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EXISTENCE AND STABILITY RESULTS FOR A PANTOGRAPH

PROBLEM WITH SEQUENTIAL CAPUTO–HADAMARD DERIVATIVES

AMIRA ABDELNEBI ∗ AND ZOUBIR DAHMANI

(Communicated by B. Torebek)

Abstract. In the current paper, we look at the existence, uniqueness, and stability of solutions
for a new pantograph problem with three sequential derivatives of Caputo-Hadamard type. The
proposed problem admits the third-order pantograph problem as a limiting case. So, based on
Banach contraction principle and Leray-Schauder fixed point theorems, two main theorems are
proved. Another main result for the Ulam-Hyers stability of solutions for the problem is es-
tablished. Furthermore, an illustrative example is presented to show the applicability of the
existence and uniqueness result as well as the Ulam stability one.

1. Introduction

The topic of fractional integral and differential equations has proved to be valu-
able tools in modeling the dynamics of various systems and processes in the fields
of engineering and technical sciences. For more information, we refer the reader to
the research works [10, 17, 18, 20, 21, 23, 27, 28, 29] and references cited therein.
Meanwhile, the variety of fractional differential operators, such as Riemann-Liouville,
Caputo, Hadamard, Caputo-Hadamards. . . etc, has prompted researchers to delve into
this area. Much interesting and important research on differential equations with frac-
tional calculus is devoted to model some phenomena in various applied sciences, see
[1, 4, 7, 8, 12, 22, 24, 25, 32] and the references within.

Among the most famous equations, there is the pantograph equation, for which we
can state that the pantograph phenomenon is an essential component of electric trains
which collects electrical current from overload lines. This equation has been modeled
by Ockendon and Tayler [26]. Its standard form is given by the following differential
equation: ⎧⎪⎨

⎪⎩
x′(t) = Ax(t)+Bx(t),

x(0) = x0,

0 � t � T, 0 <  < 1.
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In recent years, many researchers have proposed several fractional variants of the
above pantograph equation. For more details, see for instance the research works [2, 3,
9, 11, 13, 14, 15, 16, 19, 30, 31, 33] and references therein.

In this sense, the authors of the paper [5] have studied the following fractional
pantograph equation involving Caputo fractional derivative:⎧⎪⎨

⎪⎩
CD [w()] = (,w(),w()),  ∈ [0,T ],

w(0) = w0,

0 < , < 1.

Very recently in [6], S. Belarbi and al. have discussed the existence and uniqueness
of the following -Caputo sequential pantograph fractional differential problem with
integral conditions:⎧⎪⎨

⎪⎩
cD ,(cD ,x(t)+g(t,x(t))) = f (t,x(t),x( t),c D ,x(t)), t ∈ [0,1],

x(0) = 0, x(1) =
∫ 1
0 h(s,x(s))ds,

0 < , < 1,  > 0,

where cD , and cD , are the -Caputo derivatives, the functions f ,g and h are
continuous.

Motivated by the above results, in this paper, we study the following three-sequential
problem of pantograph type:⎧⎪⎨
⎪⎩

D1 [D2(D3x(t))] = g(t,x(t),x(t),J x(t),Dx(t)),

x(1)−A1 = 0, D3x(1)−A2 = 0, D2(D3x(T )) = 0,

0 <  < i < 1, i = 1,2,3, 3 > , 0 <  < 1, A1,A2 ∈ R, t ∈ I,

(1)

where Di ,D are the Caputo-Hadamard fractional derivatives, J is the Hadamard
fractional integral, I = [1,T ] , the function g is continuous.

The fundamental motivation of the present work has two main advantages: the
first one is that the above-proposed problem is very interesting since it can admit, as a
limiting case, the pantograph equation of order three, which provides a more accurate
mathematical model of the motion of the pantograph arms. It takes into account the
third derivative of the unknown function x(t) , which represents the curvature of the
pantograph arms. This makes the equation more accurate than the equation of order
two. The second advantage is in the use of the Caputo-Hadamard fractional derivative
which combines the properties of two significant operators of Caputo and Hadamard.

