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Abstract. In this article, we consider an anti periodic fuzzy boundary value problem with order
α , where 1 < α < 2 , under newly defined generalized Caputo’s fractional derivative (called
as OBC) and study the existence and uniqueness of the solution for the considered problem via
fixed point technique. Also, we illustrate the results with some examples involving the developed
numerical technique based on fractional Euler’s method of integration.

1. Introduction

Due to its various applications in many fields, fractional calculus has a famous
analogy with an adjustable wrench for its varying order. Fractional calculus has grown
so wide that there are very few areas of science and engineering which are untouched
by it. For a brief history of the subject, [37] is referred. The standard literature re-
lated to the topic can be found in [27, 31, 33, 35]. The motivation to study fractional
calculus comes from, of course, its application part. Along with the wide areas of appli-
cation like viscoelasticity, dynamics of turbulence, electro-chemistry, control and many
more, some specific problems which were encountered using fractional calculus are in
Schrödinger’s equation [28], wave equation [42], study of damage and fatigue [18],
heart valve vibrations [21], public economics [17] and more, which shows the diverse-
ness of the applications of the fractional calculus. Recently a modified definition of a
generalized Caputo derivative is introduced in a paper [32] by Z. Odibat and D. Baleanu
in 2020 which we are going to call the OBC fractional derivative from now on.

Human involvement is necessary, to some extent, for making and studying a model
describing a physical phenomenon (e.g. to collect data for the model). This makes
the models inevitably uncertain. Fuzzy sets are perfect tools to handle this kind of
uncertainty. L. A. Zadeh made it all possible by introducing the concept of fuzzy sets in
his paper [40] in 1965. A healthy literature for fuzzy sets can be found in the book [41]
by H. J. Zimmermann. For the literature of fuzzy differential equations one can look
into the book [26] by V. Lakshmikantham and R. N. Mohapatra. Further readings can
be done in the paper [27] and the references therein. A few papers [11, 23] published
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in 2005 and 2009 respectively have the existence and uniqueness of fuzzy differential
equation of second order.

It seemed that these two topics were destined to be merged and the year was 2010
when this happened. The credit goes to Agarwal et al. [5]. Since the birth of fuzzy
fractional differential equations in 2010 it has grown with a significant amount of speed
which is summarized in a literature survey [3] by Agarwal et al. A book containing a
very broad survey of the topic is the book [9] by T. Allahviranloo in 2021. For very
new trends in this area one can look into these very recent papers [8, 10, 14, 20, 24, 38].

In 2008, following fuzzy boundary value problem was discussed in [19] by M.
Chen et al.

X ′′ = f(t,X ,X ′), t ∈ [a,b]
X (a) = A, X (b) = B.

In this article, an equivalent integral equation was constructed and an existence result
was proved using Schauder fixed point theorem.

In 2009, Alsaedi [12] studied the following integro-differential equation,

C
0 Dα

t X (t) = f

(
t,X (t),

∫ t

0
γ(t,s)X (s)ds

)
, t ∈ [0,T ], 1 < α < 2

X (0) = −X (T ), X ′(0) = −X ′(T ).

He employed two fixed point theorems to prove the existence results for the problem
under consideration.

In 2010, Ahmad and Nieto [6] independently studied following fractional order
anti periodic boundary value problem,

C
0 Dα

t X (t) = f(t,X (t)), t ∈ [0,T ], 1 < α < 2

X (0) = −X (T ), X ′(0) = −X ′(T ).

They exploited Leray-Schauder degree theory to prove the existence of solution for thr
above anti-periodic boundary value problem.

In 2017, the literature for fractional anti periodic boundary value problems got so
rich that a survey was presented by Agarwal et. al. [1]. They also studied the following
problem,

C
0 Dα

t X (t) = f(t,X (t)), t ∈ [0,T ], 5 < α < 6

X (0) = −X (T ), X ′(0) = −X ′(T )
X ′′(0) = −X ′′(T ), X ′′′(0) = −X ′′′(T )

X (4)(0) = −X (4)(T ), X (5)(0) = −X (5)(T ).

They proved the existence results of the considered problem using four different fixed
point theorems.

For more works on the fractional anti periodic BVPs one is referred to [2, 4, 7, 15,
16, 22, 30, 34, 39] and references therein.
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Now, we turn our attention to the newly defined OBC fractional derivative [32] in
order to prove some existence and uniqueness results in fuzzy sense. The OBC frac-
tional derivative is somewhat similar to the Caputo-Katugampola (CK) [25] fractional
derivative, indeed it is the same for 0 < α < 1, but for α > 1 it is different and has a
little computational advantage over the CK fractional derivative. We refer a work [36]
on OBC-fractional stochastic differential equations for some insights.

