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FRACTIONAL NON–AUTONOMOUS EVOLUTION EQUATIONS

WITH INTEGRAL IMPULSE CONDITION IN FRÉCHET SPACES

FATIMA MESRI, ABDELKRIM SALIM ∗ AND MOUFFAK BENCHOHRA

(Communicated by N. Vasylyeva)

Abstract. The primary focus of this study is to explore the presence of a mild solution within
a specific category of fractional non-autonomous differential evolution equations, incorporating
integral impulse conditions. The approach employed extends the classical Darbo fixed point
theorem for Fréchet spaces, leveraging the notion of a measure of noncompactness along with
the principle of K -set contraction. To illustrate our findings, we offer an illustrative example.

1. Introduction

From the modern literature, it is observed that the topic of fractional differential
equations received an overwhelming interest from many scholars, due to their impor-
tance in understanding the dynamic memory of many real-world phenomena. In this
regards, a wide variety of fractional integrals and derivatives have been defined and
extensively studied by many researchers. For more details and applications of frac-
tional calculus, the reader is directed to the books of Anastassiou [3], Benchohra et
al. [6, 7], Cao [12], Dutta [16], Francesco [19], Herrmann [25], Hilfer [26], Kilbas
et al. [27] and Samko et al. [34]. Agrawal [2] introduced some generalizations of
fractional integrals and derivatives and present some of their properties. On the other
hand, various well-known academics have lately employed a wide range of strategies
to solve different problems under the concept of fractional calculus. In the papers
[24, 33, 28, 13, 14, 18, 29, 36, 39, 1], the authors presented the existence and uniqueness
of solution for some nonlinear fractional differential equations.

Sudden occurrences, prevalent in both natural events and human actions, stem
from abrupt shifts in a system’s state due to external disruptions. These phenomena can
be categorized into two groups based on the duration of the change they bring about.
The first group involves alterations that transpire over a short span in comparison to the
entire process-a concept termed “instantaneous impulses.” On the other hand, the sec-
ond group entails effects that unfold continuously, commencing from any fixed point
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and persisting for a predetermined duration, referred to as a “non-instantaneous im-
pulses.” The theory of instantaneous impulsive differential equations has undergone sig-
nificant advancement over time and has assumed a pivotal role in modern applied math-
ematical models, addressing real-world processes observed in fields such as physics,
population dynamics, chemical technology, biotechnology, and economics. Notewor-
thy progress has been achieved in the study of impulsive evolution equations, as evi-
denced by recent works including those by [21, 8, 9, 10, 22, 38, 5] and their respective
references.

Arthi and Balachandran et al. [4] considered the following abstract control system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
χ ′′(δ ) = Z χ(δ )+Bu(δ )+ ℵ

(
δ ,χρ(δ ,χδ )

)
,δ ∈ I = [0,a],δ �= δi,

χ0 = ϕ ∈ E , χ ′(0) = η ∈ �,

Δχ (δi) = Ii
(
χδi

)
, i = 1,2, . . . , i,

Δχ ′ (δi) = Θi
(
χδi

)
, i = 1,2, . . . , i,

where Z is the infinitesimal generator of a strongly continuous cosine family of bounded
linear operators (C(δ ))δ∈R defined on a Banach space F . The control function u(·)
is given in L2(I,U) , a Banach space of admissible control functions with U as a Ba-
nach space and B : U → F as a bounded linear operator; the function χδ : (−∞,0] →
F,χδ (ϑ) = χ(δ +ϑ) , belongs to some abstract phase space E described axiomatically;
0 < δ1 < · · · < δi < a are prefixed numbers; ℵ : I×E → F,ρ : I×E → (−∞,a], Ii(·) :
E → F,Θi(·) : E → F are appropriate functions and the symbol Δξ (δ ) represents the
jump of the function ξ (·) at δ , which is defined by Δξ (δ ) = ξ (δ+)− ξ (δ−) .

In this paper, we examine the possibility that the following nonlinear time frac-
tional non-autonomous evolution equations in Fréchet space have mild solutions to their
initial value problem:⎧⎪⎪⎨⎪⎪⎩

cDς
0,δ χ(δ )+Z (δ )χ(δ ) = ℵ(δ ,χ(δ )), a.e. δ ∈ R+, δ �= δ j, j = 1,2, . . . .