This paper is systematized as follows: In Section 2, we render the rudimentary def-
initions and prove some lemmas that are applied throughout this paper, also we present
the concepts of some fixed point theorems. In Section 3, we prove the existence of a
solution and its uniqueness for the problem (1) using the Banach fixed point, we prove
also a second theorem for the existence of at least one solution by applying the Leray-
Schauder theorem. Then, we investigate certain types of Ulam stability. In Section 4,
we give an example to illustrate two of our main results.
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2. Some preliminary results

This section introduces some important definitions and preliminary lemmas, that
will be needed to prove the results in the next sections. For more details, see [18, 20,
21, 23].

DEFINITION 1. (Hadamard fractional integral) The Hadamard fractional integral
of order  � 0, for a continuous function x : [a,b] −→ R is defined as

Ja [x(t)] =
1

()

∫ t

a

(
log

t
s

)−1
x(s)

ds
s

,  > 0, a < t � b,

J0
a [x(t)] = x(t),

where  is the Gamma function.

DEFINITION 2. (Caputo-Hadamard fractional derivative) Let

ACm
 ([a,b]) :=

{
x : [a,b] −→ R : m−1x(t) ∈ AC[a,b], = t

d
dt

}
.

For a function x ∈ ACm
 ([a,b]) , m ∈ N

∗ and m− 1 <  � m , the Caputo-Hadamard
fractional derivative is given by

D
a x(t) =

⎧⎨
⎩

1
(m−)

∫ t
a

(
log t

s

)m−−1 mx(s) ds
s , m−1 <  < m

mx(t),  = m

= Jm−
a [mx(t)].

LEMMA 1. Let x ∈ ACm
 ([a,b]) , m ∈ N

∗ and  > 0 . Then, we have

Ja [D
a x(t)] = x(t)+

n−1


i=0

ci

(
log

t
a

)i
,

for some ci ∈ R , i = 0,1, · · · ,n−1 , n = []+1 . Hence, the following fractional equa-
tion

D
a x(t) = 0,

has a general solution expressed by

x(t) =
n−1


i=0

ci

(
log

t
a

)i
.

LEMMA 2. For any  > 0 ,  > −1 ,

1
()

∫ t

1

(
log

t
s

)−1(
log

s
a

) ds
s

=
( +1)

( + +1)

(
log

t
a

)+
.
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LEMMA 3. Let  > 0 and enable m−1 <  < m, m ∈ N
∗ . Then

1
(m−)

∫ t

1

(
log

t
s

)m−−1
m
(
log

s
a

) ds
s

=
( +1)

( +1−)

(
log

t
a

)−
.

LEMMA 4. Let p,q > 0 , f ∈ L1([a,b]) . Then,

Jp
a Jq

a [x(t)] = Jp+q
a [x(t)], t ∈ [a,b].

LEMMA 5. Let q > p > 0 , f ∈ L1([a,b]) . Then,

Dp
aJq

a [x(t)] = Jq−p
a [x(t)], t ∈ [a,b].

THEOREM 1. (Banach contraction principle) Let S be a Banach space. If  :
S −→ S is a contraction, then  has a unique fixed point in S .

THEOREM 2. (Leray-Schauder Alternative) Let  : S−→ S be a completely con-
tinuous operator. If we consider the set U := {x∈ S : x = (x) for some 0 <  <
1} , then we have:

� Either  has at least fixed point, or

� The set U is unbounded.

The following auxiliary result is also necessary to prove all the main results.

LEMMA 6. Let G ∈C([1,T ]) , t ∈ I , 0 <i � 1 . Then the solution of the problem{
D1 [D2(D3x(t))] = G(t),

x(1)−A1 = 0, D3x(1)−A2 = 0, D2(D3x(T )) = 0,
(2)

is given by the following expression:

x(t) =
1

(1 +2 +3)

t∫
1

(
log

t
s

)1+2+3−1
G(s)

ds
s

− (logt)2+3

(2 +3 +1)(1)

T∫
1

(
log

T
s

)1−1

G(s)
ds
s

(3)

+A1
(logt)3

(3 +1)
+A2.

Proof. By Lemma 1 and applying the operator I1 to Eq. (2), we can write

[D2(D3x(t))] = J1G(t)− c0. (4)
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Next, by using I2 for both sides of Eq. (4), we get

[(D3x(t))] = J1+2G(t)− c0J
2(1)− c1. (5)

Then, using the operator I3 to Eq. (5), we conclude that

x(t) = J1+2+3G(t)− c0J
2+3(1)− c1J

3(1)− c2, (6)

that is

x(t) = J1+2+3G(t)− c0
(logt)2+3

(2 +3 +1)
− c1

(logt)3

(3 +1)
− c2, (7)

where ci ∈ R , i = 0,1,2, are arbitrary real constants.
Now, a simple calculation gives

c2 = −A1.

c1 = −A2,

and
c0 = J1G(T ).

