 , we mean Caputo memory derivative

along the nontrivial solution to (1) as

CDδ̂
0,tV (t,x(t)) =

(
CDδ1

0,t v1(t,x(t)),CD
δ2
0,t v2(t,x(t)), · · · ,CDδd

0,t vd(t,x(t))
)T

(7)

where δ̂ = (δ1, · · · ,δd) , and δ1,δ2, · · · ,δd ∈ (0,1] .

The below mentioned Theorem 1 introduces a new concept for the understanding
of system (1) and provides a new insight toward the analysis of such a system.

THEOREM 1. (Nonnegative comparison theorem) Let x = 0 be the equilibrium
point of the system (1). Suppose there exists a continuously differentiable function
V (t,x) : [0,∞)×D⊆ R

n → [0,∞) such that

A1) k1‖x‖p1 �
d
∑
i=1

vi(t,x) � k2‖x‖p2 , ∀x∈D, ∀t � 0 , where the constants k1 , k2 , p1

and p2 are positive, and satisfy k1 � k2 with k2 � 1 and p1 � p2 with p2 � 1 .

A2) Along the nontrivial solution x(t) of (1), the inequality

CDδ̂
0,tV (t,x(t)) � g(t,V (t,x(t)),V (t,x(t− τ1(t))), · · · ,V (t,x(t− τm(t)))), (8)

∀x ∈ D−{0}, ∀t > 0 holds, where the function g : [0,∞)×R
d
�0×R

md
�0 → R

d is
continuously differentiable and satisfies g(t,0, · · · ,0) = 0 for all t � 0 .

A3) There exists a continuously differentiable quasi-monotone nondecreasing func-
tion h : [0,∞)×R

d
�0×R

md
�0 → R

d with h(t,0, · · · ,0) = 0 for all t � 0 and satis-
fies

CDδ̂
0,tU(t,z(t)) = h(t,U(t,z(t)),U(t,z(t − τ1(t))), · · · ,U(t,z(t − τm(t)))), (9)

∀z ∈ D−{0}, ∀t > 0 , subject to U(t,z(t)) � V (t,x(t)) � 0 on [−τ,0] .

If the function g is of QN class W ∗ , then the equilibrium point x = 0 to the system (1)
is asymptotically stable provided the zero solution to (9) is asymptotically stable. If the
result holds globally, then the zero solution is globally asymptotically stable.

Proof. Assume inequality (8) with equality (9). Since g is of QN class W ∗ , it
follows from Lemma 1 that 0 � V (t,x(t)) � U(t,z(t)) for all t � −τ . Moreover, if
the zero solution to (9) is asymptotically stable, then one has lim

t→∞
V (t,x(t)) = 0. Then,

from the assumption A1) , one gets lim
t→∞

‖x(t)‖ = 0. �

REMARK 2. The idea of the proposed comparison theory is quite new in the cur-
rent state of the art of qualitative asymptotic stability theory. In short, it says that
in order to conclude the asymptotic behaviour of the original system one must dis-
cover/construct/find at least a relative non-negative asymptotic stable system. The con-
tinuously differentiable function V (t,x) enables a pathway to figure out the possibility
of the existence of many such relative systems. It has been formulated in Theorem 1 to
show the existence of many new results.
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REMARK 3. In Theorem 1, the notation CDδ̂
0,t gives abstract measurement of frac-

tional derivative of order δ̂ = (δ1, · · · ,δd) for a given system of order α̂ = (α1, · · · ,αn) .
Some special cases could occur depending on the matching of orders for a smooth ap-

plication process. The introduction of CDδ̂
0,t in Theorem 1 is absolutely necessary since

the right measurement of the memory derivative of order δ̂ to the given system remains
an open problem to date.

Next, the following corollaries are introduced that provides a useful tool for the
construction of some suitable comparison systems.

COROLLARY 1. Let x = 0 be the equilibrium point of the system (1). Suppose
there exists a continuously differentiable function V (t,x) : [0,∞)×D ⊆ R

n → [0,∞)
such that

A1) k1‖x‖p1 �
d
∑
i=1

vi(t,x) � k2‖x‖p2 , ∀x∈D, ∀t � 0 , where the constants k1 , k2 , p1

and p2 are positive, and satisfy k1 � k2 with k2 � 1 and p1 � p2 with p2 � 1 .

A2) Along the nontrivial solution x(t) of (1), the inequality

CDδ̂
0,tV (t,x(t)) � AV (t,x(t))+

m

∑
j=1

BjV (t,x(t− τ j(t))), (10)

∀x ∈D−{0}, ∀t > 0 holds, where A ∈ R
n×n is a Metzler matrix and Bj ∈ R

n×n

are non-negative matrices for j = 1,2, · · · ,m.

Then, the equilibrium point x = 0 to the system (1) is asymptotically stable if the zero
solution to the system

CDδ̂
0,tU(t,x(t)) = AU(t,x(t))+

m

∑
j=1

BjU(t,x(t− τ j(t))), (11)

with U(t,x(t)) = V (t,x(t)) on [−τ,0] , is asymptotically stable. If the result holds
globally, then the zero solution is globally asymptotically stable.