There does not seem to exist any work on the fuzzy fractional anti periodic bound-
ary value problem involving OBC-fractional derivative in the literature. The motivation
for us to study this OBC-fractional derivative is its efficiency which makes it useful in
computational aspects. We consider the following class of fuzzy anti periodic boundary
value problem,

OBC
t0 Dα ,ρ

t X (t) = f(t,X (t)), t ∈ [t0,T ],

X (t0) = −1�X (T ), X ′(t0) = −1�X ′(T ),
X (t0),X (T ),X ′(t0),X ′(T ) ∈ FR,

(1)

where, OBCD is the OBC fractional derivative, t0,t are terminals of the derivative with
t ∈ [t0,T ] , the order 1 < α < 2, ρ is a parameter with ρ > 0, X is a fuzzy number
valued function defined on [t0,T ] and f : [t0,T ]×FR → FR , where FR is the set of all
fuzzy numbers with universe R .

We have the following novelty and point wise highlights with of our manuscript.

(i) We have introduced new generalized Caputo’s fractional derivative and integral
based on the concept of fuzzy theory.

(ii) Introduced OBC generalized Caputo’s derivative is the single base point deriva-
tive having physical meaning.

(iii) We have derived a corresponding solution as integral equations of fractional
fuzzy anti periodic boundary value problems.

(iv) We have proved existence and uniqueness of solutions for a class of fractional
fuzzy anti periodic boundary value problems of order 1 < α < 2.

(v) We considered some application of a class of fractional fuzzy anti periodic bound-
ary value problems.

(vi) We verified analytical solution and numerical solution via fixed point and Euler’s
method of integration respectively.

The rest of the paper is organized in the following sections, Section 2 has some
useful definitions which we require to obtain our results. Section 3 discusses the moti-
vation of the present work along with a needed detailed background. Section 4 consists
our main results which is divided into three parts and hence making up three theorems.
Section 5 is the application section which is devoted to three examples containing a
numerically analyzed example and the paper is concluded in Section 6.
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2. Preliminary supplements

In an attempt to make this paper self-sufficient, we provide the following defini-
tions and some well known results. The sources of the contents in this section are listed
in cited books and papers.

DEFINITION 1. [9, 14] A fuzzy set P is called a fuzzy number if its membership
function μP : R → [0,1] satisfies the following properties:

1. P is normal. i.e, there exists a real member y0 such that μP(y0) = 1.

2. μP is fuzzy convex. i.e,
for two arbitrary real numbers y1,y2 and λ ∈ [0,1] we have,

μP(λy1 +(1−λ )y2) � Min{μP(y1),μP(y2)}.

3. μP is upper semi-continuous.

4. The closure of Supp(P) = {y ∈ R : μP(y) > 0} is compact.

DEFINITION 2. [9, 14] Any P ∈ FR has the parametric form rP = [Pl(r),Pu(r)]
for any 0 � r � 1, if and only if,

1. Pl(r) � Pu(r) .

2. Pl(r) is an increasing and left continuous function on [0,1] and right continuous
on 0 with respect to r .

3. Pu(r) is a decreasing and left continuous function on [0,1] and right continuous
on 0 with respect to r .

4. rP = [Pl(r),Pu(r)] is a compact interval for any 0 � r � 1.

DEFINITION 3. [9, 14] Let P,Q∈FR in level-wise form. The generalizedHukuhara
difference of P and Q is defined as

P�g Q = R ⇔
⎧⎨
⎩

(i) P = Q⊕R
or

(ii) Q = P⊕ (−1)R.

DEFINITION 4. [9, 14] The Hausdorff distance DH : FR × FR → R , between
P,Q ∈ FR is given by

DH(P,Q) = sup
r∈[0,1]

max{|Pl(r)−Ql(r)|, |Pu(r)−Qu(r)|}.
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DEFINITION 5. [9] The generalized Hukuhara derivative of a fuzzy number val-
ued function f : [0,T ] → FR at t0 ∈ [0,T ] is defined as

f ′(t0) = lim
h→0

f (t0 +h)�g f (t0)
h

,

provided that the difference f (t0 +h)�g f (t0) and the limit exists then the function f
is called gH -differentaible. The level-wise form of gH -differentaible function f can
be defined in following two cases:

Case 1: f ′(t,r) = [ f ′l (t,r), f ′u(t,r)] , if f is i−gH differentiable at t .
Case 2: f ′(t,r) = [ f ′u(t,r), f ′l (t,r)] , if f is ii−gH differentiable at t .

DEFINITION 6. [9] The Riemann-Liouville fuzzy fractional integration of X ∈
L1,loc([t0, t],FR) of order α > 0 is defined as

t0J
α
t X (t) =

1
Γ(α)

�
∫ t

t0
(t− τ)α−1�X (τ)dτ.

DEFINITION 7. [9, 14] The fuzzy fractional Caputo derivative of order m−1 <
α < m of a fuzzy number valued function X , such that X is m- times gH differen-
tiable and X (m) ∈ L1,loc([t0,t],FR) , is given by:

C
t0D

α
t X (t) =

1
Γ(m−α)

�
∫ t

t0
(t− τ)m−α−1�X (m)(τ)dτ.