Inserting the values of c0,c1 and c2 in (7) provides the solution (3). �

3. Main results

This part contains the main results of the problem (1) using fixed point theory.
Let us now define the Banach space

S := {x ∈C(I,R),Dx ∈C(I,R)} ,

and its norm
‖ x ‖S= 2 ‖ x ‖ + ‖ Dx ‖,

where,
‖ x ‖= sup

t∈I
| x(t) |, ‖ Dx ‖= sup

t∈I
| Dx(t) | .

In view of Lemma 6, we define an operator  : S → S by:

x(t) =
1

(1 +2 +3)

t∫
1

(
log

t
s

)1+2+3−1
g(s,x(s),x(s),J x(s),Dx(s))

ds
s

− (log t)2+3

(2 +3 +1)(1)

T∫
1

(
log

T
s

)1−1

g(s,x(s),x(s),J x(s),Dx(s))
ds
s

+A1
(log t)3

(3 +1)
+A2.
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Note that problem (1) has solutions if and only if the operator has  fixed points.
To facilitate the calculations for the reader, we need to use the following abbrevi-

ations:

1 =
(

(logT )1+2+3

(1 +2 +3 +1)
+

(logT )2+3 (logT )1

(2 +3 +1)(1 +1)

)
,

2 =
(

(logT )1+2+3−

(1 +2 +3− +1)
+

(logT )2+3− (logT )1

(2 +3− +1)(1 +1)

)
,

3 = 1,

4 = M1 + |A1| (logT )3

(3 +1)
+ |A2| ,

5 = 2,

6 = M2 + |A1| (logT )3−

(3 − +1)
.

Then, we need to propose the following conditions:

(P1): g : I ×R
4 → R is continuous function and there exists a nonnegative constant

1 , such that for all t ∈ I and ui,vi ∈ R (i = 1 : 4) , we have:

|g(t,u1,u2,u3,u4)−g(t,v1,v2,v3,v4)|�1(|u1−v1|+ |u2−v2|+ |u3−v3|+ |u4−v4|).

(P2): There are non negative constants 0,1,2,3 and 4 , such that for real numbers
xi ∈ R, i = 1 : 4, we have

|g(t,x1,x2,x3,x4))| � 0 + 1|x1|+ 2|x2|+ 3|x3|+ 4|x4|.

3.1. A unique solution for the problem

THEOREM 3. Assume that the condition (P1) is satisfied and also the following
inequality holds:

23 +5 < 1. (8)

Then, the problem (1) has a unique solution.

Proof. Let us put sup
t∈[1,T ]

|g(t,0,0,0,0)|= M . Then, we set

r � 24 +6

1− (23 +5)
.

So, we shall prove that Br ⊂ Br , where Br := {x ∈ S : ‖x‖S � r} .
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For x ∈ Br and for any t ∈ [1,T ] , by using (Pi) , i = 1,2, we can write

|g(t,x(t),x(t),J x(t),Dx(t))|
� |g(t,x(t),x(t),J x(t),Dx(t))−g(t,0,0,0,0)+g(t,0,0,0,0)|
� |g(t,x(t),x(t),J x(t),Dx(t))−g(t,0,0,0,0)|+ |g(t,0,0,0,0)|
� 1(|x(t)|+ |x(t)|+ |Jx(t)|+ |Dx(t)|)+ |g(t,0,0,0,0)|
� sup

t∈[1,T ]

{
1(|x(t)|+ |x(t)|+ |Jx(t)|+ |Dx(t)|)+ |g(t,0,0,0,0)|

}

� 1

(
2 ‖ x ‖ + ‖ J x ‖ + ‖ Dx ‖

)
+M

� 1 (2 ‖ x ‖ + ‖ Dx ‖)+1 ‖ J x ‖ +M

� 1 ‖ x ‖S +1
(logT )

( +1)
‖ x ‖S +M

�  ‖ x ‖S +M � r+M,

where,

 = 1

(
1+

(logT )

( +1)

)

Using the above estimate, we obtain

|x(t)|

� sup
t∈[1,T ]