Proof. Consider (10) with (11). Take g(t,u,y1, · · · ,ym) = h(t,u,y1, · · · ,ym) =

Au +
m
∑
j=1

Bjy j . Then, it follows from Theorem 1 that the equilibrium point x = 0 to

the system (1) is asymptotically stable since the zero solution to the system (11) is
asymptotically stable. �

COROLLARY 2. Let x = 0 be the equilibrium point of the system (1). Suppose
there exists a continuously differentiable function V (t,x) : [0,∞)×D ⊆ R

n → [0,∞)
such that

A1) k1‖x‖p1 �
d
∑
i=1

vi(t,x) � k2‖x‖p2 , ∀x∈D, ∀t � 0 , where the constants k1 , k2 , p1

and p2 are positive, and satisfy k1 � k2 with k2 � 1 and p1 � p2 with p2 � 1 .
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A2) Along the nontrivial solution x(t) of (1), the inequality

CDδ̂
0,tV (t,x(t)) � AV (t,x(t))

+g(t,V(t,x(t)),V (t,x(t− τ1(t)), · · · ,V (t,x(t− τm(t))), (12)

∀x∈D−{0}, ∀t > 0 holds, where A∈R
n×n is a Metzler matrix and g : [0,∞)×

R
d
�0×R

md
�0 →R

d is a continuously differentiable quasi-monotone nondecreasing
function and satisfies g(t,0, · · · ,0) = 0 for all t � 0 .

Then, the equilibrium point x = 0 to the system (1) is asymptotically stable if the zero
solution to the system

CDδ̂
0,tU(t,x(t)) = AU(t,x(t))

+g(t,U(t,x(t)),U(t,x(t− τ1(t)), · · · ,U(t,x(t − τm(t))), (13)

with U(t,x(t)) = V (t,x(t)) on [−τ,0] , is asymptotically stable. If the result holds
globally, then the zero solution is globally asymptotically stable.

Proof. Consider (12) with its corresponding system (13). Then, it follows from
Theorem 1 that the equilibrium point x = 0 to the system (1) is asymptotically stable
since the zero solution to the system (13) is asymptotically stable. �

REMARK 4. The new emerging Corollary 1 and Corollary 2 are some simplest
kind of discoverable results of Theorem 1. Deriving many conditions for asymptotic
stability remains some exercise problems in applicable results.

4. Examples

This section introduces two examples to illustrate the importance of some pro-
posed mathematical results.

EXAMPLE 1. Consider the scalar real order time-delay system

CDα
0,t x(t) = −(5+ e−t)x(t)+2x(t− τ1(t)), (14)

with x(t) = φ(t) on [−3,0] , where α ∈ (0,1] and τ1(t) = t
2 +3.

Take V (t,x) = x2 . Then, by using Lemma 1 of [1], one gets the Caputo derivative
of V (t,x) along the solution x(t) of (1) as

CDα
0,tV (t,x(t)) � −8V(t,x(t))+2V(t,x(t− τ1(t))), ∀t > 0.

Construct an equation

CDα
0,tU(t,x(t)) = −8U(t,x(t))+2U(t,x(t− τ1(t))), (15)

where U(t,x(t)) = φ2(t) on [−3,0] . Set d = 1 and δ̂ = δ1 = α . Clearly, all the
assumptions of Theorem 1 are satisfied. Since the zero solution to (15) is asymptotically
stable by Corollary 3 of [10], it follows from Theorem 1 that the zero solution to (1)
should be globally asymptotically stable.
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EXAMPLE 2. Consider the vector real order time-delay system

CDα1
0,t x1(t) = −11

2
x1(t)+ cos2(t)x1(t)− x3

1(t)+ sin(x2(t− τ1(t))),

CDα2
0,t x2(t) = −11

2
x2(t)+ sin2(t)x2(t)+ sin(x1(t− τ2(t))),

(16)

with xi(t) = φi(t) on [−5,0] , where α1,α2 ∈ (0,1] , τ1(t) = t
3 + 1 and τ2(t) = t

3 +
t sin2(t)

3 +5.

Let V (t,x) = (v1(t,x),v2(t,x))
T =

(
x2
1,x

2
2

)T
. Applying Lemma 1 of [1], one com-

putes the Caputo derivative of V (t,x) along the solution x(t) of (2) as

CDα1
0,t v1(t,x(t)) � −8v1(t,x(t))+ v2(t,x(t − τ1(t))),

CDα2
0,t v2(t,x(t)) � −8v2(t,x(t))+ v1(t,x(t − τ2(t))).

(17)

Construct a system

CDα1
0,t u1(t,x(t)) = −8u1(t,x(t))+u2(t,x(t − τ1(t))),

CDα2
0,t u2(t,x(t)) = −8u2(t,x(t))+u1(t,x(t − τ2(t))),

(18)

where ui(t,x(t)) = φ2
i (t) on [−5,0] for i = 1,2. Set d = 2, δ̂ = (δ1,δ2) , δ1 = α1 and

δ2 = α2 . Clearly, all the assumptions of Theorem 1 are satisfied. Since the zero solution
to (18) is asymptotically stable by Theorem 1 of [25], it follows from Theorem 1 that
the zero solution to (17) should be globally asymptotically stable.

5. Conclusions

In short, determining the asymptotic stability of nonautonomous real order time-
delay systems to the incommensurate order is challenging in the stability theory. This
paper proposes some new simple comparison theories that provide asymptotic stability
of nonautonomous Caputo-type real order time-delay systems. The proposed asymp-
totic theory is applied successively to two examples that involve unbounded delayed
arguments. The theory may bring new insight into the understanding and analysis of
many advanced systems.
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