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Abstract. This article investigates a time-fractional space-nonlocal diffusion equation in a boun-
ded domain. The fractional operators are defined rigorously, using the Caputo fractional deriva-
tive of order  and the Riemann-Liouville fractional integral of order  , where 0 <  <  � 1 .
The solution is expressed as a series involving the two-parameter Mittag-Leffler function and
orthonormal eigenfunctions of the Sturm-Liouville operator. The convergence of the series is in-
vestigated, and conditions for the solution to belong to a specific function space are established.
The uniqueness of the solution is demonstrated and the continuity of the solution in the specified
domain is confirmed through the uniform convergence of the series.

1. Introduction

Over the course of millennia, fractional partial differential equations (FPDEs) have
evolved into essential tools for representing complex systems and anomalous phenom-
ena [8]–[9]. A comprehensive exploration of the applications of these equations across
disciplines such as chemistry, technology, and physics is presented in the book [20].

Furthermore, differential equations where the unknown function and its derivatives
are evaluated with changes to time or space variables are known as differential equa-
tions with modified arguments, or general functional differential equations. Equations
containing involutions can be distinguished among them [7].

DEFINITION 1. ([21]) A function (x) �≡ x that maps a set of real numbers,  ,
onto itself and satisfies on  the condition

((x)) = x, or −1(x) = (x)

is called an involution on  .
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Equations containing involution are equations with an alternating deviation (at x∗ < x
being equations with advanced, and at x∗ > x being equations with delay, where x∗ is
a fixed point of the mapping (x)) .

We recommend the reader to the books of Skubachevskii [17], Wu [22] and Cabada
and Tojo [7] for general information regarding partial functional differential equations
and specifically for properties of equations with involutions.

Consider the mapping S : R→R , of the type Sx := 1−x . Obviously, the mapping
is involution, i.e. S2 = I , where I is the identity mapping.

Using these mapping, we introduce the operator

Lxu(x,t) =
 2

x2 u(x,t)+ 
 2

x2 u(1− x,t)

where  � 0.
It should be noted that the direct and inverse problems for the diffusion and frac-

tional diffusion equations with involutions were covered in [1, 2, 3, 4, 5, 10, 6, 16, 18,
19].

Motivated the above papers, we consider the the following equation

D
0+u(x, t)− I0+[Lxu](x,t) = 0, in = {(x,t) : 0 < x < 1, 0 < t < T}, (1)

with initial and boundary conditions

u(x,0) = (x) on x ∈ [0,1], (2)

u(0,t) = u(1,t) = 0, 0 � t � T, (3)

where 0 <  <  � 1 and the function (x) is continuous.
In addition, the operator I0+ is the Riemann-Liouville fractional integral of order

 > 0, defined as

I0+u(x,t) =
1

()

t∫
0

(t − s)−1u(x,s)ds, t ∈ (0,T ],

and the operator D
0+ stands for the Caputo fractional derivative of order  ∈ (0,1) is

defined by

D
0+u(x, t) = I1−

0+

[

 t

u(x,t)
]

=
1

(1− )

t∫
0

(t− s)−

 s

u(x,s)ds.

LEMMA 1. [9, p. 95] If 0 <  < 1 for f ∈ AC[0,T ] , f ∈C′(0,T ) then

I0+

[
D

0+ f (t)
]

= f (t)− f (0),

holds true.



INITIAL-BOUNDARY VALUE PROBLEMS... 103

LEMMA 2. [9, p. 101] Let f ∈C[0,T ] . If  + � 1 , then

I0+

[
I0+ f (t)

]
= I+

0+ f (t).

DEFINITION 2. The two-parameter Mittag-Leffler function E , (z) , is defined by
(see [9, p. 42])

E , (z) =



k=0

zk

(k+ )
(z, ∈ C); () > 0).

LEMMA 3. [15, p. 9] For every  � 0 one has the optimal bounds∣∣∣∣E , (− t)
∣∣∣∣ � C

1+ | t | � C, t � 0,  � 0,

 t
∣∣∣∣E , (− t)

∣∣∣∣ � C, 0 <  < 2,  ∈ C.