⎧⎨
⎩
∣∣∣∣∣∣

1
(1 +2 +3)

t∫
1

(
log

t
s

)1+2+3−1

×g(s,x(s),x(s),J x(s),Dx(s))
ds
s

− (log t)2+3

(2 +3 +1)(1)

T∫
1

(
log

T
s

)1−1

g(s,x(s),x(s),J x(s),Dx(s))
ds
s

+A1
(logt)3

(3 +1)
+A2

∣∣∣∣∣∣
⎫⎬
⎭

� 1
(1 +2 +3)

T∫
1

(
log

T
s

)1+2+3−1 ∣∣∣g(s,x(s),x(s),J x(s),Dx(s))
∣∣∣ ds

s

+
(logT )2+3

(2 +3 +1)(1)

T∫
1

(
log

T
s

)∣∣∣g(s,x(s),x(s),J x(s),Dx(s))
∣∣∣ ds

s

+ |A1| (logT )3

(3 +1)
+ |A2| .
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Therefore,

|x(t)| � (r+M)
(logT )1+2+3

(1 +2 +3 +1)
+ (r+M)

(logT )2+3 (logT )1

(2 +3 +1)(1 +1)

+|A1| (logT )3

(3 +1)
+ |A2|

� 
(

(logT )1+2+3

(1 +2 +3 +1)
+

(logT )2+3 (logT )1

(2 +3 +1)(1 +1)

)
r

+M

(
(logT )1+2+3

(1 +2 +3 +1)
+

(logT )2+3 (logT )1

(2 +3 +1)(1 +1)

)

+|A1| (logT )3

(3 +1)
+ |A2|.

� 3r+4.

On the other hand, we have

Dx(t) =
1

(1 +2 +3− )

t∫
1

(
log

t
s

)1+2+3−−1

×g(s,x(s),x(s),J x(s),Dx(s))
ds
s

− (logt)2+3−

(2 +3− +1)(1)

T∫
1

(
log

T
s

)1−1

×g(s,x(s),x(s),J x(s),Dx(s))
ds
s

+A1
(log t)3−

(3 − +1)
,

which implies that

|Dx(t)| � 
(

(logT )1+2+3−

(1 +2 +3− +1)
+

(logT )2+3− (logT )1

(2 +3− +1)(1 +1)

)
r

+M

(
(logT )1+2+3−

(1 +2 +3− +1)
+

(logT )2+3− (logT )1

(2 +3− +1)(1 +1)

)

+ |A1| (logT )3−

(3 − +1)
� 5r+6.

Using the norm ‖.‖S , we have

‖x‖S = 2‖x‖+‖Dx‖
� 2(3r+4)+5r+6

� (23 +5) r+24 +6

� r.
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Consequently,

Br ⊂ Br.

Now, for x,y ∈ Br , and for all t ∈ [1,T ] , we have:

| x(t)−y(t) |

� sup
t∈[1,T ]

⎧⎨
⎩ 1
(1 +2 +3)

t∫
1

(
log

t
s

)1+2+3−1

×
∣∣∣∣ g(s,x(s),x(s),J x(s),Dx(s))
−g(s,y(s),y(s),J y(s),Dy(s))

∣∣∣∣ ds
s
− (logt)2+3

(2+3+1)(1)

×
T∫

1

(
log

T
s

)1−1 ∣∣∣∣ g(s,x(s),x(s),J x(s),Dx(s))
−g(s,y(s),y(s),J y(s),Dy(s))

∣∣∣∣ ds
s

⎫⎬
⎭

� 1
(1 +2 +3)

T∫
1

(
log

T
s

)1+2+3−1 ∣∣∣∣ g(s,x(s),x(s),J x(s),Dx(s))
−g(s,y(s),y(s),J y(s),Dy(s))

∣∣∣∣ ds
s

+
(logT )2+3

(2 +3 +1)(1)

T∫
1

(
log

T
s

)1−1 ∣∣∣∣ g(s,x(s),x(s),J x(s),Dx(s))
−g(s,y(s),y(s),J y(s),Dy(s))

∣∣∣∣ ds
s

� 
(

(logT )1+2+3

(1 +2 +3 +1)
+

(logT )2+3 (logT )1

(2 +3 +1)(1 +1)

)
‖x− y‖S .