χ(0) = χ0,

�χ(δ j) = I j

(∫ δ j−ϑ j

δ j−κ j
ℵ̂(ε,χ(ε))dε

)
, j = 1,2, . . . ,

(1)
where (0 < ς � 1), cDς

0,δ is the ς -order Caputo derivative operator, (ℑ,‖ · ‖) is a
Banach space, and {Z (δ )}δ>0 is a family of linear closed (not necessarily bounded)
operators defined on a dense domain H(Z ) in ℑ into ℑ such that H(Z ) is indepen-
dent of δ , ℵ : R+ ×ℑ → ℑ is a given function which will be specified later, χ0 ∈ ℑ
and ℵ̂ : R+ × ℑ → ℑ is a given function; 0 < δ0 < δ1 < .. . < δi < δi+1 < .. . <
lim
i→∞

δi = ∞, I j ∈C(ℑ,ℑ) are bounded functions, 0 � ϑ j � κ j � δ j −δ j−1 for j ∈ N ,

�χ(δ j) = χ(δ+
j )− χ(δ−

j ) and χ(δ+
j ) = lim

ρ→0+
χ(δ j + ρ), χ(δ−

j ) = lim
ρ→0−

χ(δ j −ρ) .

The work is organized as follows: In Section 2, we review some essential facts that
are used to obtain our main results. In Section 3, we study the existence of mild solution
for a the fractional non-autonomous differential evolution equations with integral im-
pulses condition (1). To be more precise, we use a generalization of the classical Darbo
fixed point theorem for Fréchet spaces, Darbo fixed point theorem and the concept of
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measure of noncompactness and K -set contraction principle to obtain our results. Also,
we give an appropriate example to illustrate the given result.

2. Preliminaries

This section introduces notation, definitions, and preliminary facts that will be
utilized throughout the study.

Let ℜ := R+ . Consider the Fréchet space � =C(R+) of all continuous functions
from ℜ into ℑ equipped with the family of seminorms

‖χ‖i = sup
δ∈[0,i]

‖χ(δ )‖; i ∈ N,

and the distance

d(ϖ ,ϖ) =
∞

∑
i=1

2−i ‖ϖ −ϖ‖i

1+‖ϖ −ϖ‖i
; ϖ ,ϖ ∈ �.

Let ℜ̃ := [0,κ ];κ > 0. A measurable function χ : ℜ̃ → ℑ is Bochner integrable
if and only if ‖χ‖ is Lebesgue integrable [37].

By G(ℑ) we denote the Banach space of all bounded linear operators from ℑ into
ℑ with

‖Ξ‖G(ℑ) = sup
‖χ‖=1

‖Ξ(χ)‖.

As usual, L1(ℜ̃,ℑ) denotes the Banach space of measurable functions χ : ℜ̃ → ℑ
which are Bochner integrable and normed by

‖χ‖L1 =
∫ κ

0
‖χ(δ )‖dδ .

DEFINITION 1. ([27, 32]) The fractional integral of order ς > 0 with the lower
limit zero for a function ℵ ∈ L1([0,+∞),R) is defined as

Iς
0 ℵ(δ ) =

∫ δ

0

(δ − ε)ς−1

Γ(ς)
ℵ(ε)dε,

where Γ is the gamma function.

DEFINITION 2. ([27, 32]) The Caputo fractional derivative of order ς with the
lower limit zero for a function ℵ : [0,+∞)→R, which is at least i-times differentiable
can be defined as

cDς
δ ℵ(δ ) =

1
Γ(i− ς)

∫ δ

0
(δ − ε)i−ς−1ℵ(i)(ε)dε = Ii−ς

δ ℵ(i)(δ ).

Here, i = [ς ]+1 and [ς ] denotes the integer part of ς .
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Throughout this paper, the linear operator Z is assumed to satisfy the following
assumptions:

(A1) For any h̄ with Re(h̄) � 0, the operator h̄I +Z has a bounded inverse operator
[(h̄I +Z )(δ )]−1 in G(ℑ) and

‖[(h̄I +Z )(δ )]−1‖ � C
|h̄|+1

,

where C is a positive constant independent of both δ and h̄ ;

(A2) For any δ ,κ,ε ∈ ℜ̃ , there exists a constant γ ∈ (0,1] such that

‖[Z (δ )−Z (κ)]Z −1(ε)‖ � C|δ −κ|γ ,

where the constants γ and C > 0 are independent of both δ ,κ and ε .