2. Main results

This section summarizes the key findings of this article.

THEOREM 1. Let (x) ∈ C[0,1],  ′(x) ∈ L2(0,1) , then the unique solution of
problem (1)–(3) is the function u(x,t) ∈C() , which has the form

u(x,t) =



k=1

kXk(x)
[
E+ ,1(−kt

+ )
]
, (4)

where

k =
√

2
∫ 1

0
(x)sin(kx)dx

and E , (−z) is the two-parameter Mittag-Leffler function.

Proof. As operator Lx with Dirichlet conditions has the eigenvalues {k � 0,k ∈
N} and corresponding orthonormal eigenfunctions {Xk(x),k ∈ N} (see [13, 11]), we
can represent any solution of (1)–(3) as

u(x,t) =



k=1

Xk(x)Tk(t), (x,t) ∈ (0,1)× (0,T). (5)

The function  can be represented in the form

(x) =



k=1

kXk(x), x ∈ (0,1),
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where

k =
√

2
∫ 1

0
(x)Xk(x)dx.

By substituting (5) into the equations (1)–(3), we have a separate problem for the vari-
able t

D
0+Tk(t)+kI


0+Tk(t) = 0, t > 0, (6)

and respect to x
X

′′
k (x)+ X

′′
k (1− x)+kXk(x) = 0, (7)

Xk(0) = Xk(1) = 0. (8)

The orthonormal eigenfunctions and related eigenvalues of the Dirichlet problem
(7)–(8) are Xk(x) = sin(kx) and k = (1+(−1)k+1)(k)2 , respectively.

Then, applying the operator I0+ to equation (6), we get

I0+[D
0+Tk(t)+kI


0+Tk(t)] = 0.

In view of Lemma 1 and Lemma 2, it holds

k(I
+
0+ Tk)(t)+Tk(t) = Tk(0), t > 0,

The integral equation has a unique solution (see [9], p. 231)

Tk(t) = Tk(0)E+ ,1(−kt
+ ). (9)

Therefore, we deduce that

u(x,t) =



k=1

kXk(x)E+ ,1(−kt
+ ), (10)

where 0 < <  � 1, k = ( ,Xk) , Xk(x) =
√

2sin(kx) , k = (1+(−1)k+1)(k)2 .
Next, we have to show that u(x,t) ∈C() for = {(x,t) : 0 � x � 1,0 � t � T} .

For this, we have to show the uniform convergence of series (10) in a closed domain
 .

Now, let us estimate the coefficients k , which given by

k = ( ,Xk) =
√

2
∫ 1

0
(x)sin(kx)dx.

Integrating by parts, we have

k =
√

2
∫ 1

0
(x)d

[
− cos(kx)

k

]

= −(x)
√

2cos(kx)
k

∣∣∣∣
x=1

x=0
+

√
2

k

∫ 1

0
 ′(x)cos(kx)dx.
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If the conditions (0) = (1) = 0 are hold true, then it yields that

k =
1
k

(1)
k , (11)

where

(1)
k =

∫ 1

0

√
2 ′(x)cos(kx)dx. (12)

Using Lemma 3, and |Xk(x)| � C , we obtain

|u(x,t)| � C



k=1

|k| = C



k=1

1
k
|(1)

k |.

Consequently, we study the convergence of the series



k=1

1
k
|(1)

k |. Due to the Cauchy-

Schwarz inequality, it follows that




k=1

1
k
|(1)

k | �
√




k=1

1
k2

√√√√ 


k=1

∣∣∣∣(1)
k

∣∣∣∣
2

.

Moreover, it is well-known that, the system Yk(x) = {√2cos(kx)}k=1 is orthonormal
in L2(0,1) and for any function g(x) ∈ L2(0,1) the Bessel inequality holds




k=1

|gk|2 �‖ g(x) ‖2
L2

=
∫ 1

0
g2(x)dx,

where

gk = (g,Yk) =
√

2
∫ 1

0
g(x)cos(kx)dx.