Therefore,

‖ x−y ‖� 3 ‖x− y‖S . (9)

With the same arguments, we have

| Dx(t)−Dy(t) |

� 
(

(logT )1+2+3−

(1 +2 +3− +1)
+

(logT )2+3− (logT )1

(2 +3− +1)(1 +1)

)
‖x− y‖S .

Thus, we obtain

‖ Dx−Dy ‖� 5 ‖x− y‖S . (10)

From (9) and (10), we get

‖x−y‖S = 2‖x−y‖+‖Dx−y‖
� (23 +5)‖x− y‖S .

Thanks to (8), we deduce that  is a contraction.
Hence, by Banach contraction principle,  has a unique fixed point which is the

unique solution of the problem (1). �
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3.2. At least one solution for the problem

Based on Theorem 2, we present to the reader the following second main result.

THEOREM 4. Assume that hypothese (P2) is satisfied. Then, problem (1) has at
least a solution on I , provided that

0 <

[
1 + 2 +

3(logT )

( +1)
+ 4

]
[21 +2] < 1.

Proof. We proceed as follows:
First of all, we shall prove that  is completely continuous on S :
1: The continuity of g allow us to state that  is continuous.
2: Let T ∈ S be bounded. Then, ∀xi ∈ T , i = 1,4, ∃ 1 > 0, such that

|g(t,x1,x2,x3,x4)| � 1.

Then for all x ∈ T , we have

‖ x ‖ � 1

(
(logT )1+2+3

(1 +2 +3 +1)
+

(logT )2+3 (logT )1

(2 +3 +1)(1 +1)

)

+ |A1| (logT )3

(3 +1)
+ |A2| < .

We have also

‖ Dx ‖ � 1

(
(logT )1+2+3−

(1 +2 +3− +1)
+

(logT )2+3− (logT )1

(2 +3− +1)(1 +1)

)

+ |A1| (logT )3−

(3 − +1)
< .

Then, we deduce that  is uniformly bounded.
3: We show that  is equicontinuous.
Let t1, t2 ∈ I, with t1 < t2 . This implies that

| x(t1)−x(t2) |

�

∣∣∣∣∣∣
1

(1 +2 +3)

t∫
1

(
log

t
s

)1+2+3−1
g(s,x(s),x(s),J x(s),Dx(s))

ds
s

− (logt)2+3

(2 +3 +1)(1)

T∫
1

(
log

T
s

)1−1

g(s,x(s),x(s),J x(s),Dx(s))
ds
s

+A1
(logt)3

(3 +1)
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− 1
(1 +2 +3)

t∫
1

(
log

t
s

)1+2+3−1
g(s,x(s),x(s),J x(s),Dx(s))

ds
s

+
(logt)2+3

(2 +3 +1)(1)

T∫
1

(
log

T
s

)1−1

g(s,x(s),x(s),J x(s),Dx(s))
ds
s

−A1
(logt)3

(3 +1)

∣∣∣∣∣∣ ,

then,

| x(t1)−x(t2) | � 1

(1 +2 +3 +1)
[
(logt1)

1+2+3 − (logt2)
1+2+3

]
+

1 (logT )1

(2 +3 +1)(1 +1)
[
(log t1)

2+3 − (logt2)
2+3

]
+

|A1|
(3 +1)

[
(logt1)

3 − (logt2)
3
]
. (11)

Similarly, as before, we have

| Dx(t1)−Dx(t2) |
� 1

(1 +2 +3− +1)
[
(log t1)

1+2+3− − (logt2)
1+2+3−]

+
1 (logT )1

(2 +3− +1)(1 +1)
[
(logt1)

2+3− − (logt2)
2+3−]

+
|A1|

(3 − +1)
[
(logt1)

3− − (log t2)
3−] . (12)

The right hand sides of (11) and (12) is independent of x , and tend to zero as t1 → t2 .
Therefore, the operator  is thus equicontinuous.

As a consequence of the previous steps and thanks to Arzela-Ascoli theorem, we
conclude that  is completely continuous.