THEOREM 1. (Contraction Theorem) [29] Consider a complete metric space X =
(X ,d), where X 
= Φ. Let T : X → X be a contraction on X . Then T has precisely
one fixed point.

THEOREM 2. (Schauder Fixed Point Theorem) Let D be a non-empty closed and
bounded subset of a Banach space X . Let T : D → D be a completely continuous
mapping, then T has a fixed point.

3. New OBC fractional derivative

In 2011, Katugampola [25] defined a new fractional order integral as a general-
ization of usual fractional integral by updating the kernel of the transformation. He
added a new parameter ρ > 0. For this, the generalized fractional integral K

t0J
α
t of

f ∈ L1,loc([t0, t],R) of order α > 0 is defined as:

K
t0J

α ,ρ
t f (t) = [tρ

0 /ρJα
t ( f og)](tρ/ρ) =

ρ1−α

Γ(α)

∫ t

t0
τρ−1(tρ − τρ)α−1 f (τ)dτ, (2)

where, g(t) = (ρt)1/ρ . Using this, the Riemann-Katugampola (RK) derivative is de-
fined as,

RK
t0 Dα ,ρ

t f (t) = [Dm
tρ
0 /ρJm−α

t ( f og)](tρ/ρ)

=
ρα−m+1

Γ(m−α)

(
t1−ρ d

dt

)m ∫ t

t0
τρ−1(tρ − τρ)m−α−1 f (τ)dτ.

(3)
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Then, motivated by the above definition and the following identity for usual Caputo
fractional derivative,

t0J
α
t

C
t0D

α
t f (t) = f (t)−

m−1

∑
k=0

f (k)(t0)
k!

(t− t0)k, (4)

the Caputo-Katugampola (CK) derivative is defined as,

CK
t0 Dα ,ρ

t f (t) =RK
t0 Dα ,ρ

t

(
f (t)−

m−1

∑
k=0

f (k)(t0)
k!

(t− t0)k

)
. (5)

But this derivative has a drawback, unlike the usual Caputo derivative, it doesn’t satisfy
the generalized form of the identity (4) which makes the calculation of the fractional
derivatives easy. In an attempt to remove this drawback, Odibat-Baleanu-Caputo (OBC)
derivative was defined in [32] as follows,

OBC
t0 Dα ,ρ

t f (t) = [tρ
0 /ρJm−α

t Dm( f og)](tρ/ρ)

=
ρα−m+1

Γ(m−α)

∫ t

t0
τρ−1(tρ − τρ)m−α−1

(
τ1−ρ d

dτ

)m

f (τ)dτ,
(6)

this derivative satisfies the following generalization of the identity (4),

K
t0J

α ,ρ
t

OBC
t0 Dα ,ρ

t f (t) = f (t)−
m−1

∑
k=0

(tρ − tρ
0 )k

ρkk!

[(
t1−ρ d

dt

)k

f (t)

]
t=t0

. (7)

Now, we are going to define the new representation of generalized fractional integral
and OBC fractional derivative in fuzzy sense, in the following manner,

DEFINITION 8. The generalized fractional integral of order α > 0 of a fuzzy
number valued function X , such that X ∈ L1,loc([t0,t],FR) , is given by:

K
t0J

α ,ρ
t X (t) =

ρ1−α

Γ(α)
�
∫ t

t0
τρ−1(tρ − τρ)α−1�X (τ)dτ.

DEFINITION 9. The fuzzy OBC fractional derivative of order m−1 < α < m of
a fuzzy number valued function X , such that X is m- times gH differentiable and
X (m) ∈ L1,loc([t0, t],FR) , is given by:

OBC
t0 Dα ,ρ

t X (t) =
ρα−m+1

Γ(m−α)
�
∫ t

t0
τρ−1(tρ − τρ)m−α−1

(
τ1−ρ d

dτ

)m

�X (τ)dτ,

where gH-derivative of X m is defined as

X m(t) = lim
h→0

X m−1(t0 +h)�g X m−1(t0)
h

.
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4. Existence and uniqueness results for the solution

In this section, we shall prove the existence and uniqueness of solution for problem
(1). To establish our results, we first give the following lemma.

LEMMA 1. The fractional counterpart corresponding to BVP (1) is equivalent to
the following integral equation

X (t) =
ρ1−α

Γ(α)

∫ t

t0
τρ−1(tρ − τρ)α−1f(τ,X (τ))dτ

− ρ1−α

2Γ(α)

∫ T

t0
τρ−1(T ρ − τρ)α−1f(τ,X (τ))dτ

+
t1−ρ
0 ρ1−α(Tρ + tρ

0 −2tρ)

2(T 1−ρ + t1−ρ
0 )Γ(α −1)

∫ T

t0
τρ−1(T ρ − τρ)α−2f(τ,X (τ))dτ.