REMARK 1. From Henry [23], Pazy [31] and Temam [35], we know that the as-
sumption (A1) means that for each ε ∈ ℜ̃ , the operator −Z (ε) generates an analytic
semigroup e−δZ (ε) (δ > 0) , and there exists a positive constant C independent of both
δ and ε such that

‖Z i(ε)e−δZ (ε)‖ � C
δ i ,

where i = 0, 1, δ > 0, ε ∈ ℜ .

According to [17], we can define the operators δ)ג ,ε), ϕ(δ ,η) and U(δ ) by

δ)ג ,ε) = ς
∫ ∞

0
ϑδ ς−1ξς (ϑ)e−δ ς ϑZ (ε)dϑ , (2)

ϕ(δ ,η) =
∞

∑
j=1

ϕ j(δ ,η), (3)

and

U(δ ) = −Z (δ )Z −1(0)−
∫ δ

0
ϕ(δ ,ε)Z (ε)Z −1(0)dε, (4)

where ξς is a probability density function [20] defined on [0,+∞) such that it’s Laplace
transform is given by∫ ∞

0
ξς (ϑ)e−ϑ χdϑ =

∞

∑
i=1

(−χ)i

Γ(1+ ς i)
0 < ς � 1, χ > 0,

ϕ1(δ ,η) = [Z (δ )−Z (η)]ג(δ −η ,η),

and

ϕ j+1(δ ,η) =
∫ δ

η
ϕ j(δ ,ε)ϕ1(ε,η)dη , j = 1,2, . . . .
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DEFINITION 3. ([17]) We say that a continuous function χ(·) : ℜ → ℑ is mild
solution of (1), if χ verifies:

χ(δ ) = χ0 +
∫ δ

0
δ)ג −η ,η)U(η)Z (0)χ0dη +

∫ δ

0
δ)ג −η ,η)ℵ(η ,χ(η))dη

+
∫ δ

0

∫ η

0
δ)ג −η ,η)ϕ(η ,ε)ℵ(ε,χ(ε))dεdη ,

+ ∑
0<δ j<δ

δ)ג j −η ,η)I j

(∫ δ j−ϑ j

δ j−κ j

ℵ̂(ε,χ(ε))dε
)

, for each δ ∈ R+.

LEMMA 1. ([17]) The operator-valued functions δ)ג − η ,η) and Z (δ δ)ג( −
η ,η) are continuous in uniform topology about the variables δ and η , where δ ∈ ℜ ,
0 � η � δ −ρ for any ρ > 0 , and

δ)ג‖ −η ,η)‖ � C(δ −η)ς−1, (5)

where C is a positive constant independent of both δ and η . Furthermore,

‖ϕ(δ ,η)‖ � C(δ −η)γ−1 (6)

and
‖U(δ )‖ � C(1+ δ γ). (7)

DEFINITION 4. ([15]) Let ��̃ be the family of all nonempty and bounded subsets
of Fréchet space �̃ . A family of functions {℘i}i∈N where ℘i : ��̃ → [0,∞) is said to
be a family of measures of noncompactness in the Fréchet space �̃ if it satisfies the
following conditions for all ∇,∇1,∇2 ∈ ��̃ :

(a) {℘i}i∈N is full, that is: ℘i(∇) = 0 for i ∈ N if and only if ∇ is precompact,

(b) ℘i(∇1) �℘i(∇2) for ∇1 ⊂ ∇2 and i ∈ N,

(c) ℘i(Conv∇) =℘i(∇) for i ∈ N ,

(d) If {∇i}i=1,... is sequence of closed sets from ��̃ such that ∇i+1 ⊂ ∇i; i = 1, . . .
and if limi→∞℘(∇i) = 0, for each i ∈ N , then the intersection set ∇∞ := ∩∞

i=1 is
nonempty.

Some Properties:

(e) We can the family of measures of noncompactness if {℘i}i∈N to be homogeneous
if ℘i(h̄∇) = |h̄|℘i(∇) , for h̄ ∈ R and i ∈ N.

(f) If the family {℘i}N satisfied the condition ℘i(∇1∪∇2) �℘i(∇1)+℘i(∇2) , for
i ∈ N , it is called subadditive.