Now, we show that U := {x ∈ S : x = (x), 0 <  < 1} , is bounded.
Let x ∈ U . Then, we have x = (x) for some 0 <  < 1, and then for each

t ∈ I , we can write

x(t) =


(1 +2 +3)

t∫
1

(
log

t
s

)1+2+3−1
g(s,x(s),x(s),J x(s),Dx(s))

ds
s

− (log t)2+3

(2 +3 +1)(1)

T∫
1

(
log

T
s

)1−1

g(s,x(s),x(s),J x(s),Dx(s))
ds
s

+A1
(log t)3

(3 +1)
+A2.
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Then, we get

‖x‖ �
[
1 + 2 +

(logT )

( +1)
3 + 4

]

×
[

(logT )1+2+3

(1 +2 +3 +1)
+

(logT )2+3(logT )1

(2 +3 +1)(1 +1)

]
‖x‖S

+0

[
(logT )1+2+3

(1 +2 +3 +1)
+

(logT )2+3(logT )1

(2 +3 +1)(1 +1)

]

+|A1| (logT )3

(3 +1)
+ |A2|.

In the same way, we obtain:

‖Dx‖ �
[
1 + 2 +

(logT )

( +1)
3 + 4

]

×
[

(logT )1+2+3−

(1 +2 +3− +1)
+

(logT )2+3−(logT )1

(2 +3− +1)(1 +1)

]
‖x‖S

+0

[
(logT )1+2+3−

(1 +2 +3− +1)
+

(logT )2+3−(logT )1

(2 +3− +1)(1 +1)

]

+|A1| (logT )3−

(3 − +1)
.

Therefore,

‖x‖S � 2‖x‖+‖Dx‖

� 2

[
1 + 2 +

3(logT )

( +1)
+ 4

]

×
[

(logT )1+2+3

(1 +2 +3 +1)
+

(logT )2+3(logT )1

(2 +3 +1)(1 +1)

]
‖x‖S

+20

[
(logT )1+2+3

(1 +2 +3 +1)
+

(logT )2+3(logT )1

(2 +3 +1)(1 +1)

]

+2|A1| (logT )3

(3 +1)
+2|A2|

+

[
1 + 2 +

3(logT )

( +1)
+ 4

]

×
[

(logT )1+2+3−

(1 +2 +3− +1)
+

(logT )2+3−(logT )1

(2 +3− +1)(1 +1)

]
‖x‖S

+0

[
(logT )1+2+3−

(1 +2 +3− +1)
+

(logT )2+3− (logT )1

(2 +3− +1)(1 +1)

]

+|A1| (logT )3−

(3 − +1)
.



EXISTENCE AND STABILITY RESULTS FOR A PANTOGRAPH PROBLEM 33

Hence,

‖x‖S �

⎧⎨
⎩0

⎡
⎣2

⎛
⎝ (logT )1+2+3

(1+2+3+1)+
(logT )2+3 (logT )1

(2+3+1)(1+1)

⎞
⎠+

⎛
⎝ (logT )1+2+3−

(1+2+3−+1)

+ (logT )2+3− (logT )1

(2+3−+1)(1+1)

⎞
⎠
⎤
⎦

+|A1|
[

2 (logT )3

(3+1)

+ (logT )3−
(3−+1)

]
+2|A2|

}/
⎧⎨
⎩1−2

[
1+2

+ 3(logT )

(+1) +4

]⎛
⎝ (logT )1+2+3

(1+2+3+1)

+(logT )2+3 (logT )1

(2+3+1)(1+1)

⎞
⎠

+

[
1+2

+ 3(logT )

(+1) +4

]⎛
⎝ (logT )1+2+3−

(1+2+3−+1)+
(logT )2+3− (logT )1

(2+3−+1)(1+1)

⎞
⎠
⎫⎬
⎭ .

Consequently,

‖x‖S �
0 [21 +2]+ |A1|

[
2 (logT )3

(3+1) + (logT )3−
(3−+1)

]
+2|A2|

1−
[
1 + 2 + 3(logT )

(+1) + 4

]
[21 +2]

.

So, U is bounded.
We conclude by Theorem 2 that  admits at least one fixed point which is a

solution of (1). �

3.3. Ulam type stabilities

In this section, we discuss some Ulam type stabilities for the solutions of (1).
Let  > 0 and the function  in S . We consider the following inequalities:∣∣∣D1 [D2(D3y(t))]−g(t,y(t),y(t),Jy(t),Dy(t))

∣∣∣� , t ∈ I. (13)

∣∣∣D1 [D2(D3y(t))]−g(t,y(t),y(t),Jy(t),Dy(t))
∣∣∣� (t), t ∈ I. (14)

We introduce the following definitions.