(8)

Proof. Since we are looking at the fractional counterpart of the BVP (1), we have

OBC
t0 Dα ,ρ

t X (t) = f(t,X (t)), t ∈ [t0,T ],

X (t0) = −X (T ), X ′(t0) = −X ′(T ), X (t0),X (T ),X ′(t0),X ′(T ) ∈ R.
(9)

Using equations (2) and (7) and applying the generalized fractional integral both the
sides of (9), we get for m = 2,

X (t)−X (t0)− (tρ − tρ
0 )

ρ

[
t1−ρ d

dt
X (t)

]
t=t0

=
ρ1−α

Γ(α)

∫ t

t0
τρ−1(tρ − τρ)α−1f(τ,X (τ))dτ,

which gives,

X (t) = X (t0)+
(tρ − tρ

0 )
ρ

[
t1−ρ
0 X ′(t0)

]
+

ρ1−α

Γ(α)

∫ t

t0
τρ−1(tρ − τρ)α−1f(τ,X (τ))dτ.

(10)
Now, using the boundary condition X (t0) = −X (T ) and equation (10), we get,

X (t0) = −X (t0)− (T ρ − tρ
0 )

ρ

[
t1−ρ
0 X ′(t0)

]

−ρ1−α

Γ(α)

∫ T

t0
τρ−1(T ρ − τρ)α−1f(τ,X (τ))dτ,

which implies,

2X (t0)+
(T ρ − tρ

0 )
ρ

[
t1−ρ
0 X ′(t0)

]
= −ρ1−α

Γ(α)

∫ T

t0
τρ−1(T ρ − τρ)α−1f(τ,X (τ))dτ.

(11)
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Also, (10) gives,

X ′(t) = tρ−1t1−ρ
0 X ′(t0)+

tρ−1ρ2−α

Γ(α −1)

∫ t

t0
τρ−1(tρ − τρ)α−2f(τ,X (τ))dτ. (12)

Using (12) and the remaining boundary condition X ′(t0) = −X ′(T ) gives,

X ′(t0) = −Tρ−1t1−ρ
0 X ′(t0)− T ρ−1ρ2−α

Γ(α −1)

∫ T

t0
τρ−1(T ρ − τρ)α−2f(τ,X (τ))dτ,

which gives,

X ′(t0) = − ρ2−α

(T 1−ρ + t1−ρ
0 )Γ(α −1)

∫ T

t0
τρ−1(T ρ − τρ)α−2f(τ,X (τ))dτ. (13)

Using (13) in (11), we get,

X (t0) =
t1−ρ
0 (T ρ − tρ

0 )
2ρ

ρ2−α

(T 1−ρ + t1−ρ
0 )Γ(α −1)

×
∫ T

t0
τρ−1(T ρ − τρ)α−2f(τ,X (τ))dτ

− ρ1−α

2Γ(α)

∫ T

t0
τρ−1(T ρ − τρ)α−1f(τ,X (τ))dτ.

(14)

Using these values from (13) and (14) in (10), we get the following integral equation,

X (t) =
ρ1−α

Γ(α)

∫ t

t0
τρ−1(tρ − τρ)α−1f(τ,X (τ))dτ

− ρ1−α

2Γ(α)

∫ T

t0
τρ−1(T ρ − τρ)α−1f(τ,X (τ))dτ

+
t1−ρ
0 ρ1−α(T ρ + tρ

0 −2tρ)

2(T 1−ρ + t1−ρ
0 )Γ(α −1)

∫ T

t0
τρ−1(T ρ − τρ)α−2f(τ,X (τ))dτ.

(15)

Now, we will show that this integral equation (8) can be converted into the BVP (1) in
the fractional sense only. Putting t = t0 in (8), we get,

X (t0) =− ρ1−α

2Γ(α)

∫ T

t0
τρ−1(T ρ − τρ)α−1f(τ,X (τ))dτ

+
t1−ρ
0 ρ1−α(T ρ + tρ

0 −2tρ
0 )

2(T 1−ρ + t1−ρ
0 )Γ(α −1)

∫ T

t0
τρ−1(T ρ − τρ)α−2f(τ,X (τ))dτ.

(16)
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and t = T gives,

X (T ) =
ρ1−α

Γ(α)

∫ T

t0
τρ−1(T ρ − τρ)α−1f(τ,X (τ))dτ

− ρ1−α

2Γ(α)

∫ T

t0
τρ−1(T ρ − τρ)α−1f(τ,X (τ))dτ

+
t1−ρ
0 ρ1−α(Tρ + tρ

0 −2Tρ)

2(T 1−ρ + t1−ρ
0 )Γ(α −1)

∫ T

t0
τρ−1(T ρ − τρ)α−2f(τ,X (τ))dτ.