(g) It is sublinear if both conditions (e) and (f) hold.
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(h) We say that the family of measures {℘i}i∈N has the maximum property if

℘i(∇1∪∇2) = max(℘i(∇1),℘i(∇2)),

(i) The family of measure of noncompactness {℘i}i∈N is said to be regular if and
only if the conditions (a), (g) and (h) hold; (full sublinear and has maximum
property).

DEFINITION 5. ([15]) A nonempty subset ∇ ⊂ � is said to be bounded if

sup
υ∈∇

‖υ‖i < ∞ for i ∈ N.

LEMMA 2. ([11]) If �̂ is a bounded subset of Banach space � , then for each
ρ > 0 , there is a sequence {χ̂ j}∞

j=1 ⊂ �̂ such that

℘(�̂) � 2℘({χ̂ j}∞
j=1)+ ρ ,

where ℘ is a measure of noncompactness.

LEMMA 3. ([30]) If {u j}∞
j=1 ⊂ L1(ℜ̃) is uniformly integrable, then ℘({u j}∞

j=1)
is measurable and

℘

({∫ δ

0
u j(ε)dε

}∞

j=1

)
� 2

∫ δ

0
℘({u j(ε)}∞

j=1)dε,

for each δ ∈ [0, i], where ℘ is a measure of noncompactness.

THEOREM 1. ([15]) Let � be a nonempty, bounded, closed, and convex subset of
a Fréchet space �̃ and let T : � → � be a continuous mapping. Suppose that T is a
contraction with respect to a family of measures of noncompactness {℘i}i∈N. Then T
has at least one fixed point in the set �.

REMARK 2. It is noteworthy that Theorem 1 is a corollary of more general result,
namely Theorem 3.11 in [15].

3. Existence of mild solution

In this section, we will state and prove our main results. In order to obtain the
existence of mild solutions for the problem (1). We suppose the following assumptions:

(H1) The function ℵ is Carathéodory on R+ ×ℑ .

(H2) There exists a continuous function p : R+ → R+ such that

‖ℵ(δ ,ϖ)‖ � p(δ )(1+‖ϖ‖); for a.e. δ ∈ R+, and each ϖ ∈ ℑ.
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(H3) We have I j

(∫ δ j−κ j

δ j−ϑ j

ℵ̂(ε,χ(ε))dε
)

� Lj

∫ δ j−ϑ j

δ j−κ j

ℵ̂(ε,χ(ε))dε.

(H4) There exist constants Lℵ̂,Mδ such that

‖ℵ̂(δ ,u1)− ℵ̂(δ ,u2)‖ � Lℵ̂‖u1−u2‖
for a.e. δ ∈ R+ , and each u1, u2 ∈ ℑ, where

Mδ = sup
ε∈[0,δ ]

‖ℵ̂(ε,0)‖.

(H5) There exist constants Lj; j = 1,2, . . . , such that

‖I j(v1)− I j(v2)‖ � Lj‖v1− v2‖; and each v1, v2 ∈ ℑ

(H6) For each bounded and measurable set ∇ ⊂ ℑ we have

℘(ℵ(δ ,∇)) � p(δ )℘(∇); for a.e. δ ∈ R+,

where ℘ is a measure of noncompactness on the Banach space ℑ .

For i ∈ N , let
p∗i = sup

δ∈[0,i]
p(δ ).

In this section, we denote

β (ς ,γ) =
∫ 1

0
δ ς−1(1− δ )γ−1dδ

be the Beta function.

THEOREM 2. Assume that hypotheses (H1)− (H3) are satisfied, and

Ciς

ς
p∗i +C2 iς+γ

ς
p∗i β (ς +1,γ)+C∗

i i
ς+1 < 1,

and

�i :=
Ciς

ς
p∗i +2C2 iς+γ

ς
p∗i β (ς +1,γ)+2Ciς+1Lℵ̂ <

1
4
.

Then, the problem (1) has a mild solution.