DEFINITION 3. The problem (1) is Ulam-Hyers stable if there exists a real num-
ber Cf > 0, such that for each  > 0 and for each solution y ∈ S of (13), there exists a
solution x ∈ S of (1), with

‖y− x‖S � Cf.

DEFINITION 4. We say that problem (1) is generalized Ulam-Hyers stable if there
exists F ∈C(R+,R+) , with F(0) = 0, such that for any  > 0, and for each solution
y ∈ S to the inequality (13), there exists a solution x ∈ S of (1), with

‖y− x‖S � F().
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DEFINITION 5. We say that problem (1) is Ulam-Hyers-Rassias stable with re-
spect to  if there exists a real number Cf, > 0 such that for each  > 0 and for each
solution y ∈ S of (14), there is a solution x ∈ S of (1), with

‖y− x‖S � Cf,(t).

Now, we are ready to study the stability of solutions for (1).

THEOREM 5. The solution of (1) is Ulam-Hyers stable if the hypotheses of Theo-
rem 3 hold.

Proof. Let  > 0 and let y ∈ X be a function that satisfies the inequality (13).
Then, by integrating (13) with the same conditions as in (1), we obtain∣∣∣∣∣∣∣∣∣∣∣

y(t)− 1
(1+2+3)

t∫
1

(
log t

s

)1+2+3−1
Gy(s) ds

s

+ (logt)2+3

(2+3+1)(1)

T∫
1

(
log T

s

)1−1
Gy(s) ds

s

−A1
(logt)3

(3+1) −A2.

∣∣∣∣∣∣∣∣∣∣∣
� × (log t)1+2+3

(1 +2 +3 +1)
,

and let us assume that x is a solution of problem (1) given by

x(t) =
1

(1 +2 +3)

t∫
1

(
log

t
s

)1+2+3−1
G(s)

ds
s

− (logt)2+3

(2 +3 +1)(1)

T∫
1

(
log

T
s

)1−1

G(s)
ds
s

+A1
(logt)3

(3 +1)
+A2,

where G(s)= g(x,x(s),x(s),J x(s),Dx(s)) and Gy(s)= g(y,y(s),y(s),J y(s),
Dy(s)) .

For each t ∈ I , we have

|y(t)− x(t)|�

∣∣∣∣∣∣∣∣
× (logt)1+2+3

(1+2+3+1) + 1
(1+2+3)

t∫
1

(
log t

s

)1+2+3−1 [Gy(s)−G(s)] ds
s

+ (log t)2+3

(2+3+1)(1)

T∫
1

(
log T

s

)1−1 [Gy(s)−G(s)] ds
s

∣∣∣∣∣∣∣∣
.

From hypothese (P1) , we get

‖x− y‖ � (logT )1+2+3

(1 +2 +3 +1)
+3‖x− y‖S.
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Similarly,

‖Dx−Dy‖ � (logT )1+2+3−

(1 +2 +3− +1)
+5‖x− y‖S,

which implies that

‖x− y‖S � 2
(logT )1+2+3

(1 +2 +3 +1)
+23‖x− y‖S

+
(logT )1+2+3−

(1 +2 +3− +1)
+5‖x− y‖S,

�
[

2(logT )1+2+3

(1 +2 +3 +1)
+

(logT )1+2+3−

(1 +2 +3− +1)

]
+(23 +5)‖x− y‖S.

Consequently, we get

‖x− y‖S �

⎡
⎣ 2(logT )1+2+3

(1+2+3+1) + (logT )1+2+3−
(1+2+3−+1)

1− (23 +5)

⎤
⎦ = Cf.

Hence, the solution of problem (1) is stable in the Ulam-Hyers sense. �

REMARK 1. By taking F() = Cf , we can state that the considered problem (1)
is generalized Ulam-Hyers stable.

THEOREM 6. Assume that the hypotheses of Theorem 3 and

(P3): The function  ∈C(I,R+) is increasing and there exist , > 0 such that, for
each t ∈ I we have

J(t) � ,(t), (15)

are valid.
Then the solution of (1) is Ulam-Hyers-Rassias stable.

Proof. By integrating the inequality (14) and using (15), we get∣∣∣∣∣∣∣∣∣∣∣

y(t)− 1
(1+2+3)

t∫
1

(
log t

s

)1+2+3−1
Gy(s) ds

s

+ (logt)2+3

(2+3+1)(1)

T∫
1

(
log T

s

)1−1
Gy(s) ds

s

−A1
(logt)3

(3+1) −A2.