=
ρ1−α

2Γ(α)

∫ T

t0
τρ−1(T ρ − τρ)α−1f(τ,X (τ))dτ

− t1−ρ
0 ρ1−α(Tρ + tρ

0 −2tρ
0 )

2(T 1−ρ + t1−ρ
0 )Γ(α −1)

∫ T

t0
τρ−1(T ρ − τρ)α−2f(τ,X (τ))dτ.

=−X (t0).

Differentiating (8) with respect to t , we get,

X ′(t) =
ρ2−αtρ−1

Γ(α −1)

∫ t

t0
τρ−1(tρ − τρ)α−2f(τ,X (τ))dτ

+
t1−ρ
0 ρ2−αtρ−1

(T 1−ρ + t1−ρ
0 )Γ(α −1)

∫ T

t0
τρ−1(T ρ − τρ)α−2f(τ,X (τ))dτ

(17)

here, t = t0 gives,

X ′(t0) = − ρ2−α

(T 1−ρ + t1−ρ
0 )Γ(α −1)

∫ T

t0
τρ−1(Tρ − τρ)α−2f(τ,X (τ))dτ (18)

and, t = T yields,

X ′(T ) =
ρ2−αTρ−1

Γ(α −1)

∫ T

t0
τρ−1(T ρ − τρ)α−2f(τ,X (τ))dτ

+
t1−ρ
0 ρ2−αT ρ−1

(T 1−ρ + t1−ρ
0 )Γ(α −1)

∫ T

t0
τρ−1(T ρ − τρ)α−2f(τ,X (τ))dτ

=
ρ2−α

(T 1−ρ + t1−ρ
0 )Γ(α −1)

∫ T

t0
τρ−1(T ρ − τρ)α−2f(τ,X (τ))dτ

=−X ′(t0).

(19)

This shows that the anti periodic boundary conditions are satisfied. Now, using there
values of X (t0),X (T ),X ′(t0) and X ′(T ) and a similar calculation done in the first
part of the Lemma, we get,

X (t) = X (t0)+
(tρ − tρ

0 )
ρ

[
t1−ρ
0 X ′(t0)

]
+

ρ1−α

Γ(α)

∫ t

t0
τρ−1(tρ − τρ)α−1f(τ,X (τ))dτ.

(20)
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Which can be written as,

K
t0J

α ,ρ
t

OBC
t0 Dα ,ρ

t X (t) =K
t0 Jα ,ρ

t f(t,X (t)) (21)

applying OBC
t0 Dα ,ρ

t both the sides and using a result from [32], we get,

OBC
t0 Dα ,ρ

t X (t) = f(t,X (t)) (22)

which is required boundary value problem. �

Having the integral equation (8), we define the following required integral equation
in fuzzy sense with an assumption that both X and X ′ are i-gH differentiable.

X (t) =
ρ1−α

Γ(α)
�
∫ t

t0
τρ−1(tρ − τρ)α−1� f(τ,X (τ))dτ �g

ρ1−α

2Γ(α)

�
∫ T

t0
τρ−1(Tρ − τρ)α−1 � f(τ,X (τ))dτ

⊕ t1−ρ
0 ρ1−α(T ρ + tρ

0 −2tρ)

2(T 1−ρ + t1−ρ
0 )Γ(α −1)

�
∫ T

t0
τρ−1(T ρ − τρ)α−2� f(τ,X (τ))dτ

(23)

To prove the existence and uniqueness results, we’ll first exploit Banach fixed
point theorem on the complete metric space (C([t0,T ],FR),D) , where D(X ,Y ) =
supt∈[t0,T ] (DH(X (t),Y (t))) . The following theorem gives the existence and unique-
ness results for the above BVP (1).

THEOREM 3. Let f be continuous function and let there be L > 0 such that

DH(f(t,X1(t)), f(t,X2(t))) � LDH(X1(t),X2(t)) (24)

∀t ∈ [t0,T ] and X1(t),X2(t) ∈ FR. Then the BVP (1) has a unique solution if γ < 1 .

Where γ =
L(T ρ − tρ

0 )α

2ραΓ(α +1)

[
3+

t1−ρ
0 α

(T 1−ρ + t1−ρ
0 )

]
.

Proof. Having equation (23) in mind, we define the following operator on
C([t0,T ],FR) as,

(TX )(t) =
ρ1−α

Γ(α)
�
∫ t

t0
τρ−1(tρ − τρ)α−1� f(τ,X (τ))dτ

�g
ρ1−α

2Γ(α)
�
∫ T

t0
τρ−1(T ρ − τρ)α−1� f(τ,X (τ))dτ

⊕ t1−ρ
0 ρ1−α(T ρ + tρ

0 −2tρ)

2(T 1−ρ + t1−ρ
0 )Γ(α −1)

�
∫ T

t0
τρ−1(T ρ − τρ)α−2� f(τ,X (τ))dτ

(25)
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The operator is well defined as the right hand side completely exists for all t . We’ll
show that T is a contraction. For X ,W ∈C([t0,T ],FR) , consider the following,