Proof. Let the operator Ξ : � −→ � defined by:

(Ξχ)(δ ) = χ0 +
∫ δ

0
δ)ג −η ,η)U(η)Z (0)χ0dη +

∫ δ

0
δ)ג −η ,η)ℵ(η ,χ(η))dη

+
∫ δ

0

∫ η

0
δ)ג −η ,η)ϕ(η ,ε)ℵ(ε,χ(ε))dεdη ,

+ ∑
0<δ j<δ

δ)ג −η ,η)I j

(∫ δ j−ϑ j

δ j−κ j

ℵ̂(ε,χ(ε))dε
)

, for each δ ∈ R+.
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For any i ∈ N , let Ri be a positive real number with

Ri �
‖χ0‖+C2iς

[
1
ς + iγβ (ς ,γ +1)

]
‖Z (0)χ0‖+ Ciς

ς p∗i

1−
[

Ciς
ς p∗i +C2 iς+γ

ς p∗i β (ς +1,γ)+C∗
i i

ς+1
]

+
C2β (ς ,γ)p∗i

iς+γ

ς+γ +C∗
i Miiς+1

1−
[

Ciς
ς p∗i +C2 iς+γ

ς p∗i β (ς +1,γ)+C∗
i i

ς+1
] ,

and we consider the ball

∇Ri := B(0,Ri) = {ω ∈C(R+) : ‖ω‖i � Ri}.
For any i ∈ N , and each χ ∈ ∇Ri and δ ∈ [0, i] we have

‖(Ξχ)(δ )‖ � ‖χ0‖+
∥∥∥∥∫ δ

0
δ)ג −η ,η)U(η)Z (0)χ0dη

∥∥∥∥
+
∥∥∥∥∫ δ

0
δ)ג −η ,η)ℵ(η ,χ(η))dη

∥∥∥∥
+
∥∥∥∥∫ δ

0

∫ η

0
δ)ג −η ,η)ϕ(η ,ε)ℵ(ε,χ(ε))dεdη

∥∥∥∥
+

∥∥∥∥∥∥ ∑
0<δ j<δ

δ)ג j −η ,η)I j

(∫ δ j−ϑ j

δ j−κ j

ℵ̂(ε,χ(ε))dε
)∥∥∥∥∥∥

� ‖χ0‖+C2
∫ δ

0
(δ j −η)ς−1(1+ ηγ)dη‖Z (0)χ0‖

+C
∫ δ

0
(δ −η)ς−1p(η)(1+‖χ‖i)dη

+C2
∫ δ

0

∫ η

0
(δ −η)ς−1(η − ε)γ−1p(ε)(1+‖χ‖i)dεdη

+ ∑
0<δ j<δ

CLj(δ j −η)ς−1

∥∥∥∥(∫ δ j−ϑ j

δ j−κ j

ℵ̂(ε,χ(ε))dε
)∥∥∥∥ .

Then,

‖(Ξχ)(δ )‖ � ‖χ0‖+C2iς
[

1
ς

+ iγβ (ς ,γ +1)
]
‖Z (0)χ0‖+

Ciς

ς
p∗i (1+Ri)

+C2β (ς ,γ)p∗i
iς+γ

ς + γ
(1+Ri)+ ∑

0<δ j<δ
CLℵ̂Ljδ ς (Ri +Mδ )2t

� ‖χ0‖+C2iς
[

1
ς

+ iγβ (ς ,γ +1)
]
‖Z (0)χ0‖+

Ciς

ς
p∗i (1+Ri)

+C2β (ς ,γ)p∗i
iς+γ

ς + γ
(1+Ri)+ ∑

0<δ j<i

2CLℵ̂Lji
ς+1(Ri +Mi)
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� ‖χ0‖+C2iς
[

1
ς

+ iγβ (ς ,γ +1)
]
‖Z (0)χ0‖+

Ciς

ς
p∗i (1+Ri)

+C2β (ς ,γ)p∗i
iς+γ

ς + γ
(1+Ri)+C∗

i i
ς+1(Ri +Mi)

� Ri.

Thus,

‖Ξ(χ)‖i � Ri.

This proves that Ξ transforms the ball ∇Ri into itself. We shall show that the operator
Ξ : ∇Ri → ∇Ri satisfies all the assumptions of Theorem 1. The proof will be given in
several steps.