∣∣∣∣∣∣∣∣∣∣∣
� J1+2+3(t) � ,1+2+3(t),

where (14) has y ∈ S as a proposed solution.
Let x ∈ S be the unique solution of (1). Then, for each t ∈ I , we have

‖x− y‖ � ,1+2+3(t)+3‖x− y‖S.
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With the same arguments as before, we obtain

‖Dx−Dy‖ � ,1+2+3−(t)+5‖x− y‖S.

Therefore

‖x− y‖S �
(
2,1+2+3 +,1+2+3−

)
(t)+ (23 +5)‖x− y‖S

� ×
(
2,1+2+3 +,1+2+3−

)
1− (23 +5)

(t) = Cf,(t).

Then, (1) is Ulam-Hyers-Rassias stable. �

4. An example

As an application of our results, we consider the following problem:⎧⎨
⎩

D0.9[D0.93(D0.86x(t))] = g(t,x(t),x( 1
6 t),J0.45x( 1

6 t),D0.80x( 1
6 t)), t ∈ [1,e],

x(1)− 9
10 = 0, D0.86x(1)+ 26

3 = 0, D0.93(D0.86x(e)) = 0,
(16)

where,

g(t,u,v,w,z) =
sin(t)

100ln(t +1)
+

2
70

u+
11

1997
v+

1
203 sin(t)w+

1
303 z.

So, for any ui,vi ∈ R (i = 1,2,3,4) and t ∈ [1,e] , we have

|g(t,u1,u2,u3,u4)−g(t,v1,v2,v3,v4)|
� 2

70
(|u1− v1|+ |u2− v2|+ |u3− v3|+ |u4− v4|).

The condition (P1) holds with 1 = 2
70 .

Using the given data, we find that

= 1

(
1+

(logT )

( +1)

)
= 0.0608,

and also, we have
3 = 0.0861, 5 = 0.0971.

Moreover,
23 +5 = 0.2694 < 1.

Consequently, Theorem 3 implies that (1) has a unique solution on I .
Also, thanks to Theorem 5, the unique solution of (16) is Ulam-Hyers stable.
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5. Conclusion & perspectives

In this study, we have proposed a new pantograph problem with three sequential
derivatives of Caputo-Hadamard type. The existence, uniqueness and different types
of Ulam-stability of solutions for this problem has been addressed. The problem was
solved using the Leray-Schauder and Banach fixed point theorems. The solutions are
shown to be unique and stable in the sense of Ulam-Hyers and Ulam-Hyers-Rassias.
For validation, a numerical example has been given to illustrate our main results.

Regarding future perspectives, this work opens some new possibilities for us to
develop numerical methods for solving the new pantograph problem. Also, The stabil-
ity of solutions to this problem could be investigated using various of methods, such as
Lyapunov’s stability theorem.

RE F ER EN C ES

[1] A. ABDELNEBI, Z. DAHMANI, New Van der Pol-Duffing Jerk Fractional Differential Oscillator of
Sequential Type, Mathematics, 2022, 10 (19), 35–46.

[2] H. AFSHARI, H. R. MARASI, J. ALZABUT, Applications of new contraction mappings on existence
and uniqueness results for implicit  -Hilfer fractional pantograph differential equations, J. Inequal.
Appl., 2021, (185), 1–14.

[3] I. AHMAD, J. J. NIETO, G. U. RAHMAN, K. SHAH, Existence and stability for fractional order
pantograph equations with nonlocal conditions, Electron J. Differential Equations, 2020, (132), 1–16.

[4] Z. ALI, A. ZADA, K. SHAH, Ulam stability results for the solutions of nonlinear implicit fractional
order differential equations, Hacet. J. Math. Stat., 2019, 48 (4), 1092–1109.

[5] K. BALACHANDRAN, S. KIRUTHIKA, J. J. TRUJILLO, Existence of solutions of nonlinear fractional
pantograph equations, Acta. Math. Sci., 2013, 33 (3): 712–20.

[6] S. BELARBI, Z. DAHMANI, M. Z. SARIKAYA, A sequential fractional differential problem of panto-
graph type: existence uniqueness and illustrations, Turk. J. Math., 2022, (46), 563–586.
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