So, if

g(x) ∈ L2(0,1) ⇔
∫ 1

0
g2(x)dx < ,

then



k=1

|gk|2 < ,

i.e. the series converges.

Further, if  ′(x)∈L2(0,1) , then for coefficients (1)
k of equality (12) using Bessel’s

inequality, we conclude



k=1

|(1)
k | < .

Thus, if  ′(x) ∈ L2(0,1) , then the number series



k=1

1
k
|(1)

k | converges, when the

conditions are holds

(x) ∈C[0,1],  ′(x) ∈ L2[0,1], (0) = (1) = 0. (13)
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Consequently, the series (10) converges uniformly in the closed region  , which give
us u ∈C() .

Now let us show that the solution is unique. Assume that u1(x,t) and u2(x,t) are
solutions to the problem (1)–(3). We choose u(x,t) = u1(x,t)− u2(x,t) so that u(x,t)
satisfies the equation and the initial and boundary conditions (2)–(3).

Consider the following identity

Tk(t) =
∫ 1

0
u(x,t)sin(kx)dx, k ∈ N, t � 0. (14)

Noting (6), we apply the operator D
0+ to the left side of the equation (14)

(D
0+Tk)(t) =

∫ 1

0
(D

0+u)(x,t)sin(kx)dx

= −(k)2I0+

∫ 1

0
u(x,t)sin(kx)dx

= −(k)2(I0+Tk)(t), k ∈ N, t � 0.

As a result of (2) and (3) we have

Tk(0) =
∫ 1

0
u(x,0)sin(kx)dx =

∫ 1

0
(x)sin(kx)dx = 0.

In view of (9) we deduce that

Tk(t) = Tk(0)E+ ,1(−kt
+ ) = 0.

Since Tk(0) = 0, which means u(x,t) = 0. Hence u1(x,t) = u2(x,t) , and the problem
(1)–(3) has a unique solution.

By applying the operators D
0+ and I0+ to the identity (10), we get

D
0+u(x,t) = D

0+

[ 


k=1

kXk(x)E+ ,1(−kt
+ )

]

=



k=1

kXk(x)D

0+

[
E+ ,1(−kt

+ )
]

= −



k=1

kXk(x)kt
E+ ,+1(−kt

+ )

(15)

and

I0+[Lxu](x,t) = D
0+u(x,t)

= −



k=1

kXk(x)kt
E+ ,+1(−kt

+ ).
(16)

Next, we show that D
0+u ∈C() and I0+u ∈C() .
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Let  be an arbitrary, sufficiently small positive number. Then for all 0 <  � t ,
taking into account (15), (16) and Lemma 3, we arrive at

|D
0+u(x,t)| = |I0+[Lxu](x,t)|

=
∣∣∣∣ 


k=1

kXk(x)kt
E+ ,+1(−kt

+ )
∣∣∣∣

=
∣∣∣∣ 


k=1

kXk(x)t−
[
kt

+E+ ,+1(−kt
+ )

]∣∣∣∣
� C




k=1

|k|.

If the conditions (13) holds, the series



k=1

|k| converges, and then the series (15) and

(16) representing the function D
0+u(x,t) and I0+[Lxu](x,t) converges uniformly in any

closed subdomain  of the domain  .
Consequently, since the value of  is arbitrary, we have D

0+u∈C() and I0+[Lxu]
∈C() . This completes the proof. �

3. Conclusion

In this paper, the main results include the presentation of well-known properties
associated with fractional operators and the establishment of a classical solution to this
problem. The key conclusions are summarized using a theorem that provides an explicit
form of the solution. The solution is expressed as a series including the two-parameter
Mittag-Leffler function and orthonormal eigenfunctions of the Sturm-Liouville opera-
tor. The uniqueness of the solution is proved, which guarantees that the problem has a
unique solution.
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