Step 1. Ξ : ∇Ri → ∇Ri is continuous.
Let {χl}l∈N be a sequence such that χ j → χ in ∇Ri . Then, for each δ ∈ [0, i], we

have

‖(Ξχl)(δ )− (Ξχ)(δ )‖

� ‖
∫ δ

0
δ)ג −η ,η)[ℵ(η ,χl(η))−ℵ(η ,χ(η))]dη‖

+‖
∫ δ

0

∫ η

0
δ)ג −η ,η)ϕ(η ,ε)[ℵ(ε,χl(ε))−ℵ(ε,χ(ε))]dεdη‖

+

∥∥∥∥∥∥ ∑
0<δ j<δ

δ)ג j −η ,η)I j

(∫ δ j−ϑ j

δ j−κ j

[
ℵ̂(ε,χl(ε))− ℵ̂(ε,χ(ε))

]
dε
)∥∥∥∥∥∥

� C
∫ δ

0
(δ −η)ς−1‖ℵ(η ,χl(η))−ℵ(η ,χ(η))‖dη

+C
∫ δ

0

∫ η

0
(δ −η)ς−1(η − ε)γ−1‖ℵ(ε,χl(ε))−ℵ(ε,χ(ε))‖dεdη

+2tCLℵ̂‖χl − χ‖ ∑
0<δ j<δ

(δ j −η)ς−1Lj.

Since χl → χ as l → ∞, the Lebesgue dominated convergence theorem implies that

‖Ξ(χl)−Ξ(χ)‖i → 0 as l → ∞.

Step 2. Ξ(∇Ri) is bounded.
Since Ξ(∇Ri) ⊂ ∇Ri and ∇Ri is bounded, then Ξ(∇Ri) is bounded.

Step 3. For each equicontinuous subset ∇̂ of ∇Ri , ℘i(Ξ(∇̂)) � li℘i(∇̂).
Since ∇̂ is equicontinuous, we obtain that ω i

0(∇̂) = 0, from Lemmas 2 and 3, for

any ∇̂ ⊂ ∇Ri and any ρ > 0, there exists a sequence {χl}∞
l=0 ⊂ ∇̂, such that for all
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δ ∈ [0, i], we have

℘((Ξ∇̂)(δ )) =℘

({
χ0 +

∫ δ

0
δ)ג −η ,η)U(η)Z (0)χ0dη

+
∫ δ

0
δ)ג −η ,η)ℵ(η ,χ(η))dη

+
∫ δ

0

∫ η

0
δ)ג −η ,η)ϕ(η ,ε)ℵ(ε,χ(ε))dεdη

+ ∑
0<δ j<δ

δ)ג j −η ,η)I j

(∫ δ j−ϑ j

δ j−κ j

ℵ̂(ε,χ(ε))dε
)

; χ ∈ ∇̂

})

� 2℘

({
χ0 +

∫ δ

0
δ)ג −η ,η)U(η)Z (0)χ0dη

+
∫ δ

0
δ)ג −η ,η)ℵ(η ,χl(η))dη

+
∫ δ

0

∫ η

0
δ)ג −η ,η)ϕ(η ,ε)ℵ(ε,χl(ε))dεdη

+ ∑
0<δ j<δ

δ)ג j −η ,η)I j

(∫ δ j−ϑ j

δ j−κ j

ℵ̂(ε,χl(ε))dε
)}∞

l=1

)
+ ρ .

Then,

℘((Ξ∇̂)(δ )) � 2

(
℘
{∫ δ

0
δ)ג −η ,η)U(η)Z (0)χ0dη

}∞

l=1

+℘
{∫ δ

0
δ)ג −η ,η)ℵ(η ,χl(η))dη

}∞

l=1

+℘
{∫ δ

0

∫ η

0
δ)ג −η ,η)ϕ(η ,ε)ℵ(ε,χl(ε))dεdη

}∞

l=1

+℘

⎧⎨⎩ ∑
0<δ j<δ

δ)ג j −η ,η)I j

(∫ δ j−ϑ j

δ j−κ j

ℵ̂(ε,χl(ε))dε
}∞

l=1

⎫⎬⎭+ ρ

� 2

(
℘
{∫ δ

0
δ)ג −η ,η)ℵ(η ,χl(η))dη

}∞

l=1
+

+℘
{∫ δ

0

∫ η

0
δ)ג −η ,η)ϕ(η ,ε)ℵ(ε,χl(ε))dεdη

}∞

l=1

+ ℘

⎧⎨⎩ ∑
0<δ j<δ

δ)ג j −η ,η)I j

(∫ δ j−ϑ j

δ j−κ j

ℵ̂(ε,χl(ε))dε
)⎫⎬⎭

∞

l=1

⎞⎠+ ρ .
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Thus,

℘((Ξ∇̂)(δ )) � 4

(
Cp∗i℘i(∇̂)