D(TX ,TW ) = sup
t∈[t0 ,T ]

(DH(TX (t),TW (t)))

� sup
t∈[t0 ,T ]

{
ρ1−α

Γ(α)

(∫ t

t0
τρ−1(tρ − τρ)α−1DH(f(τ,X (τ)), f(τ,W (τ)))dτ

)

+
ρ1−α

2Γ(α)

(∫ T

t0
τρ−1(T ρ − τρ)α−1DH(f(τ,X (τ)), f(τ,W (τ)))dτ

)

+
t1−ρ
0 ρ1−α(T ρ + tρ

0 −2tρ)

2(T 1−ρ + t1−ρ
0 )Γ(α −1)

×
(∫ T

t0
τρ−1(T ρ − τρ)α−1DH(f(τ,X (τ)), f(τ,W (τ)))dτ

)}

�LD(X ,W ) sup
t∈[t0,T ]

{
ρ1−α

Γ(α)

(∫ t

t0
τρ−1(tρ − τρ)α−1dτ

)

+
ρ1−α

2Γ(α)

(∫ T

t0
τρ−1(T ρ − τρ)α−1dτ

)

+
t1−ρ
0 ρ1−α(T ρ + tρ

0 −2tρ)

2(T 1−ρ + t1−ρ
0 )Γ(α −1)

(∫ T

t0
τρ−1(T ρ − τρ)α−1dτ

)}

=LD(X ,W )
[

(T ρ − tρ
0 )α

ραΓ(α +1)
+

(T ρ − tρ
0 )α

2ραΓ(α +1)
+

t1−ρ
0 (T ρ − tρ

0 )α

2ρα(T 1−ρ + t1−ρ
0 )Γ(α)

]

=
L(T ρ − tρ

0 )α

2ραΓ(α +1)

[
3+

t1−ρ
0 α

(T 1−ρ + t1−ρ
0 )

]
D(X ,W ) = γD(X ,W ),

now, for T to be a contraction, we want the quantity
L(T ρ − tρ

0 )α

2ραΓ(α +1)

[
3+

t1−ρ
0 α

(T 1−ρ + t1−ρ
0 )

]
< 1 which requirement is fulfilled as γ < 1. With this condition in hand, we can ensure
that T is a contraction and has a unique fixed point. �

Now, we’ll use Schauder’s fixed point theorem to prove the existence of the solu-
tion of the same BVP (1) under different assumptions on f .

THEOREM 4. Let f be continuous and let there be L1 > 0 such that

DH(f(t,X (t)),0) � L1 (26)

∀t ∈ [t0,T ] and X (t) ∈ FR. Then the BVP (1) has a solution.

Proof. Taking the same operator T defined in equation (25). We need to show
that T is completely continuous. Clearly T is continuous as f is continuous. Now, let
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Ω ⊂C[[t0,T ],FR] be bounded. Then for any X ∈ Ω we have,

DH((TX )(t),0) =
ρ1−α

Γ(α)

∫ t

t0
τρ−1(tρ − τρ)α−1DH(f(τ,X (τ)),0)dτ

+
ρ1−α

2Γ(α)

∫ T

t0
τρ−1(T ρ − τρ)α−1DH(f(τ,X (τ)),0)dτ

+
t1−ρ
0 ρ1−α(T ρ + tρ

0 −2tρ)

2(T 1−ρ + t1−ρ
0 )Γ(α −1)

×
∫ T

t0
τρ−1(T ρ − τρ)α−2DH(f(τ,X (τ)),0)dτ

�L1(T ρ − tρ
0 )α

ραΓ(α +1)
+

L1(T ρ − tρ
0 )α

2ραΓ(α +1)

+
L1t

1−ρ
0 ρ1−α(T ρ + tρ

0 −2tρ)

2(T 1−ρ + t1−ρ
0 )Γ(α −1)

(T ρ − tρ
0 )α−1

�L1(T ρ − tρ
0 )α

2ραΓ(α +1)

[
3+

t1−ρ
0 α

(T 1−ρ + t1−ρ
0 )

]
= L2 (let).

(27)

Also, using equation (25), we get,

(TX )′(t) =
tρ−1ρ2−α

Γ(α −1)
�
∫ t

t0
τρ−1(tρ − τρ)α−2� f(τ,X (τ))dτ

⊕ t1−ρ
0 ρ2−αtρ−1

(T 1−ρ + t1−ρ
0 )Γ(α −1)

�
∫ T

t0
τρ−1(T ρ − τρ)α−2� f(τ,X (τ))dτ

which gives,

DH((TX )′(t),0)

=
|t|ρ−1ρ2−α

Γ(α −1)

∫ t

t0
τρ−1(tρ − τρ)α−2DH(f(τ,X (τ)),0)dτ

+
t1−ρ
0 ρ2−α |t|ρ−1

(T 1−ρ + t1−ρ
0 )Γ(α −1)

∫ T

t0
τρ−1(T ρ − τρ)α−2DH(f(τ,X (τ)),0)dτ

� L1T ρ−1ρ2−α

ρΓ(α −1)
(tρ − tρ

0 )α−1

α −1
+

L1t
1−ρ
0 ρ2−αT ρ−1

ρ(T 1−ρ + t1−ρ
0 )Γ(α −1)

(tρ − tρ
0 )α−1

α −1

� L1T ρ−1ρ1−α(tρ − tρ
0 )α−1

Γ(α)

[
1+

t1−ρ
0

(T 1−ρ + t1−ρ
0 )

]
= L3 (let).

Hence, for any t1, t2 ∈ I , we have,

DH

(
(TX )(t2)�g (TX )(t1,0)

)
�
∫ t2

t1
DH((TX )′(τ),0)dτ � L3(t2 − t1). (28)
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This means that T is equicontinuous on [t0,T ] hence by Arzela-Ascoli theorem, T is
completely continuous. Hence T has a fixed point and hence the BVP (1) has at least
one solution. �

5. Applications

5.1. Example 1

Consider the following fuzzy OBC-fractional anti periodic differential equation

OBC
1 D1.5,0.5

t X (t) =
1
6

arctan

(
tanX

2

)
+

ln t
1+ t2

, t ∈ [1,2],

X (1) = −1�X (2), X ′(1) = −1�X ′(2), X (1),X (2),X ′(1),X ′(2) ∈ FR,

(29)

Computing the following,

DH(f(t,X1(t)), f(t,X2(t))) =DH

(
1
6

arctan

(
tanX1

2

)
+

ln t
1+ t2

,

1
2

arctan

(
tanX2

2

)
+

lnt
1+ t2

)

=
1
6
DH

(
arctan

(
tanX1

2

)
�g arctan

(
tanX2

2

)
,0

)

Using the mean value theorem for fuzzy functions [13], we get L = 1/3. Which allows
us to conclude that,

L(T ρ − tρ
0 )α

2ραΓ(α +1)

[
3+

t1−ρ
0 α

(T 1−ρ + t1−ρ
0 )

]
< 0.25927 < 1.

Hence, the problem under consideration has a unique solution as it satisfies the require-
ment of the Theorem 3.

5.2. Example 2

Consider the following fuzzy OBC-fractional anti periodic differential equation

OBC
1 D1.5,0.5

t X (t) =
sinX

(t2 +3)(DH(X ,0)+1)
+ t2e−t , t ∈ [1,3],

X (1) = −1�X (3), X ′(1) = −1�X ′(3), X (1),X (3),X ′(1),X ′(3) ∈ FR,

(30)
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Clearly f , here, is continuous as it constitutes only continuous functions. Now, we
have,

DH(f(t,X (t)),0) =DH

(
sinX

(t2 +3)(DH(X ,0)+1)
+ t2e−t ,0

)

� DH(sinX ,0)
(|t|2 +3)(DH(X ,0)+1)

+ |t2e−t | � 1
4

+
9
e

= 3.5609 = L1

That is, our problem fulfills the conditions stated in Theorem 4 and hence has at least
one solution.

5.3. Example 3

With an intent to provide an example which is analyzed numerically, consider the
following,

OBC
0 Dα ,ρ

t X (t) = cos

(
t
5

)
, t ∈ [0,1],

X (0) = −1�X (1), X (0),X (1) ∈ FR,

(31)
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Figure 1: α = 0.8 , ρ = 1.1

t X (r = 1) X1 (r = 0.8) X2 (r = 0.8) X3 (r = 0.6) X4 (r = 0.6) X5 (r = 0.4) X6 (r = 0.4) X7 (r = 0.2) X8 (r = 0.2) X9 (r = 0) X10 (r = 0)

0.10 −0.10 −0.12 −0.08 −0.14 −0.06 −0.16 −0.04 −0.18 −0.02 −0.20 0.00
0.20 0.03 0.02 0.06 0.00 0.08 −0.02 0.10 −0.04 0.12 −0.06 0.14
0.30 0.13 0.12 0.16 0.10 0.18 0.08 0.20 0.06 0.22 0.04 0.24
0.40 0.21 0.20 0.24 0.18 0.26 0.16 0.28 0.14 0.30 0.12 0.32
0.50 0.28 0.27 0.31 0.25 0.33 0.23 0.35 0.21 0.37 0.19 0.39
0.60 0.34 0.33 0.37 0.31 0.39 0.29 0.41 0.27 0.43 0.25 0.45
0.70 0.40 0.38 0.42 0.36 0.44 0.34 0.46 0.32 0.48 0.30 0.50
0.80 0.45 0.43 0.47 0.41 0.49 0.39 0.51 0.37 0.53 0.35 0.55
0.90 0.49 0.48 0.52 0.46 0.54 0.44 0.56 0.42 0.58 0.40 0.60
1.00 0.54 0.52 0.56 0.50 0.58 0.48 0.60 0.46 0.62 0.44 0.64

Table 1: α = 0.4 , ρ = 1.1

The pots for the solution of the above problem for different values of α and ρ and
tabular data for some of the plots are given.