∫ δ

0
(δ −η)ς−1dη+

+2C2p∗i℘i(∇̂)
∫ δ

0

∫ η

0
(δ −η)ς−1(η − ε)γ−1dεdη

+2C ∑
0<δ j<δ

(δ −η)ς−1I j

(∫ δ j−ϑ j

δ j−κ j

Lℵ̂℘i(∇̂)dε
)⎞⎠+ ρ

� 4℘i(∇̂)
(

Cp∗i
iς

ς
+2C2p∗i β (ς ,γ)

∫ δ

0
(δ −η)ς+γ−1dη +2Ciς+1Lℵ̂

)
+ ρ

� 4℘i(∇̂)
(

Cp∗i
iς

ς
+2C2p∗i β (ς ,γ)

iς+γ

ς + γ
+2Ciς+1Lℵ̂

)
+ ρ

� 4℘i(∇̂)
(

Cp∗i
iς

ς
+2C2p∗i β (ς +1,γ)

iς+γ

ς
+2Ciς+1Lℵ̂

)
+ ρ

� �i℘i(∇̂)+ ρ .

Since ρ > 0 is arbitrary, then

℘((Ξ∇̂)(δ )) � �i℘i(∇̂).

Thus,
℘i(Ξ(∇̂)) � �i℘i(∇̂).

As a consequence of steps 1 to 3 together with Theorem 1, we can conclude that Ξ has
at least one fixed point in ∇Ri which is a mild solution of problem (1). �

4. An example

We consider the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ς θ
∂δ ς (δ ,χ)+ κ(θ ,δ )

∂ 2θ
∂ χ2 (δ ,χ) = Q(δ ,θ (δ ,χ)), ; δ ∈ R+\{δ1}, χ ∈ [0,π ],

θ (δ ,0) = θ (δ ,π) = 0; δ ∈ R+,

θ (0,χ) = Φ(χ); χ ∈ [0,π ],

�∗θ (δ1,χ) = I1

∫ δ1−ϑ1

δ1−κ1

ℵ̂(θ ,ε,χ(θ ,ε))dε,

(8)

where
∂ ς

∂δ ς is the Caputo fractional partial derivative of order 0 < ς � 1, the function

κ(θ , ·) is continuous for θ ∈ [0,π ] and κ(·,δ ) is uniformly Hölder continuous in δ ∈
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R+ , ℵ̂ is any Lipschitz continous function with Lipschitz constant Lℵ̂ . Q : R+×R→
R and Φ : [0,π ] → R are continuous functions.

Consider ℑ = L2([0,π ],R) and define Z by Z (δ )w =−κ(θ ,δ )w′′ with domain

H(Z ) = H2(0,π)∩H1
0 (0,π)

Then −Z (ε) generates an analytic semigroup e−δZ (ε) in ℑ , which satisfies the as-
sumptions (A1) and (A2) .

For χ ∈ [0,π ] , we have

χ̂(δ )(χ) = θ (δ ,χ); δ ∈ R+,

ℵ(δ , χ̂(δ ))(χ) = Q(δ ,θ (δ ,χ)); δ ∈ R+,

χ̂0(χ) = Φ(χ),

Z −1(0) = (κ(·,0))−1,

ℵ̂(δ ,χ(δ )) = ℵ̂(·,δ ,χ(·,δ )).

Then, the system (8) can be transformed into the abstract form (1), and conditions
(H1)− (H6) are satisfied. Consequently, Theorem 2 implies that the problem (8) has a
mild solution.
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differential equations with state-dependent delay and non-instantaneous impulsions: existence and
qualitative results, Fractal Fract. 6 (2022), 1–27,
https://doi.org/10.3390/fractalfract6100615 .

[11] D. BOTHE, Multivalued perturbation of m-accretive differential inclusions, Isr. J. Math. 108 (1998),
109–138.

[12] K. CAO AND Y. CHEN, Fractional Order Crowd Dynamics: Cyber-Human System Modeling and
Control, Berlin; Boston, De Gruyter, 2018.

[13] P. CHEN, X. ZHANG, Y. LI, Study on fractional non-autonomous evolution equations with delay,
Comput. Math. Appl. 73 (2017), 794–803.

[14] P. CHEN, X. ZHANG, Y. LI, Fractional non-autonomous evolution equation with nonlocal conditions,
J. Pseudo Differ. Oper. Appl. 10 (4) (2019), 955–973.
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