CAPUTO’S FRACTIONAL ORDER FUZZY BOUNDARY VALUE PROBLEM 225

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

S
ol

ut
io

n

r = 1
r = 0.8
r = 0.6
r = 0.4
r = 0.2
r = 0

Figure 2: α = 0.4 , ρ = 1.1
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Figure 3: α = 0.8 , ρ = 0.9
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Figure 4: α = 0.4 , ρ = 0.9

These tables and plots exhibit that the problem taken is consistent with the fuzzy
OBC-fractional derivative.
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t X (r = 1) X1 (r = 0.8) X2 (r = 0.8) X3 (r = 0.6) X4 (r = 0.6) X5 (r = 0.4) X6 (r = 0.4) X7 (r = 0.2) X8 (r = 0.2) X9 (r = 0) X10 (r = 0)

0.10 −0.11 −0.13 −0.09 −0.15 −0.07 −0.17 −0.05 −0.19 −0.03 −0.21 −0.01
0.20 0.04 0.02 0.06 0.00 0.08 −0.02 0.10 −0.04 0.12 −0.06 0.14
0.30 0.14 0.12 0.16 0.10 0.18 0.08 0.20 0.06 0.22 0.04 0.24
0.40 0.23 0.21 0.25 0.19 0.27 0.17 0.29 0.15 0.31 0.13 0.33
0.50 0.31 0.29 0.33 0.27 0.35 0.25 0.37 0.23 0.39 0.21 0.41
0.60 0.37 0.35 0.39 0.33 0.41 0.31 0.43 0.29 0.45 0.27 0.47
0.70 0.43 0.41 0.45 0.39 0.47 0.37 0.49 0.35 0.51 0.33 0.53
0.80 0.49 0.47 0.51 0.45 0.53 0.43 0.55 0.41 0.57 0.39 0.59
0.90 0.54 0.52 0.56 0.50 0.58 0.48 0.60 0.46 0.62 0.44 0.64
1.00 0.58 0.56 0.60 0.54 0.62 0.52 0.64 0.50 0.66 0.48 0.68

Table 2: α = 0.4 , ρ = 0.9
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Figure 5: α = 0.8 , ρ = 1
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Figure 6: α = 0.4 , ρ = 1

t X (r = 1) X1 (r = 0.8) X2 (r = 0.8) X3 (r = 0.6) X4 (r = 0.6) X5 (r = 0.4) X6 (r = 0.4) X7 (r = 0.2) X8 (r = 0.2) X9 (r = 0) X10 (r = 0)

0.10 −0.11 −0.13 −0.09 −0.15 −0.07 −0.17 −0.05 −0.19 −0.03 −0.21 −0.01
0.20 0.03 0.01 0.05 −0.01 0.07 −0.03 0.09 −0.05 0.11 −0.07 0.13
0.30 0.14 0.12 0.16 0.10 0.18 0.08 0.20 0.06 0.22 0.04 0.24
0.40 0.22 0.20 0.24 0.18 0.26 0.16 0.28 0.14 0.30 0.12 0.32
0.50 0.29 0.27 0.31 0.25 0.33 0.23 0.35 0.21 0.37 0.19 0.39
0.60 0.36 0.34 0.38 0.32 0.40 0.30 0.42 0.28 0.44 0.26 0.46
0.70 0.41 0.39 0.43 0.37 0.45 0.35 0.47 0.33 0.49 0.31 0.51
0.80 0.47 0.45 0.49 0.43 0.51 0.41 0.53 0.39 0.55 0.37 0.57
0.90 0.51 0.49 0.53 0.47 0.55 0.45 0.57 0.43 0.59 0.41 0.61
1.00 0.56 0.54 0.58 0.52 0.60 0.50 0.62 0.48 0.64 0.46 0.66

Table 3: α = 0.4 , ρ = 1
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6. Conclusion

Present work is divided mainly into two parts to fulfill the objectives of this pa-
per. Firstly, we have modified and defined Odibat-Baleanu-Caputo (OBC) fractional
derivative, which is a generalized Caputo-type fractional derivative, in fuzzy environ-
ment. Secondly, we studied a class of fuzzy anti periodic boundary value problems of
order 1 < α < 2 under OBC fractional derivative. Some results on the existence and
uniqueness of the solutions of the class have been established under suitable assump-
tions on the concerned nonlinear functions via contraction principal and the Schauder
fixed point theorem. At the end, we have presented three examples as application, first
one illustrates the results established in Theorem 3 and the second one does the same
for Theorem 4. In the last example, we employed a numerical technique which is a
generalization of the Euler’s method for fuzzy OBC-fractional derivative